[1] Bernet, M., 2013. Detrital Zircon Fission-Track Thermochronology of the Present-Day Isère River Drainage System in the Western Alps: No Evidence for Increasing Erosion Rates at 5 Ma. Geosciences, 3(3): 528-542. https://doi.org/10.3390/geosciences3030528
[2] Bernet, M., Garver, J. I., 2005. Fission-Track Analysis of Detrital Zircon, Low-Temperature Thermochronology. Techniques, Interpretations, and Applications, 58: 205-237. https://doi.org/10.2138/rmg.2005.58.8
[3] Bernet, M., van der Beek, P., Pik, R., et al., 2006. Miocene to Recent Exhumation of the Central Himalaya Determined from Combined Detrital Zircon Fission-Track and U/Pb Analysis of Siwalik Sediments, Western Nepal. Basin Research, 18(4): 393-412. https://doi.org/10.1111/j.1365-2117.2006.00303.x
[4] Bernet, M., Zattin, M., Garver, J. I., et al., 2001. Steady-State Exhumation of the European Alps. Geology, 29(1): 3-38. https://doi.org/10.1130/0091-7613(2001)029 < 0035:sseote > 2.0.co; 2 doi: 10.1130/0091-7613(2001)029<0035:sseote>2.0.co;2
[5] Brandon, M. T., 1992. Decomposition of Fission-Track Grain-Age Distributions. American Journal of Science, 292(8): 535-564. https://doi.org/10.2475/ajs.292.8.535
[6] Brandon, M. T., 1996. Probability Density Plot for Fission-Track Grain-Age Samples. Radiation Measurements, 26(5): 663-676. https://doi.org/10.1016/s1350-4487(97)82880-6
[7] Carrapa, B., Orme, D. A., DeCelles, P. G., et al., 2014. Miocene Burial and Exhumation of the India-Asia Collision Zone in Southern Tibet: Response to Slab Dynamics and Erosion. Geology, 42(5): 443-446. https://doi.org/10.1130/g35350.1
[8] Carter, A., Moss, S. J., 1999. Combined Detrital-Zircon Fission-Track and U-Pb Dating: A New Approach to Understanding Hinterland Evolution. Geology, 27(3): 235-238. https://doi.org/10.1130/0091-7613(1999)027 < 0235:cdzfta > 2.3.co; 2 doi: 10.1130/0091-7613(1999)027<0235:cdzfta>2.3.co;2
[9] Chen, J. S., Huang, B. C., Sun, L. S., 2010. New Constraints to the Onset of the India-Asia Collision: Paleomagnetic Reconnaissance on the Linzizong Group in the Lhasa Block, China. Tectonophysics, 489(1/2/3/4): 189-209. https://doi.org/10.1016/j.tecto.2010.04.024
[10] Chevalier, M. L., Ryerson, F. J., Tapponnier, P., et al., 2005. Slip-Rate Measurements on the Karakorum Fault May Imply Secular Variations in Fault Motion. Science, 307: 411-414. https://doi.org/10.1126/science.1105466
[11] Chirouze, F., Bernet, M., Huyghe, P., et al., 2012. Detrital Thermochronology and Sediment Petrology of the Middle Siwaliks along the Muksar Khola Section in Eastern Nepal. Journal of Asian Earth Sciences, 44: 94-106. https://doi.org/10.1016/j.jseaes.2011.01.009
[12] Chung, S. L., Chu, M. F., Ji, J. Q., et al., 2009. The Nature and Timing of Crustal Thickening in Southern Tibet: Geochemical and Zircon Hf Isotopic Constraints from Postcollisional Adakites. Tectonophysics, 477(1/2): 36-48. https://doi.org/10.1016/j.tecto.2009.08.008
[13] Chung, S. L., Chu, M. F., Zhang, Y. Q., et al., 2005. Tibetan Tectonic Evolution Inferred from Spatial and Temporal Variations in Post-Collisional Magmatism. Earth-Science Reviews, 68(3/4): 173-196. https://doi.org/10.1016/j.earscirev.2004.05.001
[14] Copeland, P., Harrison, T. M., Pan, Y., et al., 1995. Thermal Evolution of the Gangdese Batholith, Southern Tibet: A History of Episodic Unroofing. Tectonics, 14(2): 223-236. https://doi.org/10.1029/94tc01676
[15] Dai, J. G., Wang, C. S., Hourigan, J., et al., 2013. Exhumation History of the Gangdese Batholith, Southern Tibetan Plateau: Evidence from Apatite and Zircon (U-Th)/He Thermochronology. The Journal of Geology, 121(2): 155-172. https://doi.org/10.1086/669250
