Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 20 Issue 6
Dec 2009
Turn off MathJax
Article Contents
Xumei Mao, Yanxin Wang, Oleg V. Chudaev, Xun Wang. Geochemical Evidence of Gas Sources of CO2-Rich Cold Springs from Wudalianchi, Northeast China. Journal of Earth Science, 2009, 20(6): 959-970. doi: 10.1007/s12583-009-0081-5
Citation: Xumei Mao, Yanxin Wang, Oleg V. Chudaev, Xun Wang. Geochemical Evidence of Gas Sources of CO2-Rich Cold Springs from Wudalianchi, Northeast China. Journal of Earth Science, 2009, 20(6): 959-970. doi: 10.1007/s12583-009-0081-5

Geochemical Evidence of Gas Sources of CO2-Rich Cold Springs from Wudalianchi, Northeast China

doi: 10.1007/s12583-009-0081-5
Funds:

the National Natural Science Foundation of China 40425001

the National Natural Science Foundation of China 40602031

the National Natural Science Foundation of China 40830748

Russian Fund for Basic Research 

More Information
  • Corresponding author: Wang Yanxin, yx.wang@cug.edu.cn
  • Received Date: 10 Dec 2008
  • Accepted Date: 20 Apr 2009
  • CO2-rich cold springs occur near the active volcanoes at Wudalianchi (五大连池), Northeast China. The springs are rich in CO2, with HCO3 as the predominant anion and have elevated contents of total dissolved solid (TDS) (> 1 000 mg/L), Fe2+ (> 20 mg/L), Sr (> 1 mg/L), and dissolved Si (> 20 mg/L). The compositions of escaped and dissolved gases of the springs are similar. The δ13C values of escaped gases and dissolved gases in mineral springs at Wudalianchi vary from −8.77‰ to −4.53‰ and −8.24‰ to −5.26‰, while δ18O values vary from −10.68‰ to −7.65‰ and −10.30‰ to −8.84‰, respectively, indicating the same upper mantle origin of CO2 of escaped gases and dissolved gases in the springs. Carbon and oxygen isotope fractionations and water-CO2 exchange were weak in the process of groundwater flow. The 4He content exceeds 5 000×10−6 cm3·STP/mL in escaped gases of the mineral springs, and the 3He/4He ratios of the escaped and dissolved gases vary from 2.64Ra to 3.87Ra and 1.18Ra to 3.30Ra, respectively. It can be postulated that the CO2 of mineral springs deriving from the magma chamber of the upper mantle moves upward to the surface, to increase the content of 4He in the mineral springs and decrease the ratio of 3He/4He. The helium origin of escaped gases in springs can be calculated with the MORB-crust mixing model, but that in the north spring can be better explained with the MORB-crust-air mixing model due to the effect of mixing with surface water. However, dissolved helium in springs, except the north spring, is better explained with the MORB-crust-ASW mixing model.

     

  • loading
  • Aka, F. T., Kusakabe, M., Nagao, K., et al., 2001. Noble Gas Isotopic Compositions and Water/Gas Chemistry of Soda Springs from the Islands of Bioko, Sao Tome and Annobon, along with Cameroon Volcanic Line, West Africa. Applied Geochemistry, 16(3): 323–338 doi: 10.1016/S0883-2927(00)00037-8
    Aires-Barros, L., Marques, J. M., Graça, R. C., et al., 1998. Hot and Cold CO2-Rich Mineral Waters in Chaves Geothermal Area (Northern Portugal). Geothermics, 27(1): 89–107 doi: 10.1016/S0375-6505(97)84483-5
    Allard, P., Jean-Baptiste, P., D'Alessandro, W., et al., 1997. Mantle-Derived Helium and Carbon in Groundwaters and Gases of Mount Etna, Italy. Earth and Planetary Science Letters, 148(3–4): 501–516
    Aquilina, L., Ladouche, B., Doerfliger, N., et al., 2002. Origin, Evolution and Residence Time of Saline Thermal Fluids (Balaruc Springs, Southern France): Implications for Fluid Transfer across the Continental Shelf. Chemical Geology, 192(1–2): 1–21
    Barbieri, M., Morotti, M., 2003. Hydrogeochemistry and Strontium Isotopes of Spring and Mineral Waters from Monte Vulture Volcano, Italy. Applied Geochemistry, 18(1): 117–125 doi: 10.1016/S0883-2927(02)00069-0
    Becker, J. A., Bickle, M. J., Galy, A., et al., 2008. Himalayan Metamorphic CO2 Fluxes: Quantitative Constraints from Hydrothermal Springs. Earth and Planetary Science Letters, 265(3–4): 616–629
    Cartwright, I., Weaver, T., Tweed, S., et al., 2002. Stable Isotope Geochemistry of Cold CO2-Bearing Mineral Spring Waters, Daylesford, Victoria, Australia: Sources of Gas and Water and Links with Waning Volcanism. Chemical Geology, 185(1–2): 71–91
    Cartwright, I., Weaver, T., Tweed, S., et al., 2000. O, H, C Isotope Geochemistry of Carbonated Mineral Springs in Central Victoria, Australia: Sources of Gas and Water-Rock Interaction during Dying Basaltic Volcanism. Journal of Geochemical Exploration, 69–70: 257–261
    Céron, J. C., Pulido Bosch, A., Sanz de Galdeano, