[1] Acero, P., Cama, J., Ayora, C., 2007. Sphalerite Dissolution Kinetics in Acidic Environment. Applied Geochemistry, 22(9):1872-1883. https://doi.org/10.1016/j.apgeochem.2007.03.051
[2] Agard, P., Omrani, J., Jolivet, L., et al., 2011. Zagros Orogeny:A Subduction-Dominated Process. Geological Magazine, 148(5/6):692-725. https://doi.org/10.1017/s001675681100046x
[3] Akaryali, E., 2016. Geochemical, Fluid Inclusion and Isotopic (O, H and S) Constraints on the Origin of Pb-Zn±Au Vein-Type Mineralizations in the Eastern Pontides Orogenic Belt (NE Turkey). Ore Geology Reviews, 74:1-14. https://doi.org/10.1016/j.oregeorev.2015.11.013
[4] Alirezaei, S., Modrek, H., Padyar, F., 2010. Chahmessi Epithermal Base and Precious Metal Deposit Kerman Copper Belt, South Iran: Investigation of Genetic Relation with Miduk Porphyry System. ACROFI-III, Novosibirsk, Russia. 6-7
[5] Atapour, H., 2007. Geochemical Evolution and Metallogeny of Potassic Igneous Rocks of Dehaj-Sarduieh Volcano-Plutonic Belt, Kerman Province, Iran, with Particular Reference to Special Elements: [Dissertation]. Shahid Bahonar University of Kerman, Kerman. 401 (in Persian with English Abstract)
[6] Azbej, T., Severs, M. J., Rusk, B. G., et al., 2007. In situ Quantitative Analysis of Individual H2O-CO2 Fluid Inclusions by Laser Raman Spectroscopy. Chemical Geology, 237(3/4):255-263. https://doi.org/10.1016/j.chemgeo.2006.06.025
[7] Baumgartner, R., Fontbote, L., Vennemann, T., 2009. Mineral Zoning and Geochemistry of Epithermal Polymetallic Zn-Pb-Ag-Cu-Bi Mineralization at Cerro de Pasco, Peru. Economic Geology, 103(3):493-537. https://doi.org/10.2113/gsecongeo.103.3.493
[8] Belissont, R., Boiron, M.-C., Luais, B., et al., 2014. LA-ICP-MS Analyses of Minor and Trace Elements and Bulk Ge Isotopes in Zoned Ge-Rich Sphalerites from the Noailhac-Saint-Salvy Deposit (France):Insights into Incorporation Mechanisms and Ore Deposition Processes. Geochimica et Cosmochimica Acta, 126:518-540. https://doi.org/10.1016/j.gca.2013.10.052
[9] Berkesi, M., Hidas, K., Guzmics, T., et al., 2009. Detection of Small Amounts of H2O in CO2-Rich Fluid Inclusions Using Raman Spectroscopy. Journal of Raman Spectroscopy, 40(11):1461-1463. https://doi.org/10.1002/jrs.2440
[10] Bonev, I. K., Kouzmanov, K., 2002. Fluid Inclusions in Sphalerite as Negative Crystals:A Case Study. European Journal of Mineralogy, 14(3):607-620. https://doi.org/10.1127/0935-1221/2002/0014-0607
[11] Bonnet, J., Mosser-Ruck, R., Caumon, M. C., et al., 2016. Trace Element Distribution (Cu, Ga, Ge, Cd, and Fe) in Sphalerite from the Tennessee MVT Deposits, USA, by Combined EMPA, LA-ICP-MS, Raman Spectroscopy, and Crystallography. The Canadian Mineralogist, 54(5):1261-1284. https://doi.org/10.3749/canmin.1500104
[12] Bortnikov, N. S., Genkin, A. D., Dobrovolʼskaya, M. G., et al., 1991. The Nature of Chalcopyrite Inclusionsin Sphalerite:Exsolution, Coprecipitation, or "Disease"?. Economic Geology, 86:1070-1082 doi: 10.2113/gsecongeo.86.5.1070
