[1] Altherr, R., Holl, A., Hegner, E., et al., 2000. High-Potassium, Calc-Alkaline I-Type Plutonism in the European Variscides:Northern Vosges (France) and Northern Schwarzwald (Germany). Lithos, 50(1/2/3):51-73. https://doi.org/10.1016/s0024-4937(99)00052-3
[2] Bonin, B., 2004. Do Coeval Mafic and Felsic Magmas in Post-Collisional to Within-Plate Regimes Necessarily Imply Two Contrasting, Mantle and Crustal, Sources? A Review. Lithos, 78(1/2):1-24. https://doi.org/10.1016/j.lithos.2004.04.042
[3] Cai, Y. C., Fan, H. R., Santosh, M., et al., 2015. Subduction-Related Metasomatism of the Lithospheric Mantle beneath the Southeastern North China Craton:Evidence from Mafic to Intermediate Dykes in the Northern Sulu Orogen. Tectonophysics, 659:137-151. https://doi.org/10.1016/j.tecto.2015.07.037
[4] Corfu, F., Hanchar, J. M., Hoskin, P. W., et al., 2003. Atlas of Zircon Textures. Reviews in Mineralogy and Geochemistry, 53(1):469-500. https://doi.org/10.2113/0530469
[5] Dai, F. Q., Zhao, Z. F., Dai, L. Q., et al., 2016. Slab-Mantle Interaction in the Petrogenesis of Andesitic Magmas:Geochemical Evidence from Postcollisional Intermediate Volcanic Rocks in the Dabie Orogen, China. Journal of Petrology, 57(6):1109-1134. https://doi.org/10.1093/petrology/egw034
[6] Dai, L. Q., Zhao, Z. F., Zheng, Y. F., et al., 2015. Source and Magma Mixing Processes in Continental Subduction Factory:Geochemical Evidence from Postcollisional Mafic Igneous Rocks in the Dabie Orogen. Geochemistry, Geophysics, Geosystems, 16(3):659-680. https://doi.org/10.1002/2014gc005620
[7] Deng, J., Liu, X. F., Wang, Q. F., et al., 2017. Isotopic Characterization and Petrogenetic Modeling of Early Cretaceous Mafic Diking-Lithospheric Extension in the North China Craton, Eastern Asia. GSA Bulletin, 129(11/12):1379-1407. https://doi.org/10.1130/b31609.1
[8] Du, L., Yuan, C., Li, X. P., et al., 2019. Petrogenesis and Geodynamic Implications of the Carboniferous Granitoids in the Dananhu Belt, Eastern Tianshan Orogenic Belt. Journal of Earth Science, 30(6):1243-1252. https://doi.org/10.1007/s12583-019-1256-3
[9] Duggen, S., Hoernle, K., van den Bogaard, P., et al., 2005. Post-Collisional Transition from Subduction-to Intraplate-Type Magmatism in the Westernmost Mediterranean:Evidence for Continental-Edge Delamination of Subcontinental Lithosphere. Journal of Petrology, 46(6):1155-1201. https://doi.org/10.1093/petrology/egi013
[10] Ernst, W. G., Tsujimori, T., Zhang, R., et al., 2007. Permo-Triassic Collision, Subduction-Zone Metamorphism, and Tectonic Exhumation along the East Asian Continental Margin. Annual Review of Earth and Planetary Sciences, 35(1):73-110. https://doi.org/10.1146/annurev.earth.35.031306.140146
[11] Feng, P., Wang, L., Brown, M., et al., 2020. Separating Multiple Episodes of Partial Melting in Polyorogenic Crust:An Example from the Haiyangsuo Complex, Northern Sulu Belt, Eastern China. GSA Bulletin, 132(5/6):1235-1256. https://doi.org/10.1130/b35210.1
[12] Feng, Q., Xu, Z. S., Zhang, Y., et al., 2019. Zircon U-Pb Geochronology of the Early Cretaceous Xiaozhushan Granite in Qingdao Jiaonan Uplift and Tectonic Evolution of Mesozoic Granite in Jiaodong Peninsula. Journal of Shandong University of Science and Technology (Natural Science), 38(2):1-13. https://doi.org/10.16452/j.cnki.sdkjzk.2019.02.001
