Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 20 Issue 2
Apr 2009
Turn off MathJax
Article Contents
Yufeng Ren, Yingwei Fei, Jingsui Yang, Wenji Bai. SiO2 Solubility in Rutile at High Temperature and High Pressure. Journal of Earth Science, 2009, 20(2): 274-283. doi: 10.1007/s12583-009-0025-0
Citation: Yufeng Ren, Yingwei Fei, Jingsui Yang, Wenji Bai. SiO2 Solubility in Rutile at High Temperature and High Pressure. Journal of Earth Science, 2009, 20(2): 274-283. doi: 10.1007/s12583-009-0025-0

SiO2 Solubility in Rutile at High Temperature and High Pressure

doi: 10.1007/s12583-009-0025-0
Funds:

the National Basic Research Program of China 2003CB716503

China Geological Survey 1212010610107

the National Natural Science Foundation of International Cooperation and Communication 40610098

the Laboratory Foundation of the Chinese Academy of Geological Sciences JB0703

More Information
  • Silicon-bearing rutile has been found in chromitite from the Luobusa (罗布莎) ophiolite, Tibet. However, the extent of SiO2 solubility in rutile and the nature of its origin are still unclear. At high pressure, SiO2 takes a rutile structure with Si in 6-fold coordination. Thus, high pressures may enhance its solubility in rutile because of possible isovalent exchange in the octahedral site. In this study, we report new experimental results on SiO2 solubility in rutile up to 23 GPa and 2 000 ℃. Starting materials were mixtures of powdered pure rutile and pure quartz, with compositions of (Ti0.5Si0.5)O2, (Ti0.93Si0.07)O2, and (Ti0.75Si0.25)O2. The mixtures were loaded into either platinum capsules (for a 10/5 assembly) or rhenium capsules (for an 8/3 assembly). The experiments were carried out using multi-anvil high-pressure apparatus with a rhenium resistance heater. Sample temperatures were measured with a W5%Re-W26%Re thermocouple and were controlled within ±1 ℃ of the set temperature. TiO2-rich and SiO2-rich phases were produced in all the quenched samples. Microprobe analyses of the phases show that the solubility of SiO2 in rutile increases with increasing pressure, from 1.5 wt.% SiO2 at 10 GPa to 3.8 wt.% SiO2 at 23 GPa at a temperature of 1 800 ℃. The solubility also increases with increasing temperature from 0.5 wt.% SiO2 at 1 500° to 4.5 wt.% SiO2 at 2 000° at a pressure of 18 GPa. On the other hand, the solubility of TiO2 in coesite or stishovite is very limited, with an average of 0.6 wt.% TiO2 over the experimental P-T ranges. Temperature has a much larger effect on the solubility of SiO2 in rutile than pressure. At high pressure, the melting point of SiO2 is definitely higher than that of TiO2 and the eutectic point moves towards SiO2 in the TiO2-SiO2 system. Lower oxygen fugacity decreases the solubility of SiO2 in rutile, whereas water has little effect on the solubility. Our experimental data are extremely useful for determining the depth of origin of the SiO2-bearing rutile found in nature.

     

