[1] Badarch, G., Dickson Cunningham, W., Windley, B. F., 2002. A New Terrane Subdivision for Mongolia: Implications for the Phanerozoic Crustal Growth of Central Asia. Journal of Asian Earth Sciences, 21(1): 87-110. https://doi.org/10.1016/s1367-9120(02)00017-2
[2] Bédard, J. H., 2006. A Catalytic Delamination-Driven Model for Coupled Genesis of Archaean Crust and Sub-Continental Lithospheric Mantle. Geochimica et Cosmochimica Acta, 70(5): 1188-1214. https://doi.org/10.1016/j.gca.2005.11.008
[3] Bennett, V. C., Nutman, A. P., McCulloch, M. T., 1993. Nd Isotopic Evidence for Transient, Highly Depleted Mantle Reservoirs in the Early History of the Earth. Earth and Planetary Science Letters, 119(3): 299-317. https://doi.org/10.1016/0012-821x(93)90140-5
[4] Bhatia, M. R., Crook, K. A. W., 1986. Trace Element Characteristics of Graywackes and Tectonic Setting Discrimination of Sedimentary Basins. Contributions to Mineralogy and Petrology, 92(2): 181-193. https://doi.org/10.1007/bf00375292
[5] Bizimis, M., Sen, G., Salters, V. J. M., 2004. Hf-Nd Isotope Decoupling in the Oceanic Lithosphere: Constraints from Spinel Peridotites from Oahu, Hawaii. Earth and Planetary Science Letters, 217(1/2): 43-58. https://doi.org/10.1016/s0012-821x(03)00598-3
[6] Bowring, S. A., King, J. E., Housh, T. B., et al., 1989. Neodymium and Lead Isotope Evidence for Enriched Early Archaean Crust in North America. Nature, 340(6230): 222-225. https://doi.org/10.1038/340222a0
[7] Broussolle, A., Aguilar, C., Sun, M., et al., 2018. Polycyclic Paleozoic Evolution of Accretionary Orogenic Wedge in the Southern Chinese Altai: Evidence from Structural Relationships and U-Pb Geochronology. Lithos, 314-315: 400-424. https://doi.org/10.1016/j.lithos.2018.06.005
[8] Broussolle, A., Sun, M., Schulmann, K., et al., 2019. Are the Chinese Altai "Terranes" the Result of Juxtaposition of Different Crustal Levels during Late Devonian and Permian Orogenesis?. Gondwana Research, 66: 183-206. https://doi.org/10.1016/j.gr.2018.11.003
[9] Cai, K. D., Sun, M., Yuan, C., et al., 2010. Geochronological and Geochemical Study of Mafic Dykes from the Northwest Chinese Altai: Implications for Petrogenesis and Tectonic Evolution. Gondwana Research, 18(4): 638-652. https://doi.org/10.1016/j.gr.2010.02.010
[10] Cai, K. D., Sun, M., Yuan, C., et al., 2011a. Geochronology, Petrogenesis and Tectonic Significance of Peraluminous Granites from the Chinese Altai, NW China. Lithos, 127(1/2): 261-281. https://doi.org/10.1016/j.lithos.2011.09.001
[11] Cai, K. D., Sun, M., Yuan, C., et al., 2011b. Prolonged Magmatism, Juvenile Nature and Tectonic Evolution of the Chinese Altai, NW China: Evidence from Zircon U-Pb and Hf Isotopic Study of Paleozoic Granitoids. Journal of Asian Earth Sciences, 42(5): 949-968. https://doi.org/10.1016/j.jseaes.2010.11.020
[12] Castro, A., Gerya, T., Garcia-Casco, A., et al., 2010. Melting Relations of MORB-Sediment Melanges in Underplated Mantle Wedge Plumes; Implications for the Origin of Cordilleran-Type Batholiths. Journal of Petrology, 51(6): 1267-1295. https://doi.org/10.1093/petrology/egq019
[13] Chase, C. G., Patchett, P. J., 1988. Stored Mafic/Ultramafic Crust and Early Archean Mantle Depletion. Earth and Planetary Science Letters, 91(1/2): 66-72. https://doi.org/10.1016/0012-821x(88)90151-3
[14] Chen, B., Jahn, B. M., 2002. Geochemical and Isotopic Studies of the Sedimentary and Granitic Rocks of the Altai Orogen of Northwest China and Their Tectonic Implications. Geological Magazine, 139(1): 1-13. https://doi.org/10.1017/s0016756801006100
[15] Conrad, W. K., Nicholls, I. A., Wall, V. J., 1988. Water-Saturated and -Undersaturated Melting of Metaluminous and Peraluminous Crustal Compositions at 10 Kb: Evidence for the Origin of Silicic Magmas in the Taupo Volcanic Zone, New Zealand, and other Occurrences. Journal of Petrology, 29(4): 765-803. https://doi.org/10.1093/petrology/29.4.765
[16] Debon, F., le Fort, P., 1983. A Chemical-Mineralogical Classification of Common Plutonic Rocks and Associations. Transactions of the Royal Society of Edinburgh: Earth Sciences, 73(3): 135-149. https://doi.org/10.1017/s0263593300010117
[17] DePaolo, D. J., Manton, W. I., Grew, E. S., et al., 1982. Sm-Nd, Rb-Sr and U-Th-Pb Systematics of Granulite Facies Rocks from Fyfe Hills, Enderby Land, Antarctica. Nature, 298(5875): 614-618. https://doi.org/10.1038/298614a0
[18] Dudas, M. J., Schmitt, R. A., Harward, M. E., 1971. Trace Element Partitioning between Volcanic Plagioclase and Dacitic Pyroclastic Matrix. Earth and Planetary Science Letters, 11(1-5): 440-446. https://doi.org/10.1016/0012-821x(71)90206-8
[19] Farina, F., Stevens, G., Gerdes, A., et al., 2014. Small-Scale Hf Isotopic Variability in the Peninsula Pluton (South Africa): The Processes that Control Inheritance of Source 176Hf/177Hf Diversity in S-Type Granites. Contributions to Mineralogy and Petrology, 168(4): 1065. https://doi.org/10.1007/s00410-014-1065-8
[20] Galer, S. J. G., Goldstein, S. L., 1991. Early Mantle Differentiation and Its Thermal Consequences. Geochimica et Cosmochimica Acta, 55(1): 227-239. https://doi.org/10.1016/0016-7037(91)90413-y
[21] Gerdes, A., Montero, P., Bea, F., et al., 2002. Peraluminous Granites Frequently with Mantle-Like Isotope Compositions: The Continental-Type Murzinka and Dzhabyk Batholiths of the Eastern Urals. International Journal of Earth Sciences, 91(1): 3-19. https://doi.org/10.1007/s005310100195
[22] Harris, N. B. W., Inger, S., 1992. Trace Element Modelling of Pelite-Derived Granites. Contributions to Mineralogy and Petrology, 110(1): 46-56. https://doi.org/10.1007/bf00310881
[23] Hermann, J., Rubatto, D., 2009. Accessory Phase Control on the Trace Element Signature of Sediment Melts in Subduction Zones. Chemical Geology, 265(3/4): 512-526. https://doi.org/10.1016/j.chemgeo.2009.05.018
[24] Hu, A. Q., Jahn, B. M., Zhang, G. X., et al., 2000. Crustal Evolution and Phanerozoic Crustal Growth in Northern Xinjiang: Nd Isotopic Evidence. Part Ⅰ. Isotopic Characterization of Basement Rocks. Tectonophysics, 328(1/2): 15-51. https://doi.org/10.1016/s0040-1951(00)00176-1
[25] Huang, Y. Q., Jiang, Y. D., Collett, S., et al., 2018. Nd Isotope Characteristics of the Chinese Altai Accretionary Wedge: Implications of Syn-Tectonic Granitoids Petrogenesis, 2018 Annual Meeting of Chinese Geoscience Union, Beijing. 341
[26] Ionov, D. A., Blichert-Toft, J., Weis, D., 2005. Hf Isotope Compositions and HREE Variations in Off-Craton Garnet and Spinel Peridotite Xenoliths from Central Asia. Geochimica et Cosmochimica Acta, 69(9): 2399-2418. https://doi.org/10.1016/j.gca.2004.11.008
[27] Irving, A. J., Frey, F. A., 1978. Distribution of Trace Elements between Garnet Megacrysts and Host Volcanic Liquids of Kimberlitic to Rhyolitic Composition. Geochimica et Cosmochimica Acta, 42(6): 771-787. https://doi.org/10.1016/0016-7037(78)90092-3