[13] Ferrando, S., Frezzotti, M. L., Dallai, L., et al., 2005. Multiphase Solid Inclusions in UHP Rocks (Su-Lu, China):Remnants of Supercritical Silicate-Rich Aqueous Fluids Released during Continental Subduction. Chemical Geology, 223(1/2/3):68-81. https://doi.org/10.1016/j.chemgeo.2005.01.029
[14] Foley, S. F., Jackson, S. E., Fryer, B. J., et al., 1996. Trace Element Partition Coefficients for Clinopyroxene and Phlogopite in an Alkaline Lamprophyre from Newfoundland by LAM-ICP-MS. Geochimica et Cosmochimica Acta, 60(4):629-638. https://doi.org/10.1016/0016-7037(95)00422-x
[15] Furman, T., Graham, D., 1999. Erosion of Lithospheric Mantle beneath the East African Rift System:Geochemical Evidence from the Kivu Volcanic Province. Lithos, 48(1/2/3/4):237-262. https://doi.org/10.1016/s0024-4937(99)00031-6
[16] Ganzhorn, A. C., Labrousse, L., Prouteau, G., et al., 2014. Structural, Petrological and Chemical Analysis of Syn-Kinematic Migmatites:Insights from the Western Gneiss Region, Norway. Journal of Metamorphic Geology, 32(6):647-673. https://doi.org/10.1111/jmg.12084
[17] Gordon, S. M., Whitney, D. L., Teyssier, C., et al., 2013. U-Pb Dates and Trace-Element Geochemistry of Zircon from Migmatite, Western Gneiss Region, Norway:Significance for History of Partial Melting in Continental Subduction. Lithos, 170/171:35-53. https://doi.org/10.1016/j.lithos.2013.02.003
[18] Griffin, W. L., Andi, Z., O'reilly, S. Y., et al., 1998. Phanerozoic Evolution of the Lithosphere beneath the Sino-Korean Craton. In:Flower, M. F. J., Chung, S.-L., Lo, C.-H., et al., eds., Mantle Dynamics and Plate Interactions in East Asia, 27:107-126. https://doi.org/10.1029/gd027p0107
[19] Guo, F., Fan, W. M., Wang, Y. J., et al., 2004. Origin of Early Cretaceous Calc-Alkaline Lamprophyres from the Sulu Orogen in Eastern China:Implications for Enrichment Processes beneath Continental Collisional Belt. Lithos, 78(3):291-305. https://doi.org/10.1016/j.lithos.2004.05.001
[20] Guo, F., Fan, W. M., Wang, Y. J., et al., 2005. Petrogenesis and Tectonic Implications of Early Cretaceous High-K Calc-Alkaline Volcanic Rocks in the Laiyang Basin of the Sulu Belt, Eastern China. The Island Arc, 14(2):69-90. https://doi.org/10.1111/j.1440-1738.2005.00458.x
[21] Guo, F., Fan, W. M., Li, C. W., et al., 2014. Hf-Nd-O Isotopic Evidence for Melting of Recycled Sediments beneath the Sulu Orogen, North China. Chemical Geology, 381:243-258. https://doi.org/10.1016/j.chemgeo.2014.04.028
[22] Hacker, B. R., Ratschbacher, L., Webb, L., et al., 2000. Exhumation of Ultrahigh-Pressure Continental Crust in East Central China:Late Triassic-Early Jurassic Tectonic Unroofing. Journal of Geophysical Research:Solid Earth, 105(B6):13339-13364. https://doi.org/10.1029/2000jb900039
[23] Hacker, B. R., Wallis, S. R., Ratschbacher, L., et al., 2006. High-Temperature Geochronology Constraints on the Tectonic History and Architecture of the Ultrahigh-Pressure Dabie-Sulu Orogen. Tectonics, 25(5):TC5006. https://doi.org/10.1029/2005tc001937
[24] Hacker, B. R., Wallis, S. R., McWilliams, M. O., et al., 2009. 40Ar/39Ar Constraints on the Tectonic History and Architecture of the Ultrahigh-Pressure Sulu Orogen. Journal of Metamorphic Geology, 27(9):827-844. https://doi.org/10.1111/j.1525-1314.2009.00840.x