[16] DeCelles, P. G., Kapp, P., Gehrels, G. E., et al., 2014. Paleocene-Eocene Foreland Basin Evolution in the Himalaya of Southern Tibet and Nepal: Implications for the Age of Initial India-Asia Collision. Tectonics, 33(5): 824-849. https://doi.org/10.1002/2014tc003522
[17] DeCelles, P. G., Kapp, P., Quade, J., et al., 2011. Oligocene-Miocene Kailas Basin, Southwestern Tibet: Record of Postcollisional Upper-Plate Extension in the Indus-Yarlung Suture Zone. Geological Society of America Bulletin, 123(7/8): 1337-1362. https://doi.org/10.1130/b30258.1
[18] DeCelles, P. G., Quade, J., Kapp, P., et al., 2007. High and Dry in Central Tibet during the Late Oligocene. Earth and Planetary Science Letters, 253(3/4): 389-401. https://doi.org/10.1016/j.epsl.2006.11.001
[19] Ding, L., Xu, Q., Yue, Y. H., et al., 2014. The Andean-Type Gangdese Mountains: Paleoelevation Record from the Paleocene-Eocene Linzhou Basin. Earth and Planetary Science Letters, 392: 250-264. https://doi.org/10.1016/j.epsl.2014.01.045
[20] Ehlers, T. A., 2005. Computational Tools for Low-Temperature Thermochronometer Interpretation. Reviews in Mineralogy and Geochemistry, 58(1): 589-622. https://doi.org/10.2138/rmg.2005.58.22
[21] England, P., Molnar, P., 1990. Surface Uplift, Uplift of Rocks, and Exhumation of Rocks. Geology, 18(12): 1173-1177. https://doi.org/10.1130/0091-7613(1990)018 < 1173:suuora > 2.3.co; 2 doi: 10.1130/0091-7613(1990)018<1173:suuora>2.3.co;2
[22] Galbraith, R. F., Laslett, G. M., 1993. Statistical Models for Mixed Fission Track Ages. Nuclear Tracks and Radiation Measurements, 21(4): 459-470. https://doi.org/10.1016/1359-0189(93)90185-c
[23] Gao, S. B., Zheng, Y. Y., Jiang, J. S., et al., 2019. Geochemistry and Geochronology of the Gebunongba Iron Polymetallic Deposit in the Gangdese Belt, Tibet. Journal of Earth Science, 30(2): 296-308. https://doi.org/10.1007/s12583-018-0984-0
[24] Ge, Y. K., Dai, J. G., Wang, C. S., et al., 2017. Cenozoic Thermo-Tectonic Evolution of the Gangdese Batholith Constrained by Low-Temperature Thermochronology. Gondwana Research, 41: 451-462. https://doi.org/10.1016/j.gr.2016.05.006
[25] Gourbet, L., Mahéo, G., Leloup, P. H., et al., 2017. Western Tibet Relief Evolution since the Oligo-Miocene. Gondwana Research, 41: 425-437. https://doi.org/10.1016/j.gr.2014.12.003
[26] Haider, V. L., Dunkl, I., Eynatten, H. V., et al., 2013. Cretaceous to Cenozoic Evolution of the Northern Lhasa Terrane and the Early Paleogene Development of Peneplains at Nam Co, Tibetan Plateau. Journal of Asian Earth Sciences, 70-71: 79-98. https://doi.org/10.1016/j.jseaes.2013.03.005
[27] Harrison, T. M., Copeland, P., Kidd, W. S. F., et al., 1995. Activation of the Nyainqentanghla Shear Zone: Implications for Uplift of the Southern Tibetan Plateau. Tectonics, 14(3): 658-676. https://doi.org/10.1029/95tc00608
[28] Harrison, T. M., Yin, A., Grove, M., et al., 2000. The Zedong Window: A Record of Superposed Tertiary Convergence in Southeastern Tibet. Journal of Geophysical Research: Solid Earth, 105(B8): 19211-19230. https://doi.org/10.1029/2000jb900078
[29] Heim, A., Gansser, A., 1939. Central Himalayan Geological Observations of the Swiss Expedition. Mem. Sos. Halv. Nat., 77: 245 http://library.isical.ac.in/cgi-bin/koha/opac-detail.pl?biblionumber=53302
[30] Hetzel, R., Dunkl, I., Haider, V., et al., 2011. Peneplain Formation in Southern Tibet Predates the India-Asia Collision and Plateau Uplift. Geology, 39: 983-986. https://doi.org/10.1130/G32069.1