[28] Jahn, B. M., Wu, F. Y., Chen, B., 2000. Granitoids of the Central Asian Orogenic Belt and Continental Growth in the Phanerozoic, In: Barbarin, B., Stephens, W. E., Bonin, B., eds., Transactions of the Royal Society of Edinburgh-Earth Sciences. Geological Society of America, 181-193
[29] Janoušek, V., Jiang, Y. D., Buriánek, D., et al., 2018. Cambrian-Ordovician Magmatism of the Ikh-Mongol Arc System Exemplified by the Khantaishir Magmatic Complex (Lake Zone, South-Central Mongolia). Gondwana Research, 54: 122-149. https://doi.org/10.1016/j.gr.2017.10.003
[30] Jiang, Y. D., Schulmann, K., Kröner, A., et al., 2017. Neoproterozoic-Early Paleozoic Peri-Pacific Accretionary Evolution of the Mongolian Collage System: Insights from Geochemical and U-Pb Zircon Data from the Ordovician Sedimentary Wedge in the Mongolian Altai. Tectonics, 36(11): 2305-2331. https://doi.org/10.1002/2017tc004533
[31] Jiang, Y. D., Schulmann, K., Sun, M., et al., 2016. Anatexis of Accretionary Wedge, Pacific-Type Magmatism, and Formation of Vertically Stratified Continental Crust in the Altai Orogenic Belt. Tectonics, 35(12): 3095-3118. https://doi.org/10.1002/2016tc004271
[32] Jiang, Y. D., Schulmann, K., Sun, M., et al., 2019. Structural and Geochronological Constraints on Devonian Suprasubduction Tectonic Switching and Permian Collisional Dynamics in the Chinese Altai, Central Asia. Tectonics, 38(1): 253-280. https://doi.org/10.1029/2018tc005231
[33] Jiang, Y. D., Štípská, P., Sun, M., et al., 2015. Juxtaposition of Barrovian and Migmatite Domains in the Chinese Altai: A Result of Crustal Thickening Followed by Doming of Partially Molten Lower Crust. Journal of Metamorphic Geology, 33(1): 45-70. https://doi.org/10.1111/jmg.12110
[34] Jiang, Y. D., Sun, M., Zhao, G. C., et al., 2011. Precambrian Detrital Zircons in the Early Paleozoic Chinese Altai: Their Provenance and Implications for the Crustal Growth of Central Asia. Precambrian Research, 189(1/2): 140-154. https://doi.org/10.1016/j.precamres.2011.05.008
[35] Jiang, Y. D., Sun, M., Zhao, G., et al., 2010. The 390 Ma High-T Metamorphic Event in the Chinese Altai: A Consequence of Ridge-Subduction?. American Journal of Science, 310(10): 1421-1452. https://doi.org/10.2475/10.2010.08
[36] Kong, X. Y., Zhang, C., Liu, D. D., et al., 2018. Disequilibrium Partial Melting of Metasediments in Subduction Zones: Evidence from O-Nd-Hf Isotopes and Trace Elements in S-Type Granites of the Chinese Altai. Lithosphere, 11(1): 149-168. https://doi.org/10.1130/l1039.1
[37] Li, P. F., Sun, M., Rosenbaum, G., et al., 2015. Structural Evolution of the Irtysh Shear Zone (Northwestern China) and Implications for the Amalgamation of Arc Systems in the Central Asian Orogenic Belt. Journal of Structural Geology, 80: 142-156. https://doi.org/10.1016/j.jsg.2015.08.008
[38] Li, X. H., Liu, D. Y., Sun, M., et al., 2004. Precise Sm-Nd and U-Pb Isotopic Dating of the Supergiant Shizhuyuan Polymetallic Deposit and Its Host Granite, SE China. Geological Magazine, 141(2): 225-231. https://doi.org/10.1017/s0016756803008823
[39] Li, Z. L., Yang, X. Q., Li, Y. Q., et al., 2014. Late Paleozoic Tectono- Metamorphic Evolution of the Altai Segment of the Central Asian Orogenic Belt: Constraints from Metamorphic P-T Pseudosection and Zircon U-Pb Dating of Ultra-High-Temperature Granulite. Lithos, 204: 83-96. https://doi.org/10.1016/j.lithos.2014.05.022
[40] Liu, W., Liu, X. J., Xiao, W. J., 2012. Massive Granitoid Production without Massive Continental-Crust Growth in the Chinese Altay: Insight into the Source Rock of Granitoids Using Integrated Zircon U-Pb Age, Hf-Nd-Sr Isotopes and Geochemistry. American Journal of Science, 312(6): 629-684. https://doi.org/10.2475/06.2012.02
[41] Long, X. P., Sun, M., Yuan, C., et al., 2007. Detrital Zircon Age and Hf Isotopic Studies for Metasedimentary Rocks from the Chinese Altai: Implications for the Early Paleozoic Tectonic Evolution of the Central Asian Orogenic Belt. Tectonics, 26(5): TC5015. https://doi.org/10.1029/2007tc002128
[42] Long, X. P., Sun, M., Yuan, C., et al., 2008. Early Paleozoic Sedimentary Record of the Chinese Altai: Implications for Its Tectonic Evolution. Sedimentary Geology, 208(3/4): 88-100. https://doi.org/10.1016/j.sedgeo.2008.05.002
[43] Long, X. P., Yuan, C., Sun, M., et al., 2010. Detrital Zircon Ages and Hf Isotopes of the Early Paleozoic Flysch Sequence in the Chinese Altai, NW China: New Constrains on Depositional Age, Provenance and Tectonic Evolution. Tectonophysics, 480(1-4): 213-231. https://doi.org/10.1016/j.tecto.2009.10.013
[44] Long, X. P., Yuan, C., Sun, M., et al., 2012. Geochemistry and Nd Isotopic Composition of the Early Paleozoic Flysch Sequence in the Chinese Altai, Central Asia: Evidence for a Northward-Derived Mafic Source and Insight into Nd Model Ages in Accretionary Orogen. Gondwana Research, 22(2): 554-566. https://doi.org/10.1016/j.gr.2011.04.009
[45] McCulloch, M. T., Bennett, V. C., 1994. Progressive Growth of the Earth's Continental Crust and Depleted Mantle: Geochemical Constraints. Geochimica et Cosmochimica Acta, 58(21): 4717-4738. https://doi.org/10.1016/0016-7037(94)90203-8
[46] McLennan, S. M., Taylor, S. R., McGregor, V. R., 1984. Geochemistry of Archean Metasedimentary Rocks from West Greenland. Geochimica et Cosmochimica Acta, 48(1): 1-13. https://doi.org/10.1016/0016-7037(84)90345-4
[47] Montel, J. M., Vielzeuf, D., 1997. Partial Melting of Metagreywackes, Part Ⅱ. Compositions of Minerals and Melts. Contributions to Mineralogy and Petrology, 128(2/3): 176-196. https://doi.org/10.1007/s004100050302
[48] Patchett, P. J., 1983. Importance of the Lu-Hf Isotopic System in Studies of Planetary Chronology and Chemical Evolution. Geochimica et Cosmochimica Acta, 47(1): 81-91. https://doi.org/10.1016/0016-7037(83)90092-3
[49] Patchett, P. J., Tatsumoto, M., 1980. Lu-Hf Total-Rock Isochron for the Eucrite Meteorites. Nature, 288(5791): 571-574. https://doi.org/10.1038/288571a0
[50] Patchett, P. J., White, W. M., Feldmann, H., et al., 1984. Hafnium/Rare Earth Element Fractionation in the Sedimentary System and Crustal Recycling into the Earth's Mantle. Earth and Planetary Science Letters, 69(2): 365-378. https://doi.org/10.1016/0012-821x(84)90195-x
[51] Patiño Douce, A. E., Beard, J. S., 1995. Dehydration-Melting of Biotite Gneiss and Quartz Amphibolite from 3 to 15 Kbar. Journal of Petrology, 36(3): 707-738. https://doi.org/10.1093/petrology/36.3.707
[52] Pearce, J. A., Kempton, P. D., Nowell, G. M., et al., 1999. Hf-Nd Element and Isotope Perspective on the Nature and Provenance of Mantle and Subduction Components in Western Pacific Arc-Basin Systems. Journal of Petrology, 40(11): 1579-1611. https://doi.org/10.1093/petroj/40.11.1579
[53] Peccerillo, A., Taylor, S. R., 1976. Geochemistry of Eocene Calc-Alkaline Volcanic Rocks from the Kastamonu Area, Northern Turkey. Contributions to Mineralogy and Petrology, 58(1): 63-81. https://doi.org/10.1007/bf00384745
