[1] Ballhaus, C., 1995. Is the Upper Mantle Metal-Saturated? Earth and Planetary Science Letters, 132(1/2/3/4): 75-86. https://doi.org/10.1016/0012-821x(95)00047-g
[2] Bayarjargal, L., Fruhner, C. J., Schrodt, N., et al., 2018. CaCO3 Phase Diagram Studied with Raman Spectroscopy at Pressures up to 50 GPa and High Temperatures and DFT Modeling. Physics of the Earth and Planetary Interiors, 281: 31-45. https://doi.org/10.1016/j.pepi.2018.05.002
[3] Brenker, F. E., Vollmer, C., Vincze, L., et al., 2007. Carbonates from the Lower Part of Transition Zone or even the Lower Mantle. Earth and Planetary Science Letters, 260(1/2): 1-9. https://doi.org/10.1016/j.epsl.2007.02.038
[4] Bureau, H., Frost, D. J., Bolfan-Casanova, N., et al., 2016. Diamond Growth in Mantle Fluids. Lithos, 265: 4-15. https://doi.org/10.1016/j.lithos.2016.10.004
[5] Chen, M., Shu, J. F., Xie, X. D., et al., 2018. Natural Diamond Formation by Self-Redox of Ferromagnesian Carbonate. Proceedings of the National Academy of Sciences of the United States of America, 115(11): 2676-2680. https://doi.org/10.1073/pnas.1720619115
[6] Dasgupta, R., Hirschmann, M. M., 2006. Melting in the Earth's Deep Upper Mantle Caused by Carbon Dioxide. Nature, 440(7084): 659-662. https://doi.org/10.1038/nature04612
[7] Dasgupta, R., Hirschmann, M. M., 2010. The Deep Carbon Cycle and Melting in Earth's Interior. Earth and Planetary Science Letters, 298(1/2): 1-13. https://doi.org/10.1016/j.epsl.2010.06.039
[8] Dorfman, S. M., Badro, J., Nabiei, F., et al., 2018. Carbonate Stability in the Reduced Lower Mantle. Earth and Planetary Science Letters, 489: 84-91. https://doi.org/10.1016/j.epsl.2018.02.035
[9] Drewitt, J. W. E., Walter, M. J., Zhang, H. L., et al., 2019. The Fate of Carbonate in Oceanic Crust Subducted into Earth's Lower Mantle. Earth and Planetary Science Letters, 511: 213-222. https://doi.org/10.1016/j.epsl.2019.01.041
[10] Dubrovinsky, L., Glazyrin, K., McCammon, C., et al., 2009. Portable Laser-Heating System for Diamond Anvil Cells. Journal of Synchrotron Radiation, 16(6): 737-741. https://doi.org/10.1107/s0909049509039065
[11] Farsang, S., Facq, S., Redfern, S. A. T., 2018. Raman Modes of Carbonate Minerals as Pressure and Temperature Gauges up to 6 GPa and 500 ℃. American Mineralogist, 103(12): 1988-1998. https://doi.org/10.2138/am-2018-6442
[12] Fei, Y. W., Zhang, L., Corgne, A., et al., 2007. Spin Transition and Equations of State of (Mg, Fe)O Solid Solutions. Geophysical Research Letters, 34(17): L17307. https://doi.org/10.1029/2007gl030712
[13] Fiquet, G., Guyot, F., Kunz, M., et al., 2002. Structural Refinements of Magnesite at very High Pressure. American Mineralogist, 87(8/9): 1261-1265. https://doi.org/10.2138/am-2002-8-927
[14] Gao, J., Niu, J. J., Qin, S., et al., 2017. Ultradeep Diamonds Originate from Deep Subducted Sedimentary Carbonates. Science China Earth Sciences, 60(2): 207-217. https://doi.org/10.1007/s11430-016-5151-4
[15] Hammersley, A. P., Svensson, S. O., Hanfland, M., et al., 1996. Two-Dimensional Detector Software: From Real Detector to Idealised Image or Two-Theta Scan. High Pressure Research, 14(4/5/6): 235-248. https://doi.org/10.1080/08957959608201408