  • loading
  • Akaogi, M., Ito, E., Navrotsky, A., 1989. Olivine-Modified Spinel-Spinel Transitions in the System Mg2SiO4-Fe2SiO4: Calorimetric Measurements, Thermochemical Calculation, and Geophysical Application. J. Geophys. Res. , 94(B11): 15671–15685 doi: 10.1029/JB094iB11p15671
    Angle, R. J., 1997. Transformation of Five Folded-Coordinated Silicon to Octahedral Silicon in Calcium Silicate, CaSi2O5. American Mineralogist, 82: 836–839 http://www.minsocam.org/MSA/AmMin/TOC/abstracts/1997_abstracts/ja97_abstracts/Angel_p836_97.pdf
    Bai, W. J., Robinson, P. T., Fang, Q. S., et al., 2000. The PGE and Base-Metal Alloys in the Podiform Chromitites of the Luobusa Ophiolite, Southern Tibet. The Canadian Mineralogist, 38: 585–598 doi: 10.2113/gscanmin.38.3.585
    Bai, W. J., Tao, S. F., Shi, R. D., et al., 2001. A New Intergrowth Consisting of FeO and SiO2 Phases from Lower Mantle. Continental Dynamics, 6(2): 1–7 http://www.cnki.com.cn/Article/CJFDTotal-DLDX200102000.htm
    Bertka, C. M., Fei, Y. W., 1997. Mineralogy of the Martian Interior up to Core-Mantle Boundary Pressures. J. Geophys. Res. , 102(B3): 5251–5264 doi: 10.1029/96JB03270
    Circone, S., Agee, C. B., 1995. Effect of Pressure on Cation Partitioning between Immiscible Liquids in the System TiO2-SiO2. Geochimica et Cosmochimica Acta, 59(5): 895–907 http://www.sciencedirect.com/science?_ob=ShoppingCartURL&_method=add&_eid=1-s2.0-0016703795000089&originContentFamily=serial&_origin=article&_ts=1474207907&md5=111b539e3f31de66a8d92287b18aefb0
    DeVries, R. C., Roy, R., Osborn, E. F., 1954. The System TiO2-SiO2. Transactions of the British Ceramic Society, 53(9): 525–540
    Dobrzhinetskaya, L., Bizgukiv, K. N., Green, H. W., 1999. The Solubility of TiO2 in Olivine: Implications for the Mantle Wedge Environment. Chemical Geology, 160(4): 357–370 doi: 10.1016/S0009-2541(99)00107-2
    Dubrovinskaia, N. A., Dubrovinsky, L. S., Ahuja, R., et al., 2001. Experimental and Theoretical Identification of a New High-Pressure TiO2 Polymorph. Phys. Rev. Lett. , 87(27): 275501–275504 doi: 10.1103/PhysRevLett.87.275501
    Endo, S., Sato, H., Tang, J., et al., 1992. High Pressure Research: Application to Earth and Planetary Sciences. In: Synon, Y., Manghnani, M. H., eds., Terra. Scientific Publishing Company, Tokyo. 457–461
    Fang, Q. S., Bai, W. J., 1981. The Discovery of Alpine-Type Diamond-Bearing Ultrabasic Intrusions in Tibet. Geological Review, 27: 455–457 (in Chinese with English Abstract) http://ci.nii.ac.jp/naid/20000877836
    Fei, Y. W., Bertka, C. M., 1999. Phase Transitions in the Earth's Mantle and Mantle Mineralogy. Geochemical Society Special Publication, 6: 189–207 http://ocw.alfaisal.edu/NR/rdonlyres/Earth--Atmospheric--and-Planetary-Sciences/12-581Spring-2005/EEB798CE-D207-4041-A406-B185949B52A2/0/p_fei_1999_rekhi.pdf
    Goresy, A. E., Chen, M., Gillet, P., et al., 2001a. A Natural Shock-Induced Dense Polymorph of Rutile with α-PbO2 Structure in the Suevite from the Ries Crater in Germany. Earth and Planetary Science Letters, 192(4): 485–495 doi: 10.1016/S0012-821X(01)00480-0
    Goresy, A. E., Chen, M., Dubrovinsky, L., et al., 2001b. An Ultradense Polymorph of Rutile with Seven-Coordinated Titanium from the Ries Crater. Science, 293(5534): 1467–1470 doi: 10.1126/science.1062342