[54] Pettijohn, F. J., Potter, P. E., Siever, R., 1987. Sand and Sandstone. Springer, New York
[55] Safonova, I. Y., Utsunomiya, A., Kojima, S., et al., 2009. Pacific Superplume-Related Oceanic Basalts Hosted by Accretionary Complexes of Central Asia, Russian Far East and Japan. Gondwana Research, 16(3/4): 587-608. https://doi.org/10.1016/j.gr.2009.02.008
[56] Salters, V. J. M., Longhi, J., 1999. Trace Element Partitioning during the Initial Stages of Melting beneath Mid-Ocean Ridges. Earth and Planetary Science Letters, 166(1/2): 15-30. https://doi.org/10.1016/s0012-821x(98)00271-4
[57] Scherer, E. E., Cameron, K. L., Johnson, C. M., et al., 1997. Lu-Hf Geochronology Applied to Dating Cenozoic Events Affecting Lower Crustal Xenoliths from Kilbourne Hole, New Mexico. Chemical Geology, 142(1/2): 63-78. https://doi.org/10.1016/s0009-2541(97)00076-4
[58] Schmidberger, S. S., Simonetti, A., Francis, D., et al., 2002. Probing Archean Lithosphere Using the Lu-Hf Isotope Systematics of Peridotite Xenoliths from Somerset Island Kimberlites, Canada. Earth and Planetary Science Letters, 197(3/4): 245-259. https://doi.org/10.1016/s0012-821x(02)00491-0
[59] Schmitz, M. D., Vervoort, J. D., Bowring, S. A., et al., 2004. Decoupling of the Lu-Hf and Sm-Nd Isotope Systems during the Evolution of Granulitic Lower Crust beneath Southern Africa. Geology, 32(5): 405-408. https://doi.org/10.1130/g20241.1
[60] Şengör, A. M. C., Natal'in, B. A., 1996. Turkic-Type Orogeny and Its Role in the Making of the Continental Crust. Annual Review of Earth and Planetary Sciences, 24(1): 263-337. https://doi.org/10.1146/annurev.earth.24.1.263
[61] Şengör, A. M. C., Natal'in, B. A., Burtman, V. S., 1993. Evolution of the Altaid Tectonic Collage and Palaeozoic Crustal Growth in Eurasia. Nature, 364(6435): 299-307. https://doi.org/10.1038/364299a0
[62] Shi, W. X., Zhang, J. D., Liu, W. G., et al., 2015. Hronology and Petrology Characteristics of Early Devonian Gnessic Granites from East Altai Orogenic Belt. Xinjiang Geology, 33(4): 456-462. https://doi.org/10.3969/j.issn.1000-8845.2015.04.008 (in Chinese with English Abstract)
[63] Song, P., Tong, Y., Wang, T., et al., 2017. Zircon U-Pb Ages and Genetic Evolution of Devonian Granitic Rocks in the Southeastern Chinese Altai and Its Tectonic Implications: New Evidence for Magmatic Evolution of Calc-Alkaline-High-K Calc-Alkaline-Alkaline Rocks. Acta Geologica Sinica, 91(1): 55-79 (in Chinese with English Abstract) http://www.en.cnki.com.cn/Article_en/CJFDTOTAL-DZXE201701004.htm
[64] Sun, M., Long, X. P., Cai, K. D., et al., 2009. Early Paleozoic Ridge Subduction in the Chinese Altai: Insight from the Abrupt Change in Zircon Hf Isotopic Compositions. Science in China Series D: Earth Sciences, 52(9): 1345-1358. https://doi.org/10.1007/s11430-009-0110-3
[65] Sun, M., Yuan, C., Xiao, W. J., et al., 2008. Zircon U-Pb and Hf Isotopic Study of Gneissic Rocks from the Chinese Altai: Progressive Accretionary History in the Early to Middle Palaeozoic. Chemical Geology, 247(3/4): 352-383. https://doi.org/10.1016/j.chemgeo.2007.10.026
[66] Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19
[67] Sylvester, P. J., 1998. Post-Collisional Strongly Peraluminous Granites. Lithos, 45(1-4): 29-44. https://doi.org/10.1016/s0024-4937(98)00024-3