[16] Jephcoat, A. P., Finger, L. W., Cox, D. E., 1992. High Pressure, High Resolution Synchrotron X-Ray Powder Diffraction with a Position-Sensitive Detector. High Pressure Research, 8(5/6): 667-676. https://doi.org/10.1080/08957959208206318
[17] Kaminsky, F., Matzel, J., Jacobsen, B., et al., 2016. Isotopic Fractionation of Oxygen and Carbon in Decomposed Lower-Mantle Inclusions in Diamond. Mineralogy and Petrology, 110(2/3): 379-385. https://doi.org/10.1007/s00710-015-0401-7
[18] Kaminsky, F., Wirth, R., Matsyuk, S., et al., 2009. Nyerereite and Nahcolite Inclusions in Diamond: Evidence for Lower-Mantle Carbonatitic Magmas. Mineralogical Magazine, 73(5): 797-816. https://doi.org/10.1180/minmag.2009.073.5.797
[19] Li, X. Y., Zhang, Z. G., Lin, J. F., et al., 2018. New High-Pressure Phase of CaCO3 at the Topmost Lower Mantle: Implication for the Deep-Mantle Carbon Transportation. Geophysical Research Letters, 45(3): 1355-1360. https://doi.org/10.1002/2017gl076536
[20] Litvin, Y. A., Spivak, A. V., Dubrovinsky, L. S., 2016. Magmatic Evolution of the Material of the Earth's Lower Mantle: Stishovite Paradox and Origin of Superdeep Diamonds (Experiments at 24-26 GPa). Geochemistry International, 54(11): 936-947. https://doi.org/10.1134/s0016702916090032
[21] Liu, J., Dubrovinsky, L., Boffa Ballaran, T., et al., 2007. Equation of State and Thermal Expansivity of LiF and NaF. High Pressure Research, 27(4): 483-489. https://doi.org/10.1080/08957950701684690
[22] Maeda, F., Ohtani, E., Kamada, S., et al., 2017. Diamond Formation in the Deep Lower Mantle: A High-Pressure Reaction of MgCO3 and SiO2. Scientific Reports, 7: 40602. https://doi.org/10.1038/srep40602
[23] Mao, H. K., Bassett, W. A., Takahashi, T., 1967. Effect of Pressure on Crystal Structure and Lattice Parameters of Iron up to 300 kbar. Journal of Applied Physics, 38(1): 272-276. https://doi.org/10.1063/1.1708965
[24] Mao, Z., Armentrout, M., Rainey, E., et al., 2011a. Dolomite Ⅲ: A New Candidate Lower Mantle Carbonate. Geophysical Research Letters, 38(22): L22303. https://doi.org/10.1029/2011gl049519
[25] Mao, Z., Lin, J. F., Liu, J., et al., 2011b. Thermal Equation of State of Lower-Mantle Ferropericlase across the Spin Crossover. Geophysical Research Letters, 38(23): L23308. https://doi.org/10.1029/2011gl049915
[26] Martinez, I., Zhang, J., Reeder, R. J., 1996. In situ X-Ray Diffraction of Aragonite and Dolomite at High Pressure and High Temperature: Evidence for Dolomite Breakdown to Aragonite and Magnesite. American Mineralogist, 81(5/6): 611-624. https://doi.org/10.2138/am-1996-5-608
[27] Martirosyan, N. S., Litasov, K. D., Lobanov, S. S., et al., 2019a. The Mg-Carbonate-Fe Interaction: Implication for the Fate of Subducted Carbonates and Formation of Diamond in the Lower Mantle. Geoscience Frontiers, 10(4): 1449-1458. https://doi.org/10.1016/j.gsf.2018.10.003
[28] Martirosyan, N. S., Shatskiy, A., Chanyshev, A. D., et al., 2019b. Effect of Water on the Magnesite-Iron Interaction, with Implications for the Fate of Carbonates in the Deep Mantle. Lithos, 326/327: 435-445. https://doi.org/10.1016/j.lithos.2019.01.004
