[1] Ammann, A. A., 2007. Inductively Coupled Plasma Mass Spectrometry (ICP MS): A Versatile Tool. Journal of Mass Spectrometry, 42(4): 419–427. https://doi.org/10.1002/jms.1206
[2] Aries, S., Valladon, M., Polvé, M., et al., 2000. A Routine Method for Oxide and Hydroxide Interference Corrections in ICP-MS Chemical Analysis of Environmental and Geological Samples. Geostandards and Geoanalytical Research, 24(1): 19–31. https://doi.org/10.1111/j.1751-908x.2000.tb00583.x
[3] Augustithis, S. S., Minatidis, D. G., 1979. The Significance of Trace Elements in Solving Petrogenetic Problems and Controversies. Chemical Geology, 25(3): 213–218. https://doi.org/10.1016/0009-2541(79)90142-6
[4] Barrat, J. A., Keller, F., Amossé, J., et al., 1996. Determination of Rare Earth Elements in Sixteen Silicate Reference Samples by ICP-MS after TM Addition and Ion Exchange Separation. Geostandards and Geoanalytical Research, 20(1): 133–139. https://doi.org/10.1111/j.1751-908x.1996.tb00177.x
[5] Bayon, G., Barrat, J. A., Etoubleau, J., et al., 2009. Determination of Rare Earth Elements, Sc, Y, Zr, Ba, Hf and Th in Geological Samples by ICP-MS after Tm Addition and Alkaline Fusion. Geostandards and Geoanalytical Research, 33(1): 51–62. https://doi.org/10.1111/j.1751-908x.2008.00880.x
[6] Brown, R. J. C., Milton, M. J. T., 2005. Analytical Techniques for Trace Element Analysis: An Overview. TrAC Trends in Analytical Chemistry, 24(3): 266–274. https://doi.org/10.1016/j.trac.2004.11.010
[7] Cao, X. D., Yin, M., Wang, X. R., 2001. Elimination of the Spectral Interference from Polyatomic Ions with Rare Earth Elements in Inductively Coupled Plasma Mass Spectrometry by Combining Algebraic Correction with Chromatographic Separation. Spectrochimica Acta Part B: Atomic Spectroscopy, 56(4): 431–441. https://doi.org/10.1016/s0584-8547(01)00170-7
[8] Chen, W., Zhang, W. Q., Simonetti, A., et al., 2016. Mineral Chemistry of Melanite from Calcitic Ijolite, the Oka Carbonatite Complex, Canada: Implications for Multi-Pulse Magma Mixing. Journal of Earth Science, 27(4): 599–610. https://doi.org/10.1007/s12583-016-0715-3
[9] Condie, K. C., Bowling, G. P., Allen, P., 1985. Missing Eu Anomaly and Archean High-Grade Granites. Geology, 13(9): 633–636. https://doi.org/10.1130/0091-7613(1985)13<633:meaaah>2.0.co;2 doi: 10.1130/0091-7613(1985)13<633:meaaah>2.0.co;2
[10] Dai, M. N., Bao, Z., Chen, K. Y., et al., 2017. Simultaneous Measurement of Major, Trace Elements and Pb Isotopes in Silicate Glasses by Laser Ablation Quadrupole and Multi-Collector Inductively Coupled Plasma Mass Spectrometry. Journal of Earth Science, 28(1): 92–102. https://doi.org/10.1007/s12583-017-0742-8
[11] Dams, R. F. J., Goossens, J., Moens, L., 1995. Spectral and Non-Spectral Interferences in Inductively Coupled Plasma Mass-Spectrometry. Mikrochimica Acta, 119(3/4): 277–286. https://doi.org/10.1007/bf01244007
[12] Ding, R. X., Zou, H. P., Min, K., et al., 2017. Detrital Zircon U-Pb Geochronology of Sinian-Cambrian Strata in the Eastern Guangxi Area, China. Journal of Earth Science, 28(2): 295–304. https://doi.org/10.1007/s12583-017-0723-y
[13] Dulski, P., 1994. Interferences of Oxide, Hydroxide and Chloride Analyte Species in the Determination of Rare Earth Elements in Geological Samples by Inductively Coupled Plasma-Mass Spectrometry. Freseniusʼ Journal of Analytical Chemistry, 350(4/5): 194–203. https://doi.org/10.1007/bf00322470
