[1] Alansari, A., Salim, A. M. A., Janjuhah, H. T., et al., 2019. Quantification of Clay Mineral Microporosity and Its Application to Water Saturation and Effective Porosity Estimation: A Case Study from Upper Ordovician Reservoir, Libya. Journal of Natural Gas Geoscience, 4(3): 139-150. https://doi.org/10.1016/j.jnggs.2019.04.005
[2] Barrett, E. P., Joyner, L. G., Halenda, P. P., 1951. The Determination of Pore Volume and Area Distributions in Porous Substances. I. Computations from Nitrogen Isotherms. Journal of the American Chemical Society, 73(1): 373-380. https://doi.org/10.1021/ja01145a126
[3] Brunauer, S., Emmett, P. H., Teller, E., 1938. Adsorption of Gases in Multimolecular Layers. Journal of the American Chemical Society, 60(2): 309-319. https://doi.org/10.1021/ja01269a023
[4] Bustin, R. M., Clarkson, C. R., 1998. Geological Controls on Coalbed Methane Reservoir Capacity and Gas Content. International Journal of Coal Geology, 38(1/2): 3-26. https://doi.org/10.1016/s0166-5162(98)00030-5
[5] Chalmers, G. R., Bustin, R. M., Power, I. M., 2012. Characterization of Gas Shale Pore Systems by Porosimetry, Pycnometry, Surface Area, and Field Emission Scanning Electron Microscopy/Transmission Electron Microscopy Image Analyses: Examples from the Barnett, Woodford, Haynesville, Marcellus, and Doig Units. AAPG Bulletin, 96(6): 1099-1119. https://doi.org/10.1306/10171111052
[6] Chen, L., Jiang, Z. X., Liu, Q. X., et al., 2019. Mechanism of Shale Gas Occurrence: Insights from Comparative Study on Pore Structures of Marine and Lacustrine Shales. Marine and Petroleum Geology, 104: 200-216. https://doi.org/10.1016/j.marpetgeo.2019.03.027
[7] Curtis, J. B., 2002. Fractured Shale-Gas Systems. AAPG Bulletin, 86(11): 1921-1938. https://doi.org/10.1306/61eeddbe-173e-11d7-8645000102c1865d
[8] Drummond, C., Israelachvili, J., 2002. Surface Forces and Wettability. Journal of Petroleum Science and Engineering, 33(1/2/3): 123-133. https://doi.org/10.1016/s0920-4105(01)00180-2
[9] Fan, K. K., Li, Y. J., Elsworth, D., et al., 2018. Three Stages of Methane Adsorption Capacity Affected by Moisture Content. Fuel, 231: 352-360. https://doi.org/10.1016/j.fuel.2018.05.120
[10] Gao, F. L., Song, Y., Li, Z., et al., 2018. Quantitative Characterization of Pore Connectivity Using NMR and MIP: A Case Study of the Wangyinpu and Guanyintang Shales in the Xiuwu Basin, Southern China. International Journal of Coal Geology, 197: 53-65. https://doi.org/10.1016/j.coal.2018.07.007
[11] Gao, Z. Y., Fan, Y. P., Hu, Q. H., et al., 2020. The Effects of Pore Structure on Wettability and Methane Adsorption Capability of Longmaxi Formation Shale from the Southern Sichuan Basin in China. AAPG Bulletin, 104(6): 1375-1399. https://doi.org/10.1306/01222019079
[12] Gasparik, M., Bertier, P., Gensterblum, Y., et al., 2014. Geological Controls on the Methane Storage Capacity in Organic-Rich Shales. International Journal of Coal Geology, 123: 34-51. https://doi.org/10.1016/j.coal.2013.06.010
[13] Greenspan, L., 1977. Humidity Fixed Points of Binary Saturated Aqueous Solutions. Journal of Research of the National Bureau of Standards Section A: Physics and Chemistry, 81(1): 89. https://doi.org/10.6028/jres.081a.011