[25] Hegner, E., Kölbl-Ebert, M., Loeschke, J., 1998. Post-Collisional Variscan Lamprophyres (Black Forest, Germany):40Ar/39Ar Phlogopite Dating, Nd, Pb, Sr Isotope, and Trace Element Characteristics. Lithos, 45(1/2/3/4):395-411. https://doi.org/10.1016/s0024-4937(98)00041-3
[26] Hofmann, A. W., 1988. Chemical Differentiation of the Earth:The Relationship between Mantle, Continental Crust, and Oceanic Crust. Earth and Planetary Science Letters, 90(3):297-314. https://doi.org/10.1016/0012-821x(88)90132-x
[27] Hoskin, P. W. O., Ireland, T. R., 2000. Rare Earth Element Chemistry of Zircon and Its Use as a Provenance Indicator. Geology, 28(7):627-630. https://doi.org/10.1130/0091-7613(2000)28 < 627:reecoz > 2.0.co; 2 doi: 10.1130/0091-7613(2000)28<627:reecoz>2.0.co;2
[28] Hu, Z. C., Liu, Y. S., Gao, S., et al., 2012. Improved in Situ Hf Isotope Ratio Analysis of Zircon Using Newly Designed X Skimmer Cone and Jet Sample Cone in Combination with the Addition of Nitrogen by Laser Ablation Multiple Collector ICP-MS. Journal of Analytical Atomic Spectrometry, 27(9):1391-1399. https://doi.org/10.1039/c2ja30078h
[29] Jahn, B. M., Wu, F. Y., Lo, C. H., et al., 1999. Crust-Mantle Interaction Induced by Deep Subduction of the Continental Crust:Geochemical and Sr-Nd Isotopic Evidence from Post-Collisional Mafic-Ultramafic Intrusions of the Northern Dabie Complex, Central China. Chemical Geology, 157(1/2):119-146. https://doi.org/10.1016/s0009-2541(98)00197-1
[30] Ionov, D. A., Griffin, W. L., OʼReilly, S. Y., 1997. Volatile-Bearing Minerals and Lithophile Trace Elements in the Upper Mantle. Chemical Geology, 141(3/4):153-184. https://doi.org/10.1016/s0009-2541(97)00061-2
[31] Jiang, Y. H., Jiang, S. Y., Ling, H. F., et al., 2010. Petrogenesis and Tectonic Implications of Late Jurassic Shoshonitic Lamprophyre Dikes from the Liaodong Peninsula, NE China. Mineralogy and Petrology, 100(3/4):127-151. https://doi.org/10.1007/s00710-010-0124-8
[32] Kong, J. J., Niu, Y. L., Sun, P., et al., 2019. The Origin and Geodynamic Significance of the Mesozoic Dykes in Eastern Continental China. Lithos, 332/333:328-339. https://doi.org/10.1016/j.lithos.2019.02.024
[33] Korsakov, A. V., Hermann, J., 2006. Silicate and Carbonate Melt Inclusions Associated with Diamonds in Deeply Subducted Carbonate Rocks. Earth and Planetary Science Letters, 241(1/2):104-118. https://doi.org/10.1016/j.epsl.2005.10.037
[34] Kusky, T. M., Windley, B. F., Wang, L., et al., 2014. Flat Slab Subduction, Trench Suction, and Craton Destruction:Comparison of the North China, Wyoming, and Brazilian Cratons. Tectonophysics, 630:208-221. https://doi.org/10.1016/j.tecto.2014.05.028
[35] Labrousse, L., Prouteau, G., Ganzhorn, A. C., 2011. Continental Exhumation Triggered by Partial Melting at Ultrahigh Pressure. Geology, 39(12):1171-1174. https://doi.org/10.1130/g32316.1
[36] Li, X. Y., Li, S. Z., Suo, Y. H., et al., 2018. Early Cretaceous Diabases, Lamprophyres and Andesites-Dacites in Western Shandong, North China Craton:Implications for Local Delamination and Paleo-Pacific Slab Rollback. Journal of Asian Earth Sciences, 160:426-444. https://doi.org/10.1016/j.jseaes.2017.08.005
[37] Liang, Y. Y., Deng, J., Liu, X. F., et al., 2018. Major and Trace Element, and Sr Isotope Compositions of Clinopyroxene Phenocrysts in Mafic Dykes on Jiaodong Peninsula, Southeastern North China Craton:Insights into Magma Mixing and Source Metasomatism. Lithos, 302/303:480-495. https://doi.org/10.1016/j.lithos.2018.01.031