[14] Dulski, P., 2001. Reference Materials for Geochemical Studies: New Analytical Data by ICP-MS and Critical Discussion of Reference Values. Geostandards and Geoanalytical Research, 25(1): 87–125. https://doi.org/10.1111/j.1751-908x.2001.tb00790.x
[15] Durrant, S. F., 1993. Alternatives to All-Argon Plasmas in Inductively Coupled Plasma Mass Spectrometry (ICP-MS): An Overview. Freseniusʼ Journal of Analytical Chemistry, 347(10/11): 389–392. https://doi.org/10.1007/bf00635462
[16] Evans, E. H., Giglio, J. J., 1993. Interferences in Inductively Coupled Plasma Mass Spectrometry: A Review. Journal of Analytical Atomic Spectrometry, 8(1): 1–18. https://doi.org/10.1039/ja9930800001
[17] Gao, S., Wedepohl, K. H., 1995. The Negative Eu Anomaly in Archean Sedimentary Rocks: Implications for Decomposition, Age and Importance of Their Granitic Sources. Earth and Planetary Science Letters, 133(1/2): 81–94. https://doi.org/10.1016/0012-821x(95)00077-p
[18] Gray, A. L., Williams, J. G., 1987. System Optimisation and the Effect on Polyatomic, Oxide and Doubly Charged Ion Response of a Commercial Inductively Coupled Plasma Mass Spectrometry Instrument. Journal of Analytical Atomic Spectrometry, 2(6): 599–606. https://doi.org/10.1039/ja9870200599
[19] Hoskin, P. W. O., Ireland, T. R., 2000. Rare Earth Element Chemistry of Zircon and Its Use as a Provenance Indicator. Geology, 28(7): 627–630. https://doi.org/10.1130/0091-7613(2000)28<627:reecoz>2.0.co;2 doi: 10.1130/0091-7613(2000)28<627:reecoz>2.0.co;2
[20] Houk, R. S., Fassel, V. A., Flesch, G. D., et al., 1980. Inductively Coupled Argon Plasma as an Ion Source for Mass Spectrometric Determination of Trace Elements. Analytical Chemistry, 52(14): 2283–2289. https://doi.org/10.1021/ac50064a012
[21] Hu, Z. C., Hu, S. H., Gao, S., et al., 2004. Volatile Organic Solvent-Induced Signal Enhancements in Inductively Coupled Plasma-Mass Spectrometry: A Case Study of Methanol and Acetone. Spectrochimica Acta Part B: Atomic Spectroscopy, 59(9): 1463–1470. https://doi.org/10.1016/j.sab.2004.07.007
[22] Ionov, D. A., Savoyant, L., Dupuy, C., 1992. Application of the ICP-MS Technique to Trace Element Analysis of Peridotites and Their Minerals. Geostandards and Geoanalytical Research, 16(2): 311–315. https://doi.org/10.1111/j.1751-908x.1992.tb00494.x
[23] Jarvis, K. E., Gray, A. L., Houk, R. S., 1992. Handbook of Inductively Coupled Plasma Mass Spectrometry. Springer Netherlands, New York
[24] Jenner, G. A., Longerich, H. P., Jackson, S. E., et al., 1990. ICP-MS—A Powerful Tool for High-Precision Trace-Element Analysis in Earth Sciences: Evidence from Analysis of Selected U.S.G.S. Reference Samples. Chemical Geology, 83(1/2): 133–148. https://doi.org/10.1016/0009-2541(90)90145-w
[25] Ketterer, M. E., Biddle, D. A., 1992. Multivariate Calibration in Inductively Coupled Plasma Mass Spectrometry. 2. Effect of Changes in Abundances of Interfering Polyatomic Ions. Analytical Chemistry, 64(17): 1819–1823. https://doi.org/10.1021/ac00041a014
[26] Lam, J. W. H., Horlick, G., 1990. A Comparison of Argon and Mixed Gas Plasmas for Inductively Coupled Plasma-Mass Spectrometry. Spectrochimica Acta Part B: Atomic Spectroscopy, 45(12): 1313–1325. https://doi.org/10.1016/0584-8547(90)80185-l