[68] Tang, G. J., Wang, Q., Wyman, D. A., et al., 2012. Recycling Oceanic Crust for Continental Crustal Growth: Sr-Nd-Hf Isotope Evidence from Granitoids in the Western Junggar Region, NW China. Lithos, 128-131: 73-83. https://doi.org/10.1016/j.lithos.2011.11.003
[69] Tong, Y., Wang, T., Hong, D. W., et al., 2007. Ages and Origin of the Early Devonian Granites from the North Part of Chinese Altai Mountains and Its Tectonic Implications. Acta Petrologica Sinica, 23(8): 1933-1944 (in Chinese with English Abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200708014
[70] Vervoort, J. D., Blichert-Toft, J., 1999. Evolution of the Depleted Mantle: Hf Isotope Evidence from Juvenile Rocks through Time. Geochimica et Cosmochimica Acta, 63(3/4): 533-556. https://doi.org/10.1016/s0016-7037(98)00274-9
[71] Vervoort, J. D., Patchett, P. J., 1996. Behavior of Hafnium and Neodymium Isotopes in the Crust: Constraints from Precambrian Crustally Derived Granites. Geochimica et Cosmochimica Acta, 60(19): 3717-3733. https://doi.org/10.1016/0016-7037(96)00201-3
[72] Vervoort, J. D., Patchett, P. J., Albarède, F., et al., 2000. Hf-Nd Isotopic Evolution of the Lower Crust. Earth and Planetary Science Letters, 181(1/2): 115-129. https://doi.org/10.1016/s0012-821x(00)00170-9
[73] Vervoort, J. D., Patchett, P. J., Blichert-Toft, J., et al., 1999. Relationships between Lu-Hf and Sm-Nd Isotopic Systems in the Global Sedimentary System. Earth and Planetary Science Letters, 168(1/2): 79-99. https://doi.org/10.1016/s0012-821x(99)00047-3
[74] Villaseca, C., Barbero, L., Herreros, V., 1998. A Re-Examination of the Typology of Peraluminous Granite Types in Intracontinental Orogenic Belts. Transactions of the Royal Society of Edinburgh: Earth Sciences, 89(2): 113-119. https://doi.org/10.1017/s0263593300007045
[75] Wang, T., Hong, D. W., Jahn, B. M., et al., 2006. Timing, Petrogenesis, and Setting of Paleozoic Synorogenic Intrusions from the Altai Mountains, Northwest China: Implications for the Tectonic Evolution of an Accretionary Orogen. The Journal of Geology, 114(6): 735-751. https://doi.org/10.1086/507617
[76] Wang, T., Jahn, B. M., Kovach, V. P., et al., 2009. Nd-Sr Isotopic Mapping of the Chinese Altai and Implications for Continental Growth in the Central Asian Orogenic Belt. Lithos, 110(1/2/3/4): 359-372. https://doi.org/10.1016/j.lithos.2009.02.001
[77] Wei, C. J., Clarke, G., Tian, W., et al., 2007. Transition of Metamorphic Series from the Kyanite- to Andalusite-Types in the Altai Orogen, Xinjiang, China: Evidence from Petrography and Calculated KMnFMASH and KFMASH Phase Relations. Lithos, 96(3/4): 353-374. https://doi.org/10.1016/j.lithos.2006.11.004
[78] Wilhem, C., Windley, B. F., Stampfli, G. M., 2012. The Altaids of Central Asia: A Tectonic and Evolutionary Innovative Review. Earth-Science Reviews, 113(3/4): 303-341. https://doi.org/10.1016/j.earscirev.2012.04.001
[79] Windley, B. F., Alexeiev, D., Xiao, W. J., et al., 2007. Tectonic Models for Accretion of the Central Asian Orogenic Belt. Journal of the Geological Society, 164(1): 31-47. https://doi.org/10.1144/0016-76492006-022
[80] Windley, B. F., Kröner, A., Guo, J. H., et al., 2002. Neoproterozoic to Paleozoic Geology of the Altai Orogen, NW China: New Zircon Age Data and Tectonic Evolution. The Journal of Geology, 110(6): 719-737. https://doi.org/10.1086/342866
[81] Wittig, N., Baker, J. A., Downes, H., 2007. U-Th-Pb and Lu-Hf Isotopic Constraints on the Evolution of Sub-Continental Lithospheric Mantle, French Massif Central. Geochimica et Cosmochimica Acta, 71(5): 1290-1311. https://doi.org/10.1016/j.gca.2006.11.025