[14] Guo, S. B., 2013. Experimental Study on Isothermal Adsorption of Methane Gas on Three Shale Samples from Upper Paleozoic Strata of the Ordos Basin. Journal of Petroleum Science and Engineering, 110: 132-138. https://doi.org/10.1016/j.petrol.2013.08.048
[15] Ji, L. M., Zhang, T. W., Milliken, K. L., et al., 2012. Experimental Investigation of Main Controls to Methane Adsorption in Clay-Rich Rocks. Applied Geochemistry, 27(12): 2533-2545. https://doi.org/10.1016/j.apgeochem.2012.08.027
[16] Jiang, Z., Tang, X., Li, Z., et al., 2016. The Whole-Aperture Pore Structure Characteristics and Its Effect on Gas Content of the Longmaxi Formation Shale in the Southeastern Sichuan Basin. Earth Science Frontiers, 23(2): 126-134 (in Chinese with English Abstract)
[17] Johnston, C. T., 2010. Probing the Nanoscale Architecture of Clay Minerals. Clay Minerals, 45(3): 245-279. https://doi.org/10.1180/claymin.2010.045.3.245
[18] Klaver, J., Desbois, G., Littke, R., et al., 2015. BIB-SEM Characterization of Pore Space Morphology and Distribution in Postmature to Overmature Samples from the Haynesville and Bossier Shales. Marine and Petroleum Geology, 59: 451-466. https://doi.org/10.1016/j.marpetgeo.2014.09.020
[19] Krooss, B. M., van Bergen, F., Gensterblum, Y., et al., 2002. High-Pressure Methane and Carbon Dioxide Adsorption on Dry and MoistureEquilibrated Pennsylvanian Coals. International Journal of Coal Geology, 51(2): 69-92. https://doi.org/10.1016/s0166-5162(02)00078-2
[20] Legens, C., Palermo, T., Toulhoat, H., et al., 1998. Carbonate Rock Wettability Changes Induced by Organic Compound Adsorption. Journal of Petroleum Science and Engineering, 20(3/4): 277-282. https://doi.org/10.1016/s0920-4105(98)00031-x
[21] Li, J., Li, X. F., Wang, X. Z., et al., 2016. Water Distribution Characteristic and Effect on Methane Adsorption Capacity in Shale Clay. International Journal of Coal Geology, 159: 135-154. https://doi.org/10.1016/j.coal.2016.03.012
[22] Li, J., Li, X. F., Wu, K. L., et al., 2017. Thickness and Stability of Water Film Confined Inside Nanoslits and Nanocapillaries of Shale and Clay. International Journal of Coal Geology, 179: 253-268. https://doi.org/10.1016/j.coal.2017.06.008
[23] Li, Y. Z., Wang, X. Z., Wu, B., et al., 2016. Sedimentary Facies of Marine Shale Gas Formations in Southern China: The Lower Silurian Longmaxi Formation in the Southern Sichuan Basin. Journal of Earth Science, 27(5): 807-822. https://doi.org/10.1007/s12583-015-0592-1
[24] Liu, D., Yuan, P., Liu, H. M., et al., 2013. High-Pressure Adsorption of Methane on Montmorillonite, Kaolinite and Illite. Applied Clay Science, 85: 25-30. https://doi.org/10.1016/j.clay.2013.09.009
[25] Liu, K. Q., Ostadhassan, M., Sun, L. W., et al., 2019. A Comprehensive Pore Structure Study of the Bakken Shale with SANS, N2 Adsorption and Mercury Intrusion. Fuel, 245: 274-285. https://doi.org/10.1016/j.fuel.2019.01.174
[26] Liu, S., Deng, B., Zhong, Y., et al., 2016. Unique Geological Features of Burial and Superimposition of the Lower Paleozoic Shale Gas across the Sichuan Basin and Its Periphery. Earth Science Frontiers, 23: 11-28 (in Chinese with English Abstract)
[27] Liu, X. J., Zeng, W., Liang, L. X., et al., 2016. Experimental Study on Hydration Damage Mechanism of Shale from the Longmaxi Formation in Southern Sichuan Basin, China. Petroleum, 2(1): 54-60. https://doi.org/10.1016/j.petlm.2016.01.002