[31] Hu, X. M., Garzanti, E., Wang, J. G., et al., 2016. The Timing of India-Asia Collision Onset--Facts, Theories, Controversies. Earth-Science Reviews, 160: 264-299. https://doi.org/10.1016/j.earscirev.2016.07.014
[32] Huang, H. X., Zhang, L. K., Liu, H., et al., 2019. Major Types, Mineralization and Potential Prospecting Areas in Western Section of the Gangdise Metallogenic Belt, Tibet. Earth Science, 44(6): 1876-1887 (in Chinese with English Abstract). https://doi.org/10.3799/dqkx.2018.364
[33] Hurford, A. J., Fitch, F. J., Clarke, A., 1984. Resolution of the Age Structure of the Detrital Zircon Populations of Two Lower Cretaceous Sandstones from the Weald of England by Fission Track Dating. Geological Magazine, 121(4): 269-277. https://doi.org/10.1017/s0016756800029162
[34] Kapp, P., DeCelles, P. G., Gehrels, G. E., et al., 2007. Geological Records of the Lhasa-Qiangtang and Indo-Asian Collisions in the Nima Area of Central Tibet. Geological Society of America Bulletin, 119(7/8): 917-933. https://doi.org/10.1130/b26033.1
[35] Kapp, P., Yin, A., Harrison, T. M., et al., 2005. Cretaceous-Tertiary Shortening, Basin Development, and Volcanism in Central Tibet. Geological Society of America Bulletin, 117(7): 865-878. https://doi.org/10.1130/b25595.1
[36] Lacassin, R., Valli, F., Arnaud, N., et al., 2004. Large-Scale Geometry, Offset and Kinematic Evolution of the Karakorum Fault, Tibet. Earth and Planetary Science Letters, 219(3/4): 255-269. https://doi.org/10.1016/s0012-821x(04)00006-8
[37] Laskowski, A. K., Kapp, P., Cai, F. L., et al., 2018. Gangdese Culmination Model: Oligocene-Miocene Duplexing along the India-Asia Suture Zone, Lazi Region, Southern Tibet. GSA Bulletin, 130(7/8): 1355-1376. https://doi.org/10.1130/b31834.1
[38] Leech, M., Singh, S., Jain, A., et al., 2005. The Onset of India-Asia Continental Collision: Early, Steep Subduction Required by the Timing of UHP Metamorphism in the Western Himalaya. Earth and Planetary Science Letters, 234(1/2): 83-97. https://doi.org/10.1016/j.epsl.2005.02.038
[39] Li, G. W., Kohn, B., Sandiford, M., et al., 2016. Synorogenic Morphotectonic Evolution of the Gangdese Batholith, South Tibet: Insights from Low-Temperature Thermochronology. Geochemistry, Geophysics, Geosystems, 17(1): 101-112. https://doi.org/10.1002/2015gc006047
[40] Li, G. W., Tian, Y. T., Kohn, B. P., et al., 2015. Cenozoic Low Temperature Cooling History of the Northern Tethyan Himalaya in Zedang, SE Tibet and Its Implications. Tectonophysics, 643: 80-93. https://doi.org/10.1016/j.tecto.2014.12.014
[41] Li, S., Ding, L., Xu, Q., et al., 2017. The Evolution of Yarlung Tsangpo River: Constraints from the Age and Provenance of the Gangdese Conglomerates, Southern Tibet. Gondwana Research, 41: 249-266. https://doi.org/10.1016/j.gr.2015.05.010
[42] Li, Z. L., Yang, J. S., Li, T. F., et al., 2019. Helium Isotopic Composition of the Songduo Eclogites in the Lhasa Terrane, Tibet: Information from the Deep Mantle. Journal of Earth Science, 30(3): 563-570. https://doi.org/10.1007/s12583-019-1226-9
[43] Mo, X. X., Dong, G. C., Zhao, Z. D., et al., 2009. Mantle Input to the Crust in Southern Gangdese, Tibet, during the Cenozoic: Zircon Hf Isotopic Evidence. Journal of Earth Science, 20(2): 241-249. https://doi.org/10.1007/s12583-009-0023-2
[44] Mo, X. X., Niu, Y. L., Dong, G. C., et al., 2008. Contribution of Syncollisional Felsic Magmatism to Continental Crust Growth: A Case Study of the Paleogene Linzizong Volcanic Succession in Southern Tibet. Chemical Geology, 250(1/2/3/4): 49-67. https://doi.org/10.1016/j.chemgeo.2008.02.003