[82] Xiao, W. J., Huang, B. C., Han, C. M., et al., 2010. A Review of the Western Part of the Altaids: A Key to Understanding the Architecture of Accretionary Orogens. Gondwana Research, 18(2/3): 253-273. https://doi.org/10.1016/j.gr.2010.01.007
[83] Xiao, W. J., Windley, B. F., Yuan, C., et al., 2009. Paleozoic Multiple Subduction-Accretion Processes of the Southern Altaids. American Journal of Science, 309(3): 221-270. https://doi.org/10.2475/03.2009.02
[84] Xiao, W., Windley, B. F., Badarch, G., et al., 2004. Palaeozoic Accretionary and Convergent Tectonics of the Southern Altaids: Implications for the Growth of Central Asia. Journal of the Geological Society, 161(3): 339-342. https://doi.org/10.1144/0016-764903-165
[85] Yu, S. Y., Xu, Y. G., Huang, X. L., et al., 2009. Hf-Nd Isotopic Decoupling in Continental Mantle Lithosphere beneath Northeast China: Effects of Pervasive Mantle Metasomatism. Journal of Asian Earth Sciences, 35(6): 554-570. https://doi.org/10.1016/j.jseaes.2009.04.005
[86] Yu, Y., Sun, M., Huang, X. L., et al., 2017a. Sr-Nd-Hf-Pb Isotopic Evidence for Modification of the Devonian Lithospheric Mantle beneath the Chinese Altai. Lithos, 284-285: 207-221. https://doi.org/10.1016/j.lithos.2017.04.004
[87] Yu, Y., Sun, M., Long, X. P., et al., 2017b. Whole-Rock Nd-Hf Isotopic Study of Ⅰ-Type and Peraluminous Granitic Rocks from the Chinese Altai: Constraints on the Nature of the Lower Crust and Tectonic Setting. Gondwana Research, 47: 131-141. https://doi.org/10.1016/j.gr.2016.07.003
[88] Yuan, C., Sun, M., Xiao, W. J., et al., 2007. Accretionary Orogenesis of the Chinese Altai: Insights from Paleozoic Granitoids. Chemical Geology, 242(1/2): 22-39. https://doi.org/10.1016/j.chemgeo.2007.02.013
[89] Zhang, C. L., Santosh, M., Zou, H. B., et al., 2012. Revisiting the "Irtish Tectonic Belt": Implications for the Paleozoic Tectonic Evolution of the Altai Orogen. Journal of Asian Earth Sciences, 52: 117-133. https://doi.org/10.1016/j.jseaes.2012.02.016
[90] Zhang, C., Liu, D. D., Zeng, J. H., et al., 2019. Nd-O-Hf Isotopic Decoupling in S-Type Granites: Implications for Ridge Subduction. Lithos, 332-333: 261-273. https://doi.org/10.1016/j.lithos.2019.03.009
[91] Zhang, J. J., Wang, T., Tong, Y., et al., 2017. Tracking Deep Ancient Crustal Components by Xenocrystic/Inherited Zircons of Palaeozoic Felsic Igneous Rocks from the Altai-East Junggar Terrane and Adjacent Regions, Western Central Asian Orogenic Belt and Its Tectonic Significance. International Geology Review, 59(16): 2021-2040. https://doi.org/10.1080/00206814.2017.1308841
[92] Zhang, X., Zhang, H., Ma, Z. L., et al., 2016. A New Model for the Granite-Pegmatite Genetic Relationships in the Kaluan-Azubai-Qiongkuer Pegmatite-Related Ore Fields, the Chinese Altay. Journal of Asian Earth Sciences, 124: 139-155. https://doi.org/10.1016/j.jseaes.2016.04.020
[93] Zheng, J. H., Chai, F. M., Yang, F. Q., 2016. The 401-409 Ma Xiaodonggou Granitic Intrusion: Implications for Understanding the Devonian Tectonics of the Northwest China Altai Orogen. International Geology Review, 58(5): 540-555. https://doi.org/10.1080/00206814.2015.1095131
[94] Zou, T. R., Chao, H. Z., Wu, B. Q., 1989. Orogenic and Anorogenic Granitoids in the Altay Mountains of Xinjiang and Their Discrimination Criteria. Acta Geologica Sinica-English Edition, 2(1): 45-64. https://doi.org/10.1111/j.1755-6724.1989.mp2001005.x