[27] Lee, C. T. A., Leeman, W. P., Canil, D., et al., 2005. Similar V/Sc Systematics in MORB and Arc Basalts: Implications for the Oxygen Fugacities of Their Mantle Source Regions. Journal of Petrology, 46(11): 2313–2336. https://doi.org/10.1093/petrology/egi056
[28] Lichte, F. E., Meier, A. L., Crock, J. G., 1987. Determination of the Rare-Earth Elements in Geological Materials by Inductively Coupled Plasma Mass Spectrometry. Analytical Chemistry, 59(8): 1150–1157. https://doi.org/10.1021/ac00135a018
[29] Linge, K. L., Jarvis, K. E., 2009. Quadrupole ICP-MS: Introduction to Instrumentation, Measurement Techniques and Analytical Capabilities. Geostandards and Geoanalytical Research, 33(4): 445–467. https://doi.org/10.1111/j.1751-908x.2009.00039.x
[30] Liu, Y. S., Zong, K. Q., Kelemen, P. B., et al., 2008a. Geochemistry and Magmatic History of Eclogites and Ultramafic Rocks from the Chinese Continental Scientific Drill Hole: Subduction and Ultrahigh-Pressure Metamorphism of Lower Crustal Cumulates. Chemical Geology, 247(1/2): 133–153. https://doi.org/10.1016/j.chemgeo.2007.10.016
[31] Liu, Y. S., Hu, Z. C., Gao, S., et al., 2008b. In situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS without Applying an Internal Standard. Chemical Geology, 257(1/2): 34–43. https://doi.org/10.1016/j.chemgeo.2008.08.004
[32] Liu, Y. S., Gao, S., Hu, Z. C., et al., 2010. Continental and Oceanic Crust Recycling-Induced Melt-Peridotite Interactions in the Trans-North China Orogen: U-Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths. Journal of Petrology, 51(1/2): 537–571. https://doi.org/10.1093/petrology/egp082
[33] Long, S. E., Browner, R. F., 1988. Influence of Water on Conditions in the Inductively Coupled Argon Plasma. Spectrochimica Acta Part B: Atomic Spectroscopy, 43(12): 1461–1471. https://doi.org/10.1016/0584-8547(88)80185-x
[34] Longerich, H. P., Fryer, B. J., Strong, D. F., et al., 1987. Effects of Operating Conditions on the Determination of the Rare Earth Elements by Inductively Coupled Plasma-Mass Spectrometry (ICP-MS). Spectrochimica Acta Part B: Atomic Spectroscopy, 42(1/2): 75–92. https://doi.org/10.1016/0584-8547(87)80051-4
[35] Longerich, H. P., 1989. Mass Spectrometric Determination of the Temperature of an Argon Inductively Coupled Plasma from the Formation of the Singly Charged Monoxide Rare Earths and Their Known Dissociation Energies. Journal of Analytical Atomic Spectrometry, 4(6): 491–497. https://doi.org/10.1039/ja9890400491
[36] Louie, H., Soo, S. Y. P., 1992. Use of Nitrogen and Hydrogen in Inductively Coupled Plasma Mass Spectrometry. Journal of Analytical Atomic Spectrometry, 7(3): 557–564. https://doi.org/10.1039/ja9920700557
[37] Makishima, A., Nakamura, E., 2006. Determination of Major/Minor and Trace Elements in Silicate Samples by ICP-QMS and ICP-SFMS Applying Isotope Dilution-Internal Standardisation (ID-IS) and Multi-Stage Internal Standardisation. Geostandards and Geoanalytical Research, 30(3): 245–271. https://doi.org/10.1111/j.1751-908x.2006.tb01066.x
[38] Merten, D., Büchel, G., 2004. Determination of Rare Earth Elements in Acid Mine Drainage by Inductively Coupled Plasma Mass Spectrometry. Microchimica Acta, 148(3/4): 163–170. https://doi.org/10.1007/s00604-004-0260-0
[39] Minnich, M. G., Houk, R. S., 1998. Comparison of Cryogenic and Membrane Desolvation for Attenuation of Oxide, Hydride and Hydroxide Ions and Ions Containing Chlorine in Inductively Coupled Plasma Mass Spectrometry. Journal of Analytical Atomic Spectrometry, 13(3): 167–174. https://doi.org/10.1039/a704274d