[38] Liu, F. L., Xu, Z. Q., Liou, J. G., 2004. Tracing the Boundary between UHP and HP Metamorphic Belts in the Southwestern Sulu Terrane, Eastern China:Evidence from Mineral Inclusions in Zircons from Metamorphic Rocks. International Geology Review, 46(5):409-425. https://doi.org/10.2747/0020-6814.46.5.409
[39] Liu, F. L., Gerdes, A., Liou, J. G., et al., 2006. SHRIMP U-Pb Zircon Dating from Sulu-Dabie Dolomitic Marble, Eastern China:Constraints on Prograde, Ultrahigh-Pressure and Retrograde Metamorphic Ages. Journal of Metamorphic Geology, 24(7):569-589. https://doi.org/10.1111/j.1525-1314.2006.00655.x
[40] Liu, F. L., Liou, J. G., 2011. Zircon as the Best Mineral for P-T-Time History of UHP Metamorphism:A Review on Mineral Inclusions and U-Pb SHRIMP Ages of Zircons from the Dabie-Sulu UHP Rocks. Journal of Asian Earth Sciences, 40(1):1-39. https://doi.org/10.1016/j.jseaes.2010.08.007
[41] Liu, S., Zou, H. B., Hu, R. Z., et al., 2006. Mesozoic Mafic Dikes from the Shandong Peninsula, North China Craton:Petrogenesis and Tectonic Implications. Geochemical Journal, 40(2):181-195. https://doi.org/10.2343/geochemj.40.181
[42] Liu, S., Hu, R. Z., Gao, S., et al., 2008. U-Pb Zircon Age, Geochemical and Sr-Nd-Pb-Hf Isotopic Constraints on Age and Origin of Alkaline Intrusions and Associated Mafic Dikes from Sulu Orogenic Belt, Eastern China. Lithos, 106(3/4):365-379. https://doi.org/10.1016/j.lithos.2008.09.004
[43] Liu, S., Hu, R. Z., Gao, S., et al., 2009. Petrogenesis of Late Mesozoic Mafic Dykes in the Jiaodong Peninsula, Eastern North China Craton and Implications for the Foundering of Lower Crust. Lithos, 113(3/4):621-639. https://doi.org/10.1016/j.lithos.2009.06.035
[44] Liu, Y. S., Hu, Z. C., Gao, S., et al., 2008. In situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS without Applying an Internal Standard. Chemical Geology, 257(1/2):34-43. https://doi.org/10.1016/j.chemgeo.2008.08.004
[45] Liu, Y. S., Gao, S., Hu, Z. C., et al., 2010. Continental and Oceanic Crust Recycling-Induced Melt-Peridotite Interactions in the Trans-North China Orogen:U-Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths. Journal of Petrology, 51(1/2):537-571. https://doi.org/10.1093/petrology/egp082
[46] Ma, L., Jiang, S. Y., Hou, M. L., et al., 2014. Geochemistry of Early Cretaceous Calc-Alkaline Lamprophyres in the Jiaodong Peninsula:Implication for Lithospheric Evolution of the Eastern North China Craton. Gondwana Research, 25(2):859-872. https://doi.org/10.1016/j.gr.2013.05.012
[47] Maruyama, S., Isozaki, Y., Kimura, G., et al., 1997. Paleogeographic Maps of the Japanese Islands:Plate Tectonic Synthesis from 750 Ma to the Present. The Island Arc, 6(1):121-142. https://doi.org/10.1111/j.1440-1738.1997.tb00043.x
[48] Menzies, M. A., Fan, W. M., Zhang, M., 1993. Palaeozoic and Cenozoic Lithoprobes and the Loss of > 120 km of Archaean Lithosphere, Sino-Korean Craton, China. Geological Society, London, Special Publications, 76(1):71-81. https://doi.org/10.1144/gsl.sp.1993.076.01.04
[49] Middlemost, E. A. K., 1994. Naming Materials in the Magma/igneous Rock System. Earth-Science Reviews, 37(3/4):215-224. https://doi.org/10.1016/0012-8252(94)90029-9