[29] Martirosyan, N. S., Litasov, K. D., Shatskiy, A. F., et al., 2015a. Reactions of Iron with Calcium Carbonate at 6 GPa and 1 273-1 873 K: Implications for Carbonate Reduction in the Deep Mantle. Russian Geology and Geophysics, 56(9): 1322-1331. https://doi.org/10.1016/j.rgg.2015.08.008
[30] Martirosyan, N. S., Litasov, K. D., Shatskiy, A., et al., 2015b. The Reactions between Iron and Magnesite at 6 GPa and 1 273-1 873 K: Implication to Reduction of Subducted Carbonate in the Deep Mantle. Journal of Mineralogical and Petrological Sciences, 110(2): 49-59. https://doi.org/10.2465/jmps.141003a
[31] Martirosyan, N. S., Yoshino, T., Shatskiy, A., et al., 2016. The CaCO3-Fe Interaction: Kinetic Approach for Carbonate Subduction to the Deep Earth's Mantle. Physics of the Earth and Planetary Interiors, 259: 1-9. https://doi.org/10.1016/j.pepi.2016.08.008
[32] Merlini, M., Cerantola, V., Gatta, G. D., et al., 2017. Dolomite-Ⅳ: Candidate Structure for a Carbonate in the Earth's Lower Mantle. American Mineralogist, 102(8): 1763-1766. https://doi.org/10.2138/am-2017-6161
[33] Merlini, M., Crichton, W. A., Hanfland, M., et al., 2012. Structures of Dolomite at Ultrahigh Pressure and Their Influence on the Deep Carbon Cycle. Proceedings of the National Academy of Sciences of the United States of America, 109(34): 13509-13514. https://doi.org/10.1073/pnas.1201336109
[34] Németh, P., Garvie, L. A. J., Aoki, T., et al., 2014. Lonsdaleite is Faulted and Twinned Cubic Diamond and does not Exist as a Discrete Material. Nature Communications, 5: 5447. https://doi.org/10.1038/ncomms6447
[35] Nestola, F., Korolev, N., Kopylova, M., et al., 2018. CaSiO3 Perovskite in Diamond Indicates the Recycling of Oceanic Crust into the Lower Mantle. Nature, 555(7695): 237-241. https://doi.org/10.1038/nature25972
[36] Oganov, A. R., Hemley, R. J., Hazen, R. M., et al., 2013. Structure, Bonding, and Mineralogy of Carbon at Extreme Conditions. Reviews in Mineralogy and Geochemistry, 75(1): 47-77. https://doi.org/10.2138/rmg.2013.75.3
[37] Palyanov, Y. N., Bataleva, Y. V., Sokol, A. G., et al., 2013. Mantle-Slab Interaction and Redox Mechanism of Diamond Formation. Proceedings of the National Academy of Sciences of the United States of America, 110(51): 20408-20413. https://doi.org/10.1073/pnas.1313340110
[38] Patterson, J. R., Kudryavtsev, A., Vohra, Y. K., 2002. X-Ray Diffraction and Nanoindentation Studies of Nanocrystalline Graphite at High Pressures. Applied Physics Letters, 81(11): 2073-2075. https://doi.org/10.1063/1.1508169
[39] Pócsik, I., Hundhausen, M., Koós, M., et al., 1998. Origin of the D Peak in the Raman Spectrum of Microcrystalline Graphite. Journal of Non- Crystalline Solids, 227-230(2): 1083-1086. https://doi.org/10.1016/s0022-3093(98)00349-4
[40] Reich, S., Thomsen, C., 2004. Raman Spectroscopy of Graphite. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 362(1824): 2271-2288. https://doi.org/10.1098/rsta.2004.1454
[41] Rohrbach, A., Ballhaus, C., Golla-Schindler, U., et al., 2007. Metal Saturation in the Upper Mantle. Nature, 449(7161): 456-458. https://doi.org/10.1038/nature06183
[42] Rohrbach, A., Schmidt, M. W., 2011. Redox Freezing and Melting in the Earth's Deep Mantle Resulting from Carbon-Iron Redox Coupling. Nature, 472(7342): 209-212. https://doi.org/10.1038/nature09899