[40] Nakamura, K., Chang, Q., 2007. Precise Determination of Ultra-Low (sub-ng g-1) Level Rare Earth Elements in Ultramafic Rocks by Quadrupole ICP-MS. Geostandards and Geoanalytical Research, 31(3): 185–197. https://doi.org/10.1111/j.1751-908x.2007.00859.x
[41] Niu, H. S., Houk, R. S., 1996. Fundamental Aspects of Ion Extraction in Inductively Coupled Plasma Mass Spectrometry. Spectrochimica Acta Part B: Atomic Spectroscopy, 51(8): 779–815. https://doi.org/10.1016/0584-8547(96)01506-6
[42] Poussel, E., Mermet, J. M., Deruaz, D., 1994. Dissociation of Analyte Oxide Ions in Inductively Coupled Plasma Mass Spectrometry. Journal of Analytical Atomic Spectrometry, 9(2): 61–66. https://doi.org/10.1039/ja9940900061
[43] Prasad, M. N. V., 2008. Trace Elements as Contaminants and Nutrients: Consequences in Ecosystems and Human Health. John Wiley & Sons. 778
[44] Pretorius, W., Weis, D., Williams, G., et al., 2006. Complete Trace Elemental Characterisation of Granitoid (USGS G-2, GSP-2) Reference Materials by High Resolution Inductively Coupled Plasma-Mass Spectrometry. Geostandards and Geoanalytical Research, 30(1): 39–54. https://doi.org/10.1111/j.1751-908x.2006.tb00910.x
[45] Qi, L., Zhou, M. F., Malpas, J., et al., 2005. Determination of Rare Earth Elements and Y in Ultramafic Rocks by ICP-MS after Preconcentration Using Fe(OH)3 and Mg(OH)2 Coprecipitation. Geostandards and Geoanalytical Research, 29(1): 131–141. https://doi.org/10.1111/j.1751-908x.2005.tb00660.x
[46] Qian, Q., Chung, S. L., Lee, T. Y., et al., 2003. Mesozoic High-Ba-Sr Granitoids from North China: Geochemical Characteristics and Geological Implications. Terra Nova, 15(4): 272–278. https://doi.org/10.1046/j.1365-3121.2003.00491.x
[47] Qing, C., Shibata, T., Shinotsuka, K., et al., 2003. Precise Determination of Trace Elements in Geological Standard Rocks Using Inductively Coupled Plasma Mass Spectrometry (ICP-MS). Frontier Research on Earth Evolution, 1: 357–362
[48] Raut, N. M., Huang, L. S., Aggarwal, S. K., et al., 2003. Determination of Lanthanides in Rock Samples by Inductively Coupled Plasma Mass Spectrometry Using Thorium as Oxide and Hydroxide Correction Standard. Spectrochimica Acta Part B: Atomic Spectroscopy, 58(5): 809–822. https://doi.org/10.1016/s0584-8547(03)00016-8
[49] Raut, N. M., Huang, L. S., Aggarwal, S. K., et al., 2005. Mathematical Correction for Polyatomic Isobaric Spectral Interferences in Determination of Lanthanides by Inductively Coupled Plasma Mass Spectrometry. Journal of the Chinese Chemical Society, 52(4): 589–597. https://doi.org/10.1002/jccs.200500087
[50] Reed, N. M., Cairns, R. O., Hutton, R. C., et al., 1994. Characterization of Polyatomic Ion Interferences in Inductively Coupled Plasma Mass Spectrometry Using a High Resolution Mass Spectrometer. Journal of Analytical Atomic Spectrometry, 9(8): 881–896. https://doi.org/10.1039/ja9940900881
[51] Robinson, P., Townsend, A. T., Yu, Z. S., et al., 1999. Determination of Scandium, Yttrium and Rare Earth Elements in Rocks by High Resolution Inductively Coupled Plasma-Mass Spectrometry. Geostandards and Geoanalytical Research, 23(1): 31–46. https://doi.org/10.1111/j.1751-908x.1999.tb00557.x
[52] Rollinson, H. R., 1993. Using Geochemical Data: Evaluation, Presentation, Interpretation. Taylor & Francis Group, London. 352