[28] Loucks, R. G., Reed, R. M., Ruppel, S. C., et al., 2009. Morphology, Genesis, and Distribution of Nanometer-Scale Pores in Siliceous Mudstones of the Mississippian Barnett Shale. Journal of Sedimentary Research, 79(12): 848-861. https://doi.org/10.2110/jsr.2009.092
[29] Lu, X., 1995. Adsorption Measurements in Devonian Shales. Fuel, 74(4): 599-603. https://doi.org/10.1016/0016-2361(95)98364-k
[30] Luo, P., Zhong, N. N., Khan, I., et al., 2019. Effects of Pore Structure and Wettability on Methane Adsorption Capacity of Mud Rock: Insights from Mixture of Organic Matter and Clay Minerals. Fuel, 251: 551-561. https://doi.org/10.1016/j.fuel.2019.04.072
[31] Makhanov, K., Habibi, A., Dehghanpour, H., et al., 2014. Liquid Uptake of Gas Shales: A Workflow to Estimate Water Loss during Shut-In Periods after Fracturing Operations. Journal of Unconventional Oil and Gas Resources, 7: 22-32. https://doi.org/10.1016/j.juogr.2014.04.001
[32] Merkel, A., Fink, R., Littke, R., 2016. High Pressure Methane Sorption Characteristics of Lacustrine Shales from the Midland Valley Basin, Scotland. Fuel, 182: 361-372. https://doi.org/10.1016/j.fuel.2016.05.118
[33] Pan, S. Q., Zou, C. N., Yang, Z., et al., 2015. Methods for Shale Gas Play Assessment: A Comparison between Silurian Longmaxi Shale and Mississippian Barnett Shale. Journal of Earth Science, 26(2): 285-294. https://doi.org/10.1007/s12583-015-0524-0
[34] Ross, D. J. K., Bustin, R. M., 2007. Shale Gas Potential of the Lower Jurassic Gordondale Member, Northeastern British Columbia, Canada. Bulletin of Canadian Petroleum Geology, 55(1): 51-75. https://doi.org/10.2113/gscpgbull.55.1.51
[35] Setzmann, U., Wagner, W., 1991. A New Equation of State and Tables of Thermodynamic Properties for Methane Covering the Range from the Melting Line to 625 K at Pressures up to 100 MPa. Journal of Physical and Chemical Reference Data, 20(6): 1061-1155. https://doi.org/10.1063/1.555898
[36] Sing, K. S. W., 1985. Reporting Physisorption Data for Gas/Solid Systems with Special Reference to the Determination of Surface Area and Porosity (Recommendations 1984). Pure and Applied Chemistry, 57(4): 603-619. https://doi.org/10.1351/pac198557040603
[37] Tan, J. Q., Weniger, P., Krooss, B., et al., 2014. Shale Gas Potential of the Major Marine Shale Formations in the Upper Yangtze Platform, South China, Part Ⅱ: Methane Sorption Capacity. Fuel, 129: 204-218. https://doi.org/10.1016/j.fuel.2014.03.064
[38] Tang, X. L., Jiang, Z. X., Huang, H. X., et al., 2016. Lithofacies Characteristics and Its Effect on Gas Storage of the Silurian Longmaxi Marine Shale in the Southeast Sichuan Basin, China. Journal of Natural Gas Science and Engineering, 28: 338-346. https://doi.org/10.1016/j.jngse.2015.12.026
[39] Tian, H., Li, T. F., Zhang, T. W., et al., 2016. Characterization of Methane Adsorption on Overmature Lower Silurian-Upper Ordovician Shales in Sichuan Basin, Southwest China: Experimental Results and Geological Implications. International Journal of Coal Geology, 156: 36-49. https://doi.org/10.1016/j.coal.2016.01.013
