[1] Azam, M. F., Wagnon, P., Vincent, C., et al., 2014. Reconstruction of the Annual Mass Balance of Chhota Shigri Glacier, Western Himalaya, India, since 1969. Annals of Glaciology, 55(66):69-80. https://doi.org/10.3189/2014aog66a104
[2] Bond, T. C., Streets, D. G., Yarber, K. F., et al., 2004. A Technology-Based Global Inventory of Black and Organic Carbon Emissions from Combustion. Journal of Geophysical Research, 109:D14203. https://doi.org/10.1029/2003jd003697
[3] Che, Y. J., Zhang, M. J., Li, Z. Q., et al., 2017. Glacier Mass-Balance and Length Variation Observed in China during the Periods 1959-2015 and 1930-2014. Quaternary International, 454:68-84. https://doi.org/10.1016/j.quaint.2017.07.003
[4] Chen, J., Kang, S., Qin, X., et al., 2017. The Mass-Balance Characteristics and Sensitivities to Climate Variables of Laohugou Glacier No. 12, Western Qilian Mountains, China. Science in Cold and Arid Regions, 9(6):543-553. https://doi.org/10.3724/sp.j.1226.2017.00543
[5] Chen, J. Z., Qin, X., Kang, S. C., et al., 2018. Effects of Clouds on Surface Melting of Laohugou Glacier No. 12, Western Qilian Mountains, China. Journal of Glaciology, 64(243):89-99. https://doi.org/10.1017/jog.2017.82
[6] Cui, Y. H., Ye, B. S., Wang, J., et al., 2010. Analysis of the Spatial-Temporal Variations of the Positive Degree-Day Factors on the Glaicer No. 1 at the Headwaters of the Urumqi River. Journal of Glaciology and Geocryology, 32(2):265-274 (in Chinese with English Abstract)
[7] Cui, Y. H., Ye, B. S., Wang, J., et al., 2013. Influence of Degree-Day Factor Variation on the Mass Balance of Glacier No. 1 at the Headwaters of Urumqi River, China. Journal of Earth Science, 24(6):1008-1022. https://doi.org/10.1007/s12583-013-0394-2
[8] Dong, Z. W., Qin, D. H., Ren, J. W., et al., 2013. The Response of Equilibrium Line Altitude to Climate Change in the Past 50 Years on the Urumqi Glacier No. 1. Chinese Science Bulletin, 58(9):825-832 (in Chinese with English Abstract) doi: 10.1360/csb2013-58-9-825
[9] Dong, Z. W., Qin, D. H., Kang, S. C., et al., 2016. Individual Particles of Cryoconite Deposited on the Mountain Glaciers of the Tibetan Plateau:Insights into Chemical Composition and Sources. Atmospheric Environment, 138:114-124. https://doi.org/10.1016/j.atmosenv.2016.05.020.
[10] Dong, Z. W., Shao, Y. P., Qin, D. H., et al., 2018a. Insight into Radio-Isotope 129I Deposition in Fresh Snow at a Remote Glacier Basin of Northeast Tibetan Plateau, China. Geophysical Research Letters, 45(13):6726-6733. https://doi.org/10.1029/2018gl078480
[11] Dong, Z. W., Kang, S. C., Qin, D. H., et al., 2018b. Variability in Individual Particle Structure and Mixing States between the Glacier-Snowpack and Atmosphere in the Northeastern Tibetan Plateau. The Cryosphere, 12(12):3877-3890. https://doi.org/10.5194/tc-12-3877-2018
[12] Dong, Z. W., Qin, D. H., Li, K. M., et al., 2019. Spatial Variability, Mixing States and Composition of Various Haze Particles in Atmosphere during Winter and Summertime in Northwest China. Environmental Pollution, 246:79-88. https://doi.org/10.1016/j.envpol.2018.11.101
[13] Du, W. T., Qin, X., Sun W. J., et al., 2011. Reconstruction of Air Temperature at Glacier Area in Mountain——A Case of Laohugou Glacier Area. Journal of Arid Land Resources Environment, 25:149-154 (in Chinese with English Abstract)
[14] Flanner, M. G., Zender, C. S., Randerson, J. T., et al., 2007. Present-Day Climate Forcing and Response from Black Carbon in Snow. Journal of Geophysical Research, 112:D11202. https://doi.org/10.1029/2006jd008003