[45] Murphy, M. A., Sanchez, V., Taylor, M. H., 2010. Syncollisional Extension along the India-Asia Suture Zone, South-Central Tibet: Implications for Crustal Deformation of Tibet. Earth and Planetary Science Letters, 290(3/4): 233-243. https://doi.org/10.1016/j.epsl.2009.11.046
[46] Murphy, M. A., Yin, A., 2003. Structural Evolution and Sequence of Thrusting in the Tethyan Fold-Thrust Belt and Indus-Yalu Suture Zone, Southwest Tibet. Geological Society of America Bulletin, 115(1): 21-34. https://doi.org/10.1130/0016-7606(2003)115 < 0021:seasot > 2.0.co; 2 doi: 10.1130/0016-7606(2003)115<0021:seasot>2.0.co;2
[47] Najman, Y., Appel, E., Boudagher-Fadel, M., et al., 2010. Timing of India-Asia Collision: Geological, Biostratigraphic, and Palaeomagnetic Constraints. Journal of Geophysical Research—Solid Earth, 115: B12416. https://doi.org/10.1029/2010jb007673
[48] Pullen, A., Kapp, P., DeCelles, P. G., et al., 2011. Cenozoic Anatexis and Exhumation of Tethyan Sequence Rocks in the Xiao Gurla Range, Southwest Tibet. Tectonophysics, 501(1/2/3/4): 28-40. https://doi.org/10.1016/j.tecto.2011.01.008
[49] Reiners, P. W., Brandon, M. T., 2006. Using Thermochronology to Understand Orogenic Erosion. Annual Review of Earth and Planetary Sciences, 34(1): 419-466. https://doi.org/10.1146/annurev.earth.34.031405.125202
[50] Rohrmann, A., Kapp, P., Carrapa, B., et al., 2012. Thermochronologic Evidence for Plateau Formation in Central Tibet by 45 Ma. Geology, 40(2): 187-190. https://doi.org/10.1130/g32530.1
[51] Rowley, D. B., Currie, B. S., 2006. Palaeo-Altimetry of the Late Eocene to Miocene Lunpola Basin, Central Tibet. Nature, 439(7077): 677-681. https://doi.org/10.1038/nature04506
[52] Shen, T. Y., Wang, G. C., Bernet, M., et al., 2019. Long-Term Exhumation History of the Gangdese Magmatic Arc: Implications for the Evolution of the Kailas Basin, Western Tibet. Geological Journal, 515(4): 1-12. https://doi.org/10.1002/gj.3539
[53] Shen, T. Y., Wang, G. C., Leloup, P. H., et al., 2016. Controls on Cenozoic Exhumation of the Tethyan Himalaya from Fission-Track Thermochronology and Detrital Zircon U-Pb Geochronology in the Gyirong Basin Area, Southern Tibet. Tectonics, 35(7-8): 1713-1734. https://doi.org/10.1002/2016tc004149
[54] Spicer, R. A., Harris, N. B. W., Widdowson, M., et al., 2003. Constant Elevation of Southern Tibet over the Past 15 Million Years. Nature, 421(6923): 622-624. https://doi.org/10.1038/nature01356
[55] Stewart, R. J., Brandon, M. T., 2004. Detrital-Zircon Fission-Track Ages for the "Hoh Formation": Implications for Late Cenozoic Evolution of the Cascadia Subduction Wedge. Geological Society of America Bulletin, 116(1): 60-75. https://doi.org/10.1130/b22101.1
[56] Styron, R., Taylor, M., Sundell, K., 2015. Accelerated Extension of Tibet Linked to the Northward Underthrusting of Indian Crust. Nature Geoscience, 8(2): 131-134. https://doi.org/10.1038/ngeo2336
[57] Tapponnier, P., 2001. Oblique Stepwise Rise and Growth of the Tibet Plateau. Science, 294(5547): 1671-1677. https://doi.org/10.1126/science.105978
[58] Tremblay, M. M., Fox, M., Schmidt, J. L., et al., 2015. Erosion in Southern Tibet Shut down at ∼10 Ma Due to Enhanced Rock Uplift within the Himalaya. Proceedings of the National Academy of Sciences, 112(39): 12030-12035. https://doi.org/10.1073/pnas.1515652112
[59] Valli, F., Arnaud, N., Leloup, P. H., et al., 2007. Twenty Million Years of Continuous Deformation along the Karakorum Fault, Western Tibet: A Thermochronological Analysis. Tectonics, 26(4): TC4004. https://doi.org/10.1029/2005tc001913