[43] Santillán, J., Williams, Q., Knittle, E., 2003. Dolomite-Ⅱ: A High-Pressure Polymorph of CaMg(CO3)2. Geophysical Research Letters, 30(2): 1054. https://doi.org/10.1029/2002gl016018
[44] Sato, K., Katsura, T., 2001. Experimental Investigation on Dolomite Dissociation into Aragonite+Magnesite up to 8.5 GPa. Earth and Planetary Science Letters, 184(2): 529-534. https://doi.org/10.1016/S0012-821X(00)00346-0
[45] Schindler, T. L., Vohra, Y. K., 1995. A Micro-Raman Investigation of High-Pressure Quenched Graphite. Journal of Physics: Condensed Matter, 7(47): L637-L642. https://doi.org/10.1088/0953-8984/7/47/001
[46] Smith, D. C., Godard, G., 2009. UV and VIS Raman Spectra of Natural Lonsdaleites: Towards a Recognised Standard. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 73(3): 428-435. https://doi.org/10.1016/j.saa.2008.10.025
[47] Stagno, V., Frost, D. J., McCammon, C. A., et al., 2015. The Oxygen Fugacity at which Graphite or Diamond Forms from Carbonate-Bearing Melts in Eclogitic Rocks. Contributions to Mineralogy and Petrology, 169(2): 1-18. https://doi.org/10.1007/s00410-015-1111-1
[48] Sung, J., 2000. Graphite→Diamond Transition under High Pressure: A Kinetics Approach. Journal of Materials Science, 35(23): 6041-6054. https://doi.org/10.1023/a:1026779802263
[49] Thomson, A. R., Kohn, S. C., Bulanova, G. P., et al., 2014. Origin of Sub-Lithospheric Diamonds from the Juina-5 Kimberlite (Brazil): Constraints from Carbon Isotopes and Inclusion Compositions. Contributions to Mineralogy and Petrology, 168(6): 1-29. https://doi.org/10.1007/s00410-014-1081-8
[50] Thomson, A. R., Walter, M. J., Kohn, S. C., et al., 2016. Slab Melting as a Barrier to Deep Carbon Subduction. Nature, 529(7584): 76-79. https://doi.org/10.1038/nature16174
[51] Toby, B. H., 2001. EXPGUI, a Graphical User Interface for GSAS. Journal of Applied Crystallography, 34(2): 210-213. https://doi.org/10.1107/s0021889801002242
[52] van der Hilst, R. D., Widiyantoro, S., Engdahl, E. R., 1997. Evidence for Deep Mantle Circulation from Global Tomography. Nature, 386(6625): 578-584. https://doi.org/10.1038/386578a0
[53] van Westrenen, W., Li, J., Fei, Y. W., et al., 2005. Thermoelastic Properties of (Mg0.64Fe0.36)O Ferropericlase Based on in situ X-Ray Diffraction to 26.7 GPa and 2 173 K. Physics of the Earth and Planetary Interiors, 151(1/2): 163-176. https://doi.org/10.1016/j.pepi.2005.03.001
[54] Walter, M. J., Kohn, S. C., Araujo, D., et al., 2011. Deep Mantle Cycling of Oceanic Crust: Evidence from Diamonds and Their Mineral Inclusions. Science, 334(6052): 54-57. https://doi.org/10.1126/science.1209300
[55] Yang, J. S., Shen, T. T., Zhang, C., et al., 2019. Preface: Introduction of IGCP 649 Project-Diamonds and Recycled Mantle. Journal of Earth Science, 30(3): 429-430. https://doi.org/10.1007/s12583-019-1229-6
[56] Zhang, X., Yang, S. Y., Zhao, H., et al., 2019. Effect of Beam Current and Diameter on Electron Probe Microanalysis of Carbonate Minerals. Journal of Earth Science, 30(4): 834-842. https://doi.org/10.1007/s12583-017-0939-x
[57] Zhu, F., Li, J., Liu, J. C., et al., 2019. Kinetic Control on the Depth Distribution of Superdeep Diamonds. Geophysical Research Letters, 46(4): 1984-1992. https://doi.org/10.1029/2018gl080740