[15] Fujita, K., Ageta, Y., 2000. Effect of Summer Accumulation on Glacier Mass Balance on the Tibetan Plateau Revealed by Mass-Balance Model. Journal of Glaciology, 46(153):244-252. https://doi.org/10.3189/172756500781832945
[16] Gardelle, J., Berthier, E., Arnaud, Y., 2012. Slight Mass Gain of Karakoram Glaciers in the Early Twenty-First Century. Nature Geoscience, 5(5):322-325. https://doi.org/10.1038/ngeo1450
[17] Gardelle, J., Berthier, E., Arnaud, Y., et al., 2013. Region-Wide Glacier Mass Balances over the Pamir-Karakoram-Himalaya during 1999-2011. The Cryosphere, 7(4):1263-1286. https://doi.org/10.5194/tc-7-1263-2013
[18] Guo, W. Q., Liu, S. Y., Xu, J. L., et al., 2015. The Second Chinese Glacier Inventory:Data, Methods and Results. Journal of Glaciology, 61(226):357-372. https://doi.org/10.3189/2015jog14j209
[19] Han, Y. M., Wei, C., Bandowe, B., et al., 2015. Elemental Carbon and Polycyclic Aromatic Compounds in a 150-Year Sediment Core from Lake Qinghai, Tibetan Plateau, China:Influence of Regional and Local Sources and Transport Pathways. Environmental Science & Technology, 49(7):4176-4183. https://doi.org/10.13039/501100001711
[20] Hock, R., 2003. Temperature Index Melt Modelling in Mountain Areas. Journal of Hydrology, 282(1-4):104-115. https://doi.org/10.1016/s0022-1694(03)00257-9
[21] Hock, R., Holmgren, B., 2005. A Distributed Surface Energy-Balance Model for Complex Topography and Its Application to Storglaciären, Sweden. Journal of Glaciology, 51(172):25-36. https://doi.org/10.3189/172756505781829566
[22] Huss, M., Farinotti, D., Bauder, A., et al., 2008. Modelling Runoff from Highly Glacierized Alpine Drainage Basins in a Changing Climate. Hydrological Processes, 22(19):3888-3902. https://doi.org/10.1002/hyp.7055
[23] Immerzeel, W. W., van Beek, L. P. H., Bierkens, M. F. P., 2010. Climate Change will Affect the Asian Water Towers. Science, 328(5984):1382-1385. https://doi.org/10.1126/science.1183188
[24] IPCC. 2013. Climate Change 2013: The Physical Science Basis. Contribution of Working Group Ⅰ to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridg
[25] Kang, S. C., Xu, Y. W., You, Q. L., et al., 2010. Review of Climate and Cryospheric Change in the Tibetan Plateau. Environmental Research Letters, 5(1):015101. https://doi.org/10.1088/1748-9326/5/1/015101
[26] Kayastha, R. B., Ageta, Y., Nakawo, M., et al., 2003. Positive Degree-Day Factors for Ice Ablation on Four Glaciers in the Nepalese Himalayas and Qinghai-Tibetan Plateau. Bulletin of Glaciological Research, 20:7-14
[27] Kopacz, M., Mauzerall, D. L., Wang, J., et al., 2011. Origin and Radiative Forcing of Black Carbon Transported to the Himalayas and Tibetan Plateau. Atmospheric Chemistry and Physics, 11(6):2837-2852. https://doi.org/10.5194/acp-11-2837-2011
[28] Kraaijenbrink, P. D. A., Bierkens, M. F. P., Lutz, A. F., et al., 2017. Impact of a Global Temperature Rise of 1.5 Degrees Celsius on Asia's Glaciers. Nature, 549(7671):257-260. https://doi.org/10.1038/nature23878
[29] Li, Y., Chen, J. Z., Kang, S. C., et al., 2016. Impacts of Black Carbon and Mineral Dust on Radiative Forcing and Glacier Melting during Summer in the Qilian Mountains, Northeastern Tibetan Plateau. The Cryosphere Discussions, 1-14. https://doi.org/10.5194/tc-2016-32
[30] Li, Z. Q., Li, H. L., Chen, Y. N., 2011. Mechanisms and Simulation of Accelerated Shrinkage of Continental Glaciers:A Case Study of Urumqi Glacier No. 1 in Eastern Tianshan, Central Asia. Journal of Earth Science, 22(4):423-430. https://doi.org/10.1007/s12583-011-0194-5