[50] Niu, Y. L., 2018. Geological Understanding of Plate Tectonics:Basic Concepts, Illustrations, Examples and New Perspectives. Global Tectonics and Metallogeny, 10(1):23-46. https://doi.org/10.1127/gtm/2014/0009
[51] Okay, A. I., Xu, S. T., Sengör, A. M. C., 1989. Coesite from the Dabie Shan Eclogites, Central China. European Journal of Mineralogy, 1(4):595-598. https://doi.org/10.1127/ejm/1/4/0595
[52] Patiño Douce, A. E., Beard, J. S., 1995. Dehydration-Melting of Biotite Gneiss and Quartz Amphibolite from 3 to 15 Kbar. Journal of Petrology, 36(3):707-738. https://doi.org/10.1093/petrology/36.3.707
[53] Qian, Q., Hermann, J., 2013. Partial Melting of Lower Crust at 10-15 kbar:Constraints on Adakite and TTG Formation. Contributions to Mineralogy and Petrology, 165(6):1195-1224. https://doi.org/10.1007/s00410-013-0854-9
[54] Rapp, R. P., Watson, E. B., 1995. Dehydration Melting of Metabasalt at 8-32 kbar:Implications for Continental Growth and Crust-Mantle Recycling. Journal of Petrology, 36(4):891-931. https://doi.org/10.1093/petrology/36.4.891
[55] Rock, N. M. S., 1987. The Nature and Origin of Lamprophyres:An Overview. Geological Society, London, Special Publications, 30(1):191-226. https://doi.org/10.1144/gsl.sp.1987.030.01.09
[56] Rubatto, D., 2017. Zircon:The Metamorphic Mineral. Reviews in Mineralogy and Geochemistry, 83(1):261-295. https://doi.org/10.2138/rmg.2017.83.9
[57] Rudnick, R. L., Fountain, D. M., 1995. Nature and Composition of the Continental Crust:A Lower Crustal Perspective. Reviews of Geophysics, 33(3):267-309. https://doi.org/10.1029/95rg01302
[58] Rudnick, R. L., Gao, S., 2003. Composition of the Continental Crust. Treatise on Geochemistry, 3:659. https://doi.org/10.1016/B0-08-043751-6/03016-4
[59] Schaltegger, U., Brack, P., 2007. Crustal-Scale Magmatic Systems during Intracontinental Strike-Slip Tectonics:U, Pb and Hf Isotopic Constraints from Permian Magmatic Rocks of the Southern Alps. International Journal of Earth Sciences, 96(6):1131-1151. https://doi.org/10.1007/s00531-006-0165-8
[60] Song, S. G., Wang, M. J., Wang, C., et al., 2015. Magmatism during Continental Collision, Subduction, Exhumation and Mountain Collapse in Collisional Orogenic Belts and Continental Net Growth:A Perspective. Science China Earth Sciences, 58(8):1284-1304. https://doi.org/10.1007/s11430-015-5102-x
[61] Song, Z. G., Han, C., Liu, H., et al., 2019. Early-Middle Ordovician Intermediate-Mafic and Ultramafic Rocks in Central Jilin Province, NE China:Geochronology, Origin, and Tectonic Implications. Mineralogy and Petrology, 113(3):393-415. https://doi.org/10.1007/s00710-019-00655-1
[62] Stepanov, A. S., Hermann, J., Rubatto, D., et al., 2016. Melting History of an Ultrahigh-Pressure Paragneiss Revealed by Multiphase Solid Inclusions in Garnet, Kokchetav Massif, Kazakhstan. Journal of Petrology, 167:1531-1554. https://doi.org/10.1093/petrology/egw049
[63] Stern, R. J., Scholl, D. W., 2010. Yin and Yang of Continental Crust Creation and Destruction by Plate Tectonic Processes. International Geology Review, 52(1):1-31. https://doi.org/10.1080/00206810903332322
[64] Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts:Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1):313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19