    Hermann, J., O'Neill, H. S. C., Berry, A. J., 2004. Titanium Solubility in Olivine in the System TiO2-MgO-SiO2: No Evidence for an Ultra-deep Origin of Ti-Bearing Olivine. Contributions to Mineralogy and Petrology, 148(6): 746–760 http://www.onacademic.com/detail/journal_1000034463993710_d0c3.html
    Hwang, S. L., Shen, P. Y., Chu, H., et al., 2000. Nanometer-Size α-PbO2-Type TiO2 in Garnet: A Thermobarometer for Ultrahigh-Pressure Metamorphism. Science, 288(5464): 321–324 doi: 10.1126/science.288.5464.321
    Ito, E., Takahashi, E., 1989. Post-Spinel Transformations in the System Mg2SiO4-Fe2SiO4 and Some Geophysical Implications. J. Geophys. Res. , 94(8): 10637–10646 doi: 10.1029/JB094iB08p10637
    Jackson, J. C., Horton, J. W., Chou, I. M., et al., 2006. A Shock-Induced Polymorph of Anatase and Rutile from the Chesapeake Bay Impact Structure, Virginia, USA. American Mineralogist, 91: 604–608 doi: 10.2138/am.2006.2061
    Kaufman, L., 1988. Physica B+C. Amsterdam, 150(1–2): 99–114 http://www.speciation.net/Appl/Literature/Source/sources.html?id=2856&aid=1273&FILTER=T:_TS:_TA:_P:_E:_I:_K:_S:IlBoeXNpY3MsIFRlY2huaWNhbCI=_ST:YWxs_O:QUk=_C:_PA:8&BACK=/Appl/Literature/Source/RelatedLinks.html
    Knoche, R., Angel, R. J., Seifert, F., et al., 1998. Complete Substitution of Si for Ti in Titanite Ca(Ti1−xSix)VISiIVO5. American Mineralogists, 83: 1168–1175 doi: 10.2138/am-1998-11-1204
    Nazzareni, S., Molin, G., Skogby, H., et al., 2004. Crystal Chemistry of Ti3+-Ti4+-Bearing Synthetic Diopsides. Eur. J. Mineral. , 16: 443–449 doi: 10.1127/0935-1221/2004/0016-0443
    Ogasawara, Y., Fukasawa, K., Maruyama, S., 2002. Coesite Exsolution from Supersilicic Titanite in UHP Marble from the Kokchetav Massif, Northern Kazakhstan. American Mineralogist, 87: 454–461 doi: 10.2138/am-2002-0409
    Stebbins, J. F., 1992. Nuclear Magnetic Resonance Spectroscopy of Geological Materials. MRS Bulletin, 17(5: )45–52
    Withers, A. C., Essene, E. J., Zhang, Y., 2003. Rutile/TiO2 II Phase Equilibria. Contributions to Mineralogy and Petrology, 145: 199–204 doi: 10.1007/s00410-003-0445-2
    Yang, F. Y., Kang, Z. Q., Liu, S. C., 1981. A New Octahedral Pseudomorph of Lizardite and Its Origin. Acta Mineralogica Sinica, 1: 52–54 (in Chinese with English Abstract)
    Yang, J. S., Bai, W. J., Fang, Q. S., et al., 2003. Silicon-Rutile: An Ultrahigh Pressure (UHP) Mineral from an Ophiolite. Progress in Natural Science, 13(7): 528–531 http://search.ebscohost.com/login.aspx?direct=true&db=aph&AN=10462431&site=ehost-live
    Yang, J. S., Dobrzhinetskaya, L., Bai, W. J., et al., 2007. Diamond- and Coesite-Bearing Chromitites from the Luobusa Ophiolite, Tibet. Geology, 35(10): 875–878 doi: 10.1130/G23766A.1
    Zhang, R. Y., Zhai, S. M., Fei, Y. W., et al., 2003. Titanium Solubility in Coexisting Garnet and Clinopyroxene at very High Pressure: The Significance of Exsolved Rutile in Garnet. Earth and Planetary Science Letters, 216(4): 519–601 http://www.sciencedirect.com/science?_ob=ShoppingCartURL&_method=add&_eid=1-s2.0-S0012821X0300551X&originContentFamily=serial&_origin=article&_ts=1473462487&md5=dd256490ac538dc48ce2467a50de1ebc
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(2)

    Article Metrics

    Article views(340) PDF downloads(37) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return