[31] Liu, Q., Liu, S. Y., 2015. Response of Glacier Mass Balance to Climate Change in the Tianshan Mountains during the Second Half of the Twentieth Century. Climate Dynamics, 46(1/2):303-316. https://doi.org/10.1007/s00382-015-2585-2
[32] Liu, S. Y., Sun, W. X., Shen, Y. P., et al., 2003. Glacier Changes since the Little Ice Age Maximum in the Western Qilian Shan, Northwest China, and Consequences of Glacier Runoff for Water Supply. Journal of Glaciology, 49(164):117-124. https://doi.org/10.3189/172756503781830926
[33] Liu, Y. S., Qin, X., Chen, J. Z., et al., 2018. Variations of Laohugou Glacier No. 12 in the Western Qilian Mountains, China, from 1957 to 2015. Journal of Mountain Science, 15(1):25-32. https://doi.org/10.1007/s11629-017-4492-y
[34] Lutz, A. F., Immerzeel, W. W., Shrestha, A. B., et al., 2014. Consistent Increase in High Asia's Runoff Due to Increasing Glacier Melt and Precipitation. Nature Climate Change, 4(7):587-592. https://doi.org/10.1038/nclimate2237
[35] Mölg, T., Cullen, N. J., Hardy, D. R., et al., 2009. Quantifying Climate Change in the Tropical Midtroposphere over East Africa from Glacier Shrinkage on Kilimanjaro. Journal of Climate, 22(15):4162-4181. https://doi.org/10.1175/2009jcli2954.1
[36] Marzeion, B., Cogley, J. G., Richter, K., et al., 2014. Attribution of Global Glacier Mass Loss to Anthropogenic and Natural Causes. Science, 345(6199):919-921. https://doi.org/10.1126/science.1254702
[37] Maussion, F., Scherer, D., Mölg, T., et al., 2014. Precipitation Seasonality and Variability over the Tibetan Plateau as Resolved by the High Asia Reanalysis. Journal of Climate, 27(5):1910-1927. https://doi.org/10.1175/jcli-d-13-00282.1
[38] Ming, J., Du, Z. C., Xiao, C. D., et al., 2012. Darkening of the Mid-Himalaya Glaciers since 2000 and the Potential Causes. Environmental Research Letters, 7(1):014021. https://doi.org/10.1088/1748-9326/7/1/014021
[39] Morrill, C., Overpeck, J. T., Cole, J. E., 2003. A Synthesis of Abrupt Changes in the Asian Summer Monsoon since the Last Deglaciation. The Holocene, 13(4):465-476. https://doi.org/10.1191/0959683603hl639ft
[40] Qian, Y., Flanner, M. G., Leung, L. R., et al., 2011. Sensitivity Studies on the Impacts of Tibetan Plateau Snowpack Pollution on the Asian Hydrological Cycle and Monsoon Climate. Atmospheric Chemistry and Physics, 11(5):1929-1948. https://doi.org/10.5194/acp-11-1929-2011
[41] Qu, B., Ming, J., Kang, S. C., et al., 2014. The Decreasing Albedo of the Zhadang Glacier on Western Nyainqentanglha and the Role of Light-Absorbing Impurities. Atmospheric Chemistry and Physics, 14(20):11117-11128. https://doi.org/10.5194/acp-14-11117-2014.
[42] Scherler, D., Bookhagen, B., Strecker, M. R., 2011. Spatially Variable Response of Himalayan Glaciers to Climate Change Affected by Debris Cover. Nature Geoscience, 4(3):156-159. https://doi.org/10.1038/ngeo1068
[43] Sun, W. J., Qin, X., Du, W. T., et al., 2014. Ablation Modeling and Surface Energy Budget in the Ablation Zone of Laohugou Glacier No. 12, Western Qilian Mountains, China. Annals of Glaciology, 55(66):111-120. https://doi.org/10.3189/2014aog66a902
[44] Sun, W. J., Qin, X., Ren, J. W., et al., 2012. The Surface Energy Budget in the Accumulation Zone of the Laohugou Glacier No. 12 in the Western Qilian Mountains, China, in Summer 2009. Arctic, Antarctic, and Alpine Research, 44(3):296-305. https://doi.org/10.1657/1938-4246-44.3.296
[45] Sun, W. J., Qin, X., Wang, Y. T., et al., 2017. The Response of Surface Mass and Energy Balance of a Continental Glacier to Climate Variability, Western Qilian Mountains, China. Climate Dynamics, 50(9/10):3557-3570. https://doi.org/10.1007/s00382-017-3823-6.