[40] Wang, L., Fu, Y. H., Li, J., et al., 2016. Mineral and Pore Structure Characteristics of Gas Shale in Longmaxi Formation: A Case Study of Jiaoshiba Gas Field in the Southern Sichuan Basin, China. Arabian Journal of Geosciences, 9: 733. https://doi.org/10.1007/s12517-016-2763-5
[41] Wang, L., Wan, J. M., Tokunaga, T. K., et al., 2018. Experimental and Modeling Study of Methane Adsorption onto Partially Saturated Shales. Water Resources Research, 54(7): 5017-5029. https://doi.org/10.1029/2017wr020826
[42] Wang, L., Yu, Q. C., 2016. The Effect of Moisture on the Methane Adsorption Capacity of Shales: A Study Case in the Eastern Qaidam Basin in China. Journal of Hydrology, 542: 487-505. https://doi.org/10.1016/j.jhydrol.2016.09.018
[43] Wang, T. Y., Tian, S. C., Li, G. S., et al., 2019. Experimental Study of Water Vapor Adsorption Behaviors on Shale. Fuel, 248: 168-177. https://doi.org/10.1016/j.fuel.2019.03.029
[44] Washburn, E. W., 1921. Note on a Method of Determining the Distribution of Pore Sizes in a Porous Material. Proceedings of the National Academy of Sciences, 7(4): 115-116. https://doi.org/10.1073/pnas.7.4.115
[45] Wood, D. A., 2019. Establishing Credible Reaction-Kinetics Distributions to Fit and Explain Multi-Heating Rate S2 Pyrolysis Peaks of Kerogens and Shales. Advances in Geo-Energy Research, 3(1): 1-28. https://doi.org/10.26804/ager.2019.01.01
[46] Yang, R., Jia, A. Q., He, S., et al., 2020. Water Adsorption Characteristics of Organic-Rich Wufeng and Longmaxi Shales, Sichuan Basin (China). Journal of Petroleum Science and Engineering, 193: 107387. https://doi.org/10.1016/j.petrol.2020.107387
[47] Zhang, H., Zhu, Y., Xia, X., et al., 2013. Comparison and Explanation of the Absorptivity of Organic Matters and Clay Minerals in Shales. Journal of China Coal Society, 38: 812-816 (in Chinese with English Abstract)
[48] Zhang, T. W., Ellis, G. S., Ruppel, S. C., et al., 2012. Effect of Organic-Matter Type and Thermal Maturity on Methane Adsorption in Shale-Gas Systems. Organic Geochemistry, 47: 120-131. https://doi.org/10.1016/j.orggeochem.2012.03.012
[49] Zhang, X., Li, Y., Lü, H., et al., 2013. Relationship between Organic Matter Characteristics and Depositional Environment in the Silurian Longmaxi Formation in Sichuan Basin. Journal of China Coal Society, 38(5): 851-856 (in Chinese with English Abstract)
[50] Zhou, W. D., Xie, S. Y., Bao, Z. Y., et al., 2019. Chemical Compositions and Distribution Characteristics of Cements in Longmaxi Formation Shales, Southwest China. Journal of Earth Science, 30(5): 879-892. https://doi.org/10.1007/s12583-019-1013-7
[51] Zhou, W., Xu, H., Yu, Q., et al., 2016. Shale Gas-Bearing Property Differences and Their Genesis between Wufeng-Longmaxi Formation and Qiongzhusi Formation in Sichuan Basin and Surrounding Areas. Lithologic Reservoirs, 28(5): 18-25 (in Chinese with English Abstract)
[52] Zhu, H. J., Ju, Y. W., Huang, C., et al., 2020. Microcosmic Gas Adsorption Mechanism on Clay-Organic Nanocomposites in a Marine Shale. Energy, 197: 117256. https://doi.org/10.1016/j.energy.2020.117256
[53] Zou, J., Rezaee, R., Xie, Q., et al., 2019. Characterization of the Combined Effect of High Temperature and Moisture on Methane Adsorption in Shale Gas Reservoirs. Journal of Petroleum Science and Engineering, 182: 106353. https://doi.org/10.1016/j.petrol.2019.106353