[65] Sun, W. D., Ding, X., Hu, Y. H., et al., 2007. The Golden Transformation of the Cretaceous Plate Subduction in the West Pacific. Earth and Planetary Science Letters, 262(3/4):533-542. https://doi.org/10.1016/j.epsl.2007.08.021
[66] Tang, J., Zheng, Y. F., Wu, Y. B., et al., 2007. Geochronology and Geochemistry of Metamorphic Rocks in the Jiaobei Terrane:Constraints on Its Tectonic Affinity in the Sulu Orogen. Precambrian Research, 152(1/2):48-82. https://doi.org/10.1016/j.precamres.2006.09.001
[67] Tang, J., Zheng, Y. F., Gong, B., et al., 2008. Extreme Oxygen Isotope Signature of Meteoric Water in Magmatic Zircon from Metagranite in the Sulu Orogen, China:Implications for Neoproterozoic Rift Magmatism. Geochimica et Cosmochimica Acta, 72(13):3139-3169. https://doi.org/10.1016/j.gca.2008.04.017
[68] Tang, Y. J., Zhang, H. F., Deloule, E., et al., 2012. Slab-Derived Lithium Isotopic Signatures in Mantle Xenoliths from Northeastern North China Craton. Lithos, 149:79-90. https://doi.org/10.1016/j.lithos.2011.12.001
[69] Taylor, S. R., McLennan, S. M., Armstrong, R. L., et al., 1981. The Composition and Evolution of the Continental Crust:Rare Earth Element Evidence from Sedimentary Rocks (and Discussion). Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 301(1461):381-399. https://doi.org/10.1098/rsta.1981.0119
[70] Wan, L., Zeng, Z. X., Kusky, T., et al., 2019. Geochemistry of Middle-Late Mesozoic Mafic Intrusions in the Eastern North China Craton:New Insights on Lithospheric Thinning and Decratonization. Gondwana Research, 73:153-174. https://doi.org/10.1016/j.gr.2019.04.004
[71] Wan, Y. S., Song, B., Liu, D. Y., et al., 2006. SHRIMP U-Pb Zircon Geochronology of Palaeoproterozoic Metasedimentary Rocks in the North China Craton:Evidence for a Major Late Palaeoproterozoic Tectonothermal Event. Precambrian Research, 149(3/4):249-271. https://doi.org/10.1016/j.precamres.2006.06.006
[72] Wang, L., Kusky, T. M., Li, S. Z., 2010. Structural Geometry of an Exhumed UHP Terrane in the Eastern Sulu Orogen, China:Implications for Continental Collisional Processes. Journal of Structural Geology, 32(4):423-444. https://doi.org/10.1016/j.jsg.2010.01.012
[73] Wang, L., Kusky, T. M., Polat, A., et al., 2014. Partial Melting of Deeply Subducted Eclogite from the Sulu Orogen in China. Nature Communications, 5(1):5604-5614. https://doi.org/10.1038/ncomms6604
[74] Wang, L., Wang, S. J., Brown, M., et al., 2018. On the Survival of Intergranular Coesite in UHP Eclogite. Journal of Metamorphic Geology, 36(2):173-194. https://doi.org/10.1111/jmg.12288
[75] Wang, S. J., Wang, L., Brown, M., et al., 2016. Multi-Stage Barite Crystallization in Partially Melted UHP Eclogite from the Sulu Belt, China. American Mineralogist, 101(3):564-579. https://doi.org/10.2138/am-2016-5384
[76] Wang, S. J., Wang, L., Brown, M., et al., 2017. Fluid Generation and Evolution during Exhumation of Deeply Subducted UHP Continental Crust:Petrogenesis of Composite Granite-Quartz Veins in the Sulu Belt, China. Journal of Metamorphic Geology, 35(6):601-629. https://doi.org/10.1111/jmg.12248
[77] Wang, S. J., Li, X. P., Schertl, H. P., et al., 2019. Petrogenesis of Early Cretaceous Andesite Dykes in the Sulu Orogenic Belt, Eastern China. Mineralogy and Petrology, 113(1):77-97. https://doi.org/10.1007/s00710-018-0636-1