[13] Bozkaya, G., Bozkaya, O., Banks, D., et al., 2017. Fluid Evolution of Mixed Base-Metal Gold Mineralization in the Tethys Belt: Koru Deposit, Turkey. 14th Binennial Meeting of Society for Geology Applied to Mineral Deposits. Aug. 20-23, 2017, Quebec City, Canada
[14] Burke, E. A. J., 2001. Raman Microspectrometry of Fluid Inclusions. Lithos, 55(1/2/3/4):139-158. https://doi.org/10.1016/s0024-4937(00)00043-8
[15] Buzatu, A., Buzgar, N., Damian, G., et al., 2013. The Determination of the Fe Content in Natural Sphalerites by Means of Raman Spectroscopy. Vibrational Spectroscopy, 68:220-224. https://doi.org/10.1016/j.vibspec.2013.08.007
[16] Catchpole, H., Kouzmanov, K., Fontboté, L., et al., 2011. Fluid Evolution in Zoned Cordilleran Polymetallic Veins-Insights from Microthermometry and LA-ICP-MS of Fluid Inclusions. Chemical Geology, 281(3/4):293-304. https://doi.org/10.1016/j.chemgeo.2010.12.016
[17] Catchpole, H., Kouzmanov, K., Putlitz, B., et al., 2015. Zoned Base Metal Mineralization in a Porphyry System:Origin and Evolution of Mineralizing Fluids in the Morococha District, Peru. Economic Geology, 110(1):39-71. https://doi.org/10.2113/econgeo.110.1.39
[18] Caumon, M.-C., Dubessy, J., Robert, P., et al., 2014. Fused-Silica Capillary Capsules (FSCCs) as Reference Synthetic Aqueous Fluid Inclusions to Determine Chlorinity by Raman Spectroscopy. European Journal of Mineralogy, 25(5):755-763. https://doi.org/10.1127/0935-1221/2013/0025-2280
[19] Caumon, M.-C., Tarantola, A., Mosser-Ruck, R., 2015. Raman Spectra of Water in Fluid Inclusions:I. Effect of Host Mineral Birefringence on Salinity Measurement. Journal of Raman Spectroscopy, 46(10):969-976. https://doi.org/10.1002/jrs.4708
[20] Cook, N. J., Ciobanu, C. L., Pring, A., et al., 2009. Trace and Minor Elements in Sphalerite:A LA-ICPMS Study. Geochimica et Cosmochimica Acta, 73(16):4761-4791. https://doi.org/10.1016/j.gca.2009.05.045
[21] Cooke, D., Braxton, W. N., Rinne, M., 2015. Metal Transport and Ore Deposition in Porphyry Copper±Gold±Molybdenum Deposits-Contrasting Behaviour between Deep and Hallow Environments. SGA 50th Anniversary Meeting, Aug. 24-27, 2015, Nancy, France. 275-278
[22] Daliran, F., Bakker, R. J., 2011. Metastable Melting Behavior in Fluid Inclusions in Sphalerite from the Angouran Zn(Pb) Deposit (NW Iran). European Current Research on Fluid Inclusions (ECROFI-XXI). Montanuniversität Leoben
[23] Di Benedetto, F., Bernardini, G. P., Costagliola, P., et al., 2005, Compositional Zoning in Sphalerite Crystals. American Mineralogist, 90:1384-1392 doi: 10.2138/am.2005.1754
[24] Dimitrijevic, M. D., Dimitrijevic, M. N., Diordjevic, M., 1971. Geological Map of Shahr-E-Babak (30' Sheet No. 7050, Scale: 1: 100 000). Geological Survey of Iran, Tehran
[25] Dimitrijevic, M., 1973. Geology of Kerman Region. Institute for Geological and Mining Exploration and Institution of Nuclear and Other Mineral Raw Materials, Beograd-Yugoslavia. Geological Survey of Iran, Report No. Yu/52.334
[26] Dubessy, J., Pagel, M., Beny, J. M., et al., 1988. Radiolysis Evidenced by H2-O2 and H2-Bearing Fluid Inclusions in Three Uranium Deposits. Geochimica et Cosmochimica Acta, 52(5):1155-1167. https://doi.org/10.1016/0016-7037(88)90269-4