[46] Sun, Z., Xie, Z., 1981. Recent Variation and Trend of the Laohugou Glacier No. 12, Qilian Mountains. Chinese Science Bulletin, 26(6):366-369 (in Chinese with English Abstract) doi: 10.1360/csb1981-26-6-366
[47] Tian, H. Z., Yang, T. B., Liu, Q. P., 2014. Climate Change and Glacier Area Shrinkage in the Qilian Mountains, China, from 1956 to 2010. Annals of Glaciology, 55(66):187-197. https://doi.org/10.3189/2014aog66a045
[48] Wang, M., Xu, B. Q., Kaspari, S. D., et al., 2015. Century-Long Record of Black Carbon in an Ice Core from the Eastern Pamirs:Estimated Contributions from Biomass Burning. Atmospheric Environment, 115:79-88. https://doi.org/10.1016/j.atmosenv.2015.05.034.
[49] Wang, B., 2004. A Study on Synthetic Differentiation Method for Basic Meteoro-Logical Data Quality Control. Journal of Applied Meteorology Science, 15:51-59
[50] Wang, N. L., He, J. Q., Pu, J. C., et al., 2010. Variations in Equilibrium Line Altitude of the Qiyi Glacier, Qilian Mountains, over the Past 50 Years. Chinese Science Bulletin, 55(33):3810-3817. https://doi.org/10.1007/s11434-010-4167-3
[51] Wang, S., Yao, T. D., Tian, L. D., et al., 2017. Glacier Mass Variation and Its Effect on Surface Runoff in the Beida River Catchment during 1957-2013. Journal of Glaciology, 63(239):523-534. https://doi.org/10.1017/jog.2017.13
[52] Xu, B. Q., Cao, J. J., Hansen, J., et al., 2009. Black Soot and the Survival of Tibetan Glaciers. Proceedings of the National Academy of Sciences, 106(52):22114-22118. https://doi.org/10.1073/pnas.0910444106
[53] Xu, M., Han, H., Kang, S., 2017. The Temporal and Spatial Variation of Positive Degree-Day Factors on the Koxkar Glacier over the South Slope of the Tianshan Mountains, China, from 2005 to 2010. Science in Cold and Arid Regions, 9(5):425-431 https://doi.org/10.3724/SP.J.1226.2017.00425
[54] Yang, K., Wu, H., Qin, J., et al., 2014. Recent Climate Changes over the Tibetan Plateau and Their Impacts on Energy and Water Cycle:A Review. Global and Planetary Change, 112:79-91. https://doi.org/10.1016/j.gloplacha.2013.12.001
[55] Yang, W., Yao, T. D., Guo, X. F., et al., 2013. Mass Balance of a Maritime Glacier on the Southeast Tibetan Plateau and Its Climatic Sensitivity. Journal of Geophysical Research:Atmospheres, 118(17):9579-9594. https://doi.org/10.1002/jgrd.50760
[56] Yao, T. D., Thompson, L., Yang, W., et al., 2012. Different Glacier Status with Atmospheric Circulations in Tibetan Plateau and Surroundings. Nature Climate Change, 2(9):663-667. https://doi.org/10.1038/nclimate1580
[57] Zhang, Y., Liu, S. Y., Ding, Y. J., 2006. Observed Degree-Day Factors and Their Spatial Variation on Glaciers in Western China. Annals of Glaciology, 43:301-306. https://doi.org/10.3189/172756406781811952
[58] Zhu, M. L., Yao, T. D., Yang, W., et al., 2017. Differences in Mass Balance Behavior for Three Glaciers from Different Climatic Regions on the Tibetan Plateau. Climate Dynamics, 50(9/10):3457-3484. https://doi.org/10.1007/s00382-017-3817-4