[78] Wang, S. J., Schertl, H. P., Pang, Y. M., 2020a. Geochemistry, Geochronology and Sr-Nd-Hf Isotopes of Two Types of Early Cretaceous Granite Porphyry Dykes in the Sulu Orogenic Belt, Eastern China. Canadian Journal of Earth Sciences, 57(2):249-266. https://doi.org/10.1139/cjes-2019-0003
[79] Wang, S. J., Wang, L., Brown, M., et al., 2020b. Petrogenesis of Leucosome Sheets in Migmatitic UHP Eclogites-Evolution from Silicate-Rich Supercritical Fluid to Hydrous Melt. Lithos, 360/361:105442. https://doi.org/10.1016/j.lithos.2020.105442
[80] Wang, X., Wang, Z. C., Cheng, H., et al., 2020. Early Cretaceous Lamprophyre Dyke Swarms in Jiaodong Peninsula, Eastern North China Craton, and Implications for Mantle Metasomatism Related to Subduction. Lithos, 368-369:105593. https://doi.org/10.1016/j.lithos.2020.105593
[81] Wang, X. M., Liou, J. G., 1991. Regional Ultrahigh-Pressure Coesite-Bearing Eclogitic Terrane in Central China:Evidence from Country Rocks, Gneiss, Marble, and Metapelite. Geology, 19(9):933-936. https://doi.org/10.1130/0091-7613(1991)019 < 0933:rupcbe > 2.3.co; 2 doi: 10.1130/0091-7613(1991)019<0933:rupcbe>2.3.co;2
[82] Wei, G. D., Kong, F. M., Li, X. P., et al., 2020. Metamorphic evolution of ultrahigh-temperature mafic granulites from the Xiwangshan area, Trans-North China Craton. Journal of Shandong University of Science and Technology (Natural Science), 39(2):24-35. https://doi.org/10.16452/j.cnki.sdkjzk.2020.02.003
[83] Winchester, J. A., Floyd, P. A., 1977. Geochemical Discrimination of Different Magma Series and Their Differentiation Products Using Immobile Elements. Chemical Geology, 20:325-343. https://doi.org/10.1016/0009-2541(77)90057-2
[84] Windley, B. F., Maruyama, S., Xiao, W. J., 2010. Delamination/thinning of Sub-Continental Lithospheric Mantle under Eastern China:The Role of Water and Multiple Subduction. American Journal of Science, 310(10):1250-1293. https://doi.org/10.2475/10.2010.03
[85] Wu, F. Y., Lin, J. Q., Wilde, S. A., et al., 2005. Nature and Significance of the Early Cretaceous Giant Igneous Event in Eastern China. Earth and Planetary Science Letters, 233(1/2):103-119. https://doi.org/10.1016/j.epsl.2005.02.019
[86] Wu, F. Y., Yang, J. H., Xu, Y. G., et al., 2019. Destruction of the North China Craton in the Mesozoic. Annual Review of Earth and Planetary Sciences, 47(1):173-195. https://doi.org/10.1146/annurev-earth-053018-060342
[87] Wu, Y. B., Zheng, Y. F., 2004. Genesis of Zircon and Its Constraints on Interpretation of U-Pb Age. Chinese Science Bulletin, 49(15):1554-1569. https://doi.org/10.1007/bf03184122
[88] Wu, Y. B., Zheng, Y. F., 2013. Tectonic Evolution of a Composite Collision Orogen:An Overview on the Qinling-Tongbai-Hong'an-Dabie-Sulu Orogenic Belt in Central China. Gondwana Research, 23(4):1402-1428. https://doi.org/10.1016/j.gr.2012.09.007
[89] Xia, B., Brown, M., Wang, L., et al., 2018. Phase Equilibrium Modeling of MT-UHP Eclogite:A Case Study of Coesite Eclogite at Yangkou Bay, Sulu Belt, Eastern China. Journal of Petrology, 59(7):1253-1280. https://doi.org/10.1093/petrology/egy060
[90] Xiong, F. H., Meng, Y. K., Yang, J. S., et al., 2020. Geochronology and Petrogenesis of the Mafic Dykes from the Purang Ophiolite:Implications for Evolution of the Western Yarlung-Tsangpo Suture Zone, Southwestern Tibet. Geoscience Frontiers, 11(1):277-292. https://doi.org/10.1016/j.gsf.2019.05.006