[27] Dubessy, J., Poty, B., Ramboz, C., 1989. Advances in C-O-H-N-S Fluid Geochemistry Based on Micro-Raman Spectrometric Analysis of Fluid Inclusions. European Journal of Mineralogy, 1(4):517-534. https://doi.org/10.1127/ejm/1/4/0517
[28] Field, C. W., Zhang, L., Dilles, J. H., et al., 2005. Sulfur and Oxygen Isotopic Record in Sulfate and Sulfide Minerals of Early, Deep, Pre-Main Stage Porphyry Cu-Mo and Late Main Stage Base-Metal Mineral Deposits, Butte District, Montana. Chemical Geology, 215(1/2/3/4):61-93. https://doi.org/10.1016/j.chemgeo.2004.06.049
[29] Frei, R., 1995. Evolution of Mineralizing Fluid in the Porphyry Copper System of the Skouries Deposit, Northeast Chalkidiki (Greece); Evidence from Combined Pb-Sr and Stable Isotope Data. Economic Geology, 90(4):746-762. https://doi.org/10.2113/gsecongeo.90.4.746
[30] Frezzotti, M. L., Tecce, F., Casagli, A., 2012. Raman Spectroscopy for Fluid Inclusion Analysis. Journal of Geochemical Exploration, 112:1-20. https://doi.org/10.1016/j.gexplo.2011.09.009
[31] Hall, D. L., Bodnar, R. J., 1990. Methane in Fluid Inclusions from Granulites:A Product of Hydrogen Diffusion?. Geochimica et Cosmochimica Acta, 54(3):641-651. https://doi.org/10.1016/0016-7037(90)90360-w
[32] Hall, D. L., Sterner, S. M., 1995. Experimental Diffusion of Hydrogen into Synthetic Fluid Inclusions in Quartz. Journal of Metamorphic Geology, 13(3):345-355. https://doi.org/10.1111/j.1525-1314.1995.tb00224.x
[33] Hassanzadeh, J., 1993. Metallogenic and Tectonic-Magmatic Events in the SE Sector of the Cenozoic Active Continental Margin of Iran (Shahr E Babak Area, Kerman Province): [Dissertation]. University of California, Los Angeles. 204
[34] Hedenquist., J. W., Claveria, R. J. R., Villafuerte, G. P., 2001. Types of Sulfide-Rich Epithermal Deposits, and Their Affiliation to Porphyry Systems: Lepanto-Victoria-Far Southeast Deposits, Philippines, as Examples. ProExplo Congreso, April 24-28, Lima, Perú. https://www.researchgate.net/publication/292437674
[35] Heinrich, C. A., 2005. The Physical and Chemical Evolution of Low- Salinity Magmatic Fluids at the Porphyry to Epithermal Transition:A Thermodynamic Study. Mineralium Deposita, 39(8):864-889. https://doi.org/10.1007/s00126-004-0461-9
[36] Hope, G. A., Woods, R., Munce, C. G., 2001. Raman Microprobe Mineral Identification. Minerals Engineering, 14(12):1565-1577. https://doi.org/10.1016/s0892-6875(01)00175-3
[37] Hrstka, T., Dubessy, J., Zachariáš, J., 2011. Bicarbonate-Rich Fluid Inclusions and Hydrogen Diffusion in Quartz from the Libčice Orogenic Gold Deposit, Bohemian Massif. Chemical Geology, 281(3/4):317-332. https://doi.org/10.1016/j.chemgeo.2010.12.018
[38] Huebner, J. S., 1962. Fluid Inclusion Studies on Sphalerite and Quartz from the Providence Lead and Zinc Deposits, Zacatecas, Mexico: [Dissertation]. Princeton University, Princeton
[39] Huizenga, J. M., 2001. Thermodynamic Modelling of C-O-H Fluids. Lithos, 55(1/2/3/4):101-114. https://doi.org/10.1016/s0024-4937(00)00040-2
[40] Huizenga, J. M., 2005. COH, an Excel Spreadsheet for Composition Calculations in the C-O-H Fluid System. Computers & Geosciences, 31(6):797-800. https://doi.org/10.1016/j.cageo.2005.03.003
[41] Imer, A., Richards, J. P., Muehlenbachs, K., 2016. Hydrothermal Evolution of the Çöpler Porphyry-Epithermal Au Deposit, Erzincan Province, Central Eastern Turkey. Economic Geology, 111(7):1619-1658. https://doi.org/10.2113/econgeo.111.7.1619
[42] Jafari Rad, A. R., Busch, W., 2011. Porphyry Copper Mineral Prospectivity Mapping Using Interval Valued Fuzzy Sets Topsis Method in Central Iran. Journal of Geographic Information System, 3(4):312-317. https://doi.org/10.4236/jgis.2011.34028
[43] Jamali, H., Dilek, Y., Daliran, F., et al., 2010. Metallogeny and Tectonic Evolution of the Cenozoic Ahar-Arasbaran Volcanic Belt, Northern Iran. International Geology Review, 52(4/5/6):608-630. https://doi.org/10.1080/00206810903416323
[44] Keith, M., Haase, K. M., Schwarz-Schampera, U., et al., 2014. Effects of Temperature, Sulfur, and Oxygen Fugacity on the Composition of Sphalerite from Submarine Hydrothermal Vents. Geology, 42(8):699-702. https://doi.org/10.1130/g35655.1
[45] Kouzmanov, K., Pokrovski, G. S., 2012. Hydrothermal Controls on Metal Distribution in (Cu-Au-Mo) Porphyry Systems. In: Special Publication of the Society of Economic Geologists, 16: 573-618. https://archive-ouverte.unige.ch/unige:27832
[46] Koziowski, A., Aorecka, E., 1993, Sphalerite Origin in the Olkusz Mining District a Fluid Inclusion Model. Geological Quarterly, 37(2):291-306
[47] Lepetit, P., Bente, K., Doering, T., et al., 2003. Crystal Chemistry of Fe-Containing Sphalerites. Physics and Chemistry of Minerals, 30(4):185-191. https://doi.org/10.1007/s00269-003-0306-6
[48] Li, L. F., Zhang, X., Luan, Z. D., et al., 2018. Raman Vibrational Spectral Characteristics and Quantitative Analysis of H2 up to 400 ℃ and 40 MPa. Journal of Raman Spectroscopy, 49(10):1722-1731. https://doi.org/10.1002/jrs.5420
[49] Li, Y. B., Liu, J. M., 2006. Calculation of Sulfur Isotope Fractionation in Sulfides. Geochimica et Cosmochimica Acta, 70(7):1789-1795. https://doi.org/10.1016/j.gca.2005.12.015
[50] Mao, J. W., Zhang, J. D., Pirajno, F., et al., 2011. Porphyry Cu-Au-Mo Epithermal Ag-Pb-Zn-Distal Hydrothermal Au Deposits in the Dexing Area, Jiangxi Province, East China-A Linked Ore System. Ore Geology Reviews, 43(1):203-216. https://doi.org/10.1016/j.oregeorev.2011.08.005
[51] Martz, P., Cathelineau, M., Mercadier, J., et al., 2017. C-O-H-N Fluids Circulations and Graphite Precipitation in Reactivated Hudsonian Shear Zones during Basement Uplift of the Wollaston-Mudjatik Transition Zone:Example of the Cigar Lake U Deposit. Lithos, 294/295:222-245. https://doi.org/10.1016/j.lithos.2017.10.001
[52] Mavrogenes, J. A., Bodnar, R. J., 1994. Hydrogen Movement into and out of Fluid Inclusions in Quartz:Experimental Evidence and Geologic Implications. Geochimica et Cosmochimica Acta, 58(1):141-148. https://doi.org/10.1016/0016-7037(94)90452-9
[53] McInnes, B. I. A., Evans, N. J., Fu, F. Q., et al., 2005. Thermal History Analysis of Selected Chilean, Indonesian and Iranian Porphyry Cu-Mo-Au Deposits. In: Porter, T. M., ed., Super Porphyry Copper and Gold Deposits: A Global Perspective. PGC Publishing, Adelaide, Ausstralia. 27-42
[54] Melcher, F., Oberthür, T., Rammlmair, D., 2006. Geochemical and Mineralogical Distribution of Germanium in the Khusib Springs Cu-Zn-Pb-Ag Sulfide Deposit, Otavi Mountain Land, Namibia. Ore Geology Reviews, 28(1):32-56. https://doi.org/10.1016/j.oregeorev.2005.04.006
[55] Melfos, V., Vavelidis, M., Christofides, G., et al., 2002. Origin and Evolution of the Tertiary Maronia Porphyry Copper-Molybdenum Deposit, Thrace, Greece. Mineralium Deposita, 37(6/7):648-668. https://doi.org/10.1007/s00126-002-0277-4
[56] Mernagh, T. P., Trudu, A. G., 1993. A Laser Raman Microprobe Study of some Geologically Important Sulphide Minerals. Chemical Geology, 103(1/2/3/4):113-127. https://doi.org/10.1016/0009-2541(93)90295-t
[57] Movaghar, Y., Abedian, N., Borna, B., et al., 2011. Final Report on Silver and Gold Prospecting in the Area Latla-City B. Geological Map of Shahrbabak. Geological Survey & Mineral Exploration of Iran, Tehran. 309
[58] Murciego, A. M., Ayuso, E. A., Sanchez, A., et al., 2010. The Occurrence of Cd and Tl in the Sphalerite from El Losar del Barco Mine (Ávila, Spain): A Potential Environmental Hazard, Resumen SEM.
[59] Newton, T., 2013. Geochemistry of the Timberville Zn-Pb District, Rockingham County, VA: [Dissertation]. University of Maryland, Maryland
[60] Oen, I. S., Kager, P., Kieft, C., 1980. Oscillatory Zoning of a Discontinuous Solid-Solution Series:Sphalerite-Stannite. American Mineralogist, 65:1220-1232
[61] Ohmoto, H., 1972. Systematics of Sulfur and Carbon Isotopes in Hydrothermal Ore Deposits. Economic Geology, 67(5):551-578. https://doi.org/10.2113/gsecongeo.67.5.551
[62] Ohmoto, H., Rye, R. O., 1979. Isotopes of Sulphur and Carbon. In: Barne, H. L., ed., Geochemistry of Hydrothermal Ore Deposits. Willey Interscience, New York. 509-567
[63] Osadchii, E. G., Gorbaty, Y. E., 2010. Raman Spectra and Unit Cell Parameters of Sphalerite Solid Solutions (FexZn1-xS). Geochimica et Cosmochimica Acta, 74(2):568-573. https://doi.org/10.1016/j.gca.2009.10.022
[64] Padyar, F., 2017. The Nature and Evolution of Magmas and Hydrothermal Fluids Associated With Miduk PCD and Latala Vein Type Deposits: [Dissertation]. University of Shahed Beheshti, Tehran. 220
[65] Padyar, F., Rahgoshay, M., Alirezaei, S., et al., 2017a. Evolution of the Mineralizing Fluids and Possible Genetic Links between Miduk Porphyry Copper and Latala Vein Type Deposits, Kerman Copper Belt, South Iran. Journal of the Geological Society of India, 90(5):558-568. https://doi.org/10.1007/s12594-017-0752-2
[66] Padyar, F., Rahgoshay, M., Tarantola, A., et al., 2017b. Cathodoluminescence, Microthermometry and Laser Raman Spectroscopy Study of Hydrothermal Quartz in Latala Deposit, Central Iran. Scientific Quarterly Journal of Geosciences, Iran, 26:39-56
[67] Padyar, F., Rahgoshay, M., Tarantola, S., et al., 2017c. Evidences of Boiling in Fluid Inclusions and Distribution Metals during Mineralization in Latala Epithermal Base and Precious Metal Deposit, Northern Miduk Copper Deposit, Iran. Iranian National Fluid Inclusion Conference. Nov. 16, 2017. University of Zanjan, Zanjan
[68] Pasteris, J. D., Kuehn, C. A., Bodnar, R. J., 1986. Applications of the Laser Raman Microprobe RAMANOR U-1000 to Hydrothermal Ore Deposits; Carlin as an Example. Economic Geology, 81(4):915-930. https://doi.org/10.2113/gsecongeo.81.4.915
[69] Pirajno, F., 2009. Hydrothermal Processes and Mineral Systems. Geological Survey of Western Australia. Geological Survey of Western Australia, Perth. 1250
[70] Pokrovski, G. S., Borisova, A. Y., Bychkov, A. Y., 2013. Speciation and Transport of Metals and Metalloids in Geological Vapors. Reviews in Mineralogy and Geochemistry, 76(1):165-218. https://doi.org/10.2138/rmg.2013.76.6
[71] Richards, J. P., 2009. Postsubduction Porphyry Cu-Au and Epithermal Au Deposits:Products of Remelting of Subduction-Modified Lithosphere. Geology, 37(3):247-250. https://doi.org/10.1130/g25451a.1
[72] Richards, J. P., Kerrich, R., 1993. The Porgera Gold Mine, Papua New Guinea; Magmatic Hydrothermal to Epithermal Evolution of an Alkalic-Type Precious Metal Deposit. Economic Geology, 88(5):1017-1052. https://doi.org/10.2113/gsecongeo.88.5.1017
[73] Richards, J. P., Razavi, A. M., Spell, T. L., et al., 2018. Magmatic Evolution and Porphyry-Epithermal Mineralization in the Taftan Volcanic Complex, Southeastern Iran. Ore Geology Reviews, 95:258-279. https://doi.org/10.1016/j.oregeorev.2018.02.018
[74] Rickard, D., Willden, M. Y., Marinder, N. E., et al., 1979. Studies of the Genesis of the Laisvall Sandstone Lead-Zinc Deposit, Sweden. Economic Geology, 74(5):1255-1285. https://doi.org/10.2113/gsecongeo.74.5.1255
[75] Roedder, E., 1977. Fluid Inclusion Studies of Ore Deposits in the Viburnum Trend, Southeast Missouri. Economic Geology, 72(3):474-479. https://doi.org/10.2113/gsecongeo.72.3.474
[76] Rye, R. O., 1993. The Evolution of Magmatic Fluids in the Epithermal Environment; The Stable Isotope Perspective. Economic Geology, 88(3):733-752. https://doi.org/10.2113/gsecongeo.88.3.733
[77] Rye, R. O., 2005. A Review of the Stable-Isotope Geochemistry of Sulfate Minerals in Selected Igneous Environments and Related Hydrothermal Systems. Chemical Geology, 215(1/2/3/4):5-36. https://doi.org/10.1016/j.chemgeo.2004.06.034
[78] Sakai, H., 1968. Isotopic Properties of Sulfur Compounds in Hydrothermal Processes. Geochemical Journal, 2(1):29-49. https://doi.org/10.2343/geochemj.2.29
[79] Sawkins, F. J., 1964. Lead-Zinc Ore Deposition in the Light of Fluid Inclusion Studies, Providence Mine, Zacatecas, Mexico. Economic Geology, 59(5):883-919. https://doi.org/10.2113/gsecongeo.59.5.883
[80] Seal, R. R., 2006. Sulfur Isotope Geochemistry of Sulfide Minerals. Reviews in Mineralogy and Geochemistry, 61(1):633-677. https://doi.org/10.2138/rmg.2006.61.12
[81] Seward, T. M., Barnes, H. L., 1997. Metal Transport by Hydrothermal Fluids. In: Barnes, H. L., ed., Geochemistry of Hydrothermal Ore Deposits. John Wiley and Sons Inc., New York. 235-285
[82] Shahabpour, J., 2007. Island-Arc Affinity of the Central Iranian Volcanic Belt. Journal of Asian Earth Sciences, 30(5/6):652-665. https://doi.org/10.1016/j.jseaes.2007.02.004
[83] Shang, L. B., Chou, I.-M., Lu, W. J., et al., 2009. Determination of Diffusion Coefficients of Hydrogen in Fused Silica between 296 and 523 K by Raman Spectroscopy and Application of Fused Silica Capillaries in Studying Redox Reactions. Geochimica et Cosmochimica Acta, 73(18):5435-5443. https://doi.org/10.1016/j.gca.2009.06.001
[84] Shepherd, T. J., Rankin, A. H., Alderton, D. H. M., 1985. A Practical Guide to Fluid Inclusion Studies. Blackie, London. 238
[85] Shikazono, N., 1973. Sphalerite-Carbonate-Pyrite Assemblage in Hydrothermal Veins and Its Bearing on Limiting the Environment of Their Deposition. Geochemical Journal, 7(2):97-114. https://doi.org/10.2343/geochemj.7.97
[86] Sillitoe, R. H., 2010. Porphyry Copper Systems. Economic Geology, 105:3-41. https://doi.org/10.2113/gsecongeo.105.1.3
[87] Sirbescu, M. L. C., Nabelek, P. I., 2003. Dawsonite:An Inclusion Mineral in Quartz from the Tin Mountain Pegmatite, Black Hills, South Dakota. American Mineralogist, 88(7):1055-1059. https://doi.org/10.2138/am-2003-0714
[88] Tarantola, A., Caumon, M. C., 2015. Raman Spectra of Water in Fluid Inclusions:II. Effect of Negative Pressure on Salinity Measurement. Journal of Raman Spectroscopy, 46(10):977-982. https://doi.org/10.1002/jrs.4668
[89] Tauson, V. L., Chernyshev, L. V., 1977. Phase Relationships and Structural Features of ZnS-CdS Mixed Crystals. Geochemistry International, 14:11-22
[90] Voudouris, P., Mavrogonatos, C., Rieck, B., et al., 2018. The Gersdorffite- Bismuthinite-Native Gold Association and the Skarn-Porphyry Mineralization in the Kamariza Mining District, Lavrion, Greece. Minerals, 8(11):531. https://doi.org/10.3390/min8110531
[91] Voudouris, P., Mavrogonatos, C., Spry, P. G., et al., 2019. Porphyry and Epithermal Deposits in Greece: An Overview, New Discoveries, and Mineralogical Constraints on Their Genesis. Ore Geology Reviews, 107: 654-691. https://doi.org/10.1016/j.oregeorev.2019.03.019
[92] Wang, G. G., Ni, P., Wang, R. C., et al., 2013. Geological, Fluid Inclusion and Isotopic Studies of the Yinshan Cu-Au-Pb-Zn-Ag Deposit, South China:Implications for Ore Genesis and Exploration. Journal of Asian Earth Sciences, 74:343-360. https://doi.org/10.1016/j.jseaes.2012.11.038
[93] Williams-Jones, A. E., Heinrich, C. A., 2005. Vapor Transport of Metals and the Formation of Magmatic-Hydrothermal Ore Deposits. Economic Geology, 100(7):1287-1312. https://doi.org/10.2113/100.7.1287
[94] Wopenka, B., Pasteris, J. D., 1986. Limitations to Quantitative Analysis of Fluid Inclusions in Geological Samples by Laser Raman Microprobe Spectroscopy. Applied Spectroscopy, 40(2):144-151. https://doi.org/10.1366/0003702864509592
[95] Yigit, O., 2009. Mineral Deposits of Turkey in Relation to Tethyan Metallogeny:Implications for Future Mineral Exploration. Economic Geology, 104(1):19-51. https://doi.org/10.2113/gsecongeo.104.1.19