[53] Rowan, J. T., Houk, R. S., 1989. Attenuation of Polyatomic Ion Interferences in Inductively Coupled Plasma Mass Spectrometry by Gas-Phase Collisions. Applied Spectroscopy, 43(6): 976–980. https://doi.org/10.1366/0003702894204065
[54] Russo, R. E., Mao, X., Liu, H., et al., 2002. Laser Ablation in Analytical Chemistry—A Review. Talanta, 57(3): 425–451. https://doi.org/10.1016/s0039-9140(02)00053-x
[55] Shibata, N., Fudagawa, N., Kubota, M., 1991. Electrothermal Vaporization Using a Tungsten Furnace for the Determination of Rare-Earth Elements by Inductively Coupled Plasma Mass Spectrometry. Analytical Chemistry, 63(6): 636–640. https://doi.org/10.1021/ac00006a016
[56] Shibata, N., Fudagawa, N., Kubota, M., 1993. Oxide Formation in Electrothermal Vaporization Inductively Coupled Plasma Mass Spectrometry. Spectrochimica Acta Part B: Atomic Spectroscopy, 48(9): 1127–1137. https://doi.org/10.1016/0584-8547(93)80103-2
[57] Shinotsuka, K., Hidaka, H., Ebihara, M., et al., 1996. ICP-MS Analysis of Geological Standard Rocks for Yttrium, Lanthanoids, Thorium and Uranium. Analytical Sciences, 12(6): 917–922. https://doi.org/10.2116/analsci.12.917
[58] Snook, R. D., 1992. Handbook of Inductively Coupled Plasma Mass Spectrometry. Chromatographia, 34(9/10): 546–546. https://doi.org/10.1007/bf02290251
[59] Stetzenbach, K. J., Amano, M., Kreamer, D. K., et al., 1994. Testing the Limits of ICP-MS: Determination of Trace Elements in Ground Water at the Part-Per-Trillion Level. Ground Water, 32(6): 976–985. https://doi.org/10.1111/j.1745-6584.1994.tb00937.x
[60] Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313–345. https://doi.org/10.1144/gsl.sp.1989.042.01.19
[61] Van Veen, E. H., Bosch, S., De Loos-Vollebregt, M. T. C., 1994. Spectral Interpretation and Interference Correction in Inductively Coupled Plasma Mass Spectrometry. Spectrochimica Acta Part B: Atomic Spectroscopy, 49(12/13/14): 1347–1361. https://doi.org/10.1016/0584-8547(94)80114-2
[62] Vanhaecke, F., Vandecasteele, C., Vanhoe, H., et al., 1992. Study of the Intensity of M+, M2+ and MO+ Signals in ICP-MS as a Function of Instrumental Parameters. Mikrochimica Acta, 108(1/2): 41–51. https://doi.org/10.1007/bf01240370
[63] Vaughan, M. A., Horlick, G., 1990a. Effect of Sampler and Skimmer Orifice Size on Analyte and Analyte Oxide Signals in Inductively Coupled Plasma-Mass Spectrometry. Spectrochimica Acta Part B: Atomic Spectroscopy, 45(12): 1289–1299. https://doi.org/10.1016/0584-8547(90)80183-j
[64] Vaughan, M. A., Horlick, G., 1990b. Correction Procedures for Rare Earth Element Analyses in Inductively Coupled Plasma-Mass Spectrometry. Applied Spectroscopy, 44(4): 587–593. https://doi.org/10.1366/0003702904087488
[65] Vaughan, M. A., Horlick, G., 1986. Oxide, Hydroxide, and Doubly Charged Analyte Species in Inductively Coupled Plasma/Mass Spectrometry. Applied Spectroscopy, 40(4): 434–445. https://doi.org/10.1366/0003702864509006
[66] Vaughan, M. A., Templeton, D. M., 1990. Determination of Ni by ICP-MS: Correction of Calcium Oxide and Hydroxide Interferences Using Principal Components Analysis. Applied Spectroscopy, 44(10): 1685–1689. https://doi.org/10.1366/0003702904417634
[67] Wang, Q., 2012. Membrane Desolvation Coupled to ICP-QMS for Accurate Determination of Rare Earth Elements in Geological Samples: [Dissertation]. China University of Geosciences, Wuhan (in Chinese with English Abstract)