[60] Vermeesch, P., 2009. RadialPlotter: A Java Application for Fission Track, Luminescence and Other Radial Plots. Radiation Measurements, 44(4): 409-410. https://doi.org/10.1016/j.radmeas.2009.05.003
[61] Wang, A., Wang, G., Xie, D., et al., 2006. Fission Track Geochronology of Xiaonanchuan Pluton and the Morphotectonic Evolution of Eastern Kunlun since Late Miocene. Journal of China University of Geosciences, 17(4): 302-309. https://doi.org/10.1016/s1002-0705(07)60003-x
[62] Wang, C. S., Dai, J. G., Zhao, X. X., et al., 2014. Outward-Growth of the Tibetan Plateau during the Cenozoic: A Review. Tectonophysics, 621: 1-43. https://doi.org/10.1016/j.tecto.2014.01.036
[63] Wang, C. S., Zhao, X. X., Liu, Z. F., et al., 2008. Constraints on the Early Uplift History of the Tibetan Plateau. Proceedings of the National Academy of Sciences, 105(13): 4987-4992. https://doi.org/10.1073/pnas.0703595105
[64] Wang, E., Kamp, P. J. J., Xu, G. Q., et al., 2015. Flexural Bending of Southern Tibet in a Retro Foreland Setting. Scientific Reports, 5(1): 12076. https://doi.org/10.1038/srep12076
[65] Wang, J. G., Hu, X. M., Garzanti, E., et al., 2013. Upper Oligocene-Lower Miocene Gangrinboche Conglomerate in the Xigaze Area, Southern Tibet: Implications for Himalayan Uplift and Paleo-Yarlung-Zangbo Initiation. The Journal of Geology, 121(4): 425-444. https://doi.org/10.1086/670722
[66] Wei, Y., Zhang, K. X., Garzione, C. N., et al., 2016. Low Palaeoelevation of the Northern Lhasa Terrane during Late Eocene: Fossil Foraminifera and Stable Isotope Evidence from the Gerze Basin. Scientific Reports, 6(1): 27508. https://doi.org/10.1038/srep27508
[67] Willett, S. D., Brandon, M. T., 2013. Some Analytical Methods for Converting Thermochronometric Age to Erosion Rate. Geochemistry, Geophysics, Geosystems, 14(1): 209-222. https://doi.org/10.1029/2012gc004279
[68] Wu, Z. H., Hu, D. G., Ye, P. S., et al., 2004. Thrusting of the North Lhasa Block in the Tibetan Plateau. Acta Geologica Sinica--English Edition, 78(1): 246-259. https://doi.org/10.1111/j.1755-6724.2004.tb00697.x
[69] Xu, Q., Ding, L., Hetzel, R., et al., 2015. Low Elevation of the Northern Lhasa Terrane in the Eocene: Implications for Relief Development in South Tibet. Terra Nova, 27(6): 458-466. https://doi.org/10.1111/ter.12180
[70] Yin, A., Harrison, T. M., 2000. Geologic Evolution of the Himalayan-Tibetan Orogen. Annual Review of Earth and Planetary Sciences, 28(1): 211-280. https://doi.org/10.1146/annurev.earth.28.1.211
[71] Yin, A., Harrison, T. M., Murphy, M. A., et al., 1999. Tertiary Deformation History of Southeastern and Southwestern Tibet during the Indo-Asian Collision. Geological Society of America Bulletin, 111(11): 1644-1664. https://doi.org/10.1130/0016-7606(1999)111 < 1644:tdhosa > 2.3.co; 2 doi: 10.1130/0016-7606(1999)111<1644:tdhosa>2.3.co;2
[72] Yin, A., Harrison, T. M., Ryerson, F. J., et al., 1994. Tertiary Structural Evolution of the Gangdese Thrust System, Southeastern Tibet. Journal of Geophysical Research: Solid Earth, 99(B9): 18175-18201. https://doi.org/10.1029/94jb00504
[73] Zhao, H., Yang, J. S., Liu, F., et al., 2019. Post-Collisional, Potassic Volcanism in the Saga Area, Western Tibet: Implications for the Nature of the Mantle Source and Geodynamic Setting. Journal of Earth Science, 30(3): 571-584. https://doi.org/10.1007/s12583-019-1228-7
[74] Zhang, L. Y., Huang, F., Xu, J. F., et al., 2019. Petrogenesis and Geochemistry of Meso-Cenozoic Granitic Rocks and Implication of Crustal Structure Changes in Shannan Area, Southern Tibet. Earth Science, 4(6): 1822-1833 (in Chinese with English Abstract). https://doi.org/10.3799/dqkx.2018.385