[91] Xu, S. T., Su, W., Liu, Y. C., et al., 1992. Diamond from the Dabie Shan Metamorphic Rocks and Its Implication for Tectonic Setting. Science, 256(5053):80-82. https://doi.org/10.1126/science.256.5053.80
[92] Yang, J. H., Wu, F. Y., Chung, S. L., et al., 2005. Petrogenesis of Early Cretaceous Intrusions in the Sulu Ultrahigh-Pressure Orogenic Belt, East China and Their Relationship to Lithospheric Thinning. Chemical Geology, 222(3/4):200-231. https://doi.org/10.1016/j.chemgeo.2005.07.006
[93] Ye, K., Cong, B. L., Ye, D. N., 2000. The Possible Subduction of Continental Material to Depths Greater than 200 km. Nature, 407(6805):734-736. https://doi.org/10.1038/35037566
[94] Yoshida, D., Hirajima, T., Ishiwatari, A., 2004. Pressure-Temperature Path Recorded in the Yangkou Garnet Peridotite, in Su-Lu Ultrahigh-Pressure Metamorphic Belt, Eastern China. Journal of Petrology, 45(6):1125-1145. https://doi.org/10.1093/petrology/egh008
[95] Zhang, J., Zhao, Z. F., Zheng, Y. F., et al., 2012. Zircon Hf-O Isotope and Whole-Rock Geochemical Constraints on Origin of Postcollisional Mafic to Felsic Dykes in the Sulu Orogen. Lithos, 136-139:225-245. https://doi.org/10.1016/j.lithos.2011.06.006
[96] Zhang, R. Y., Liou, J. G., 1997. Partial Transformation of Gabbro to Coesite-Bearing Eclogite from Yangkou, the Sulu Terrane, Eastern China. Journal of Metamorphic Geology, 15(2):183-202. https://doi.org/10.1111/j.1525-1314.1997.00012.x
[97] Zhang, R. Y., Liou, J. G., Ernst, W. G., 2009. The Dabie-Sulu Continental Collision Zone:A Comprehensive Review. Gondwana Research, 16(1):1-26. https://doi.org/10.1016/j.gr.2009.03.008
[98] Zhao, D. P., Ohtani, E., 2009. Deep Slab Subduction and Dehydration and Their Geodynamic Consequences:Evidence from Seismology and Mineral Physics. Gondwana Research, 16(3/4):401-413. https://doi.org/10.1016/j.gr.2009.01.005
[99] Zhao, Z. F., Zheng, Y. F., Wei, C. S., et al., 2005. Zircon U-Pb Age, Element and C-O Isotope Geochemistry of Post-Collisional Mafic-Ultramafic Rocks from the Dabie Orogen in East-Central China. Lithos, 83(1/2):1-28. https://doi.org/10.1016/j.lithos.2004.12.014
[100] Zhao, Z. F., Zheng, Y. F., Zhang, J., et al., 2012. Syn-Exhumation Magmatism during Continental Collision:Evidence from Alkaline Intrusives of Triassic Age in the Sulu Orogen. Chemical Geology, 328:70-88. https://doi.org/10.1016/j.chemgeo.2011.11.002
[101] Zhao, Z. F., Dai, L. Q., Zheng, Y. F., 2013. Postcollisional Mafic Igneous Rocks Record Crust-Mantle Interaction during Continental Deep Subduction. Scientific Reports, 3(1):3413. https://doi.org/10.1038/srep03413
[102] Zheng, Y. F., 2012. Metamorphic Chemical Geodynamics in Continental Subduction Zones. Chemical Geology, 328:5-48. https://doi.org/10.1016/j.chemgeo.2012.02.005
[103] Zheng, Y. F., Chen, Y. X., Dai, L. Q., et al., 2015. Developing Plate Tectonics Theory from Oceanic Subduction Zones to Collisional Orogens. Science China Earth Sciences, 58(7):1045-1069. https://doi.org/10.1007/s11430-015-5097-3
[104] Zheng, Y. F., Xu, Z., Zhao, Z. F., et al., 2018. Mesozoic Mafic Magmatism in North China:Implications for Thinning and Destruction of Cratonic Lithosphere. Science China Earth Sciences, 61(4):353-385. https://doi.org/10.1007/s11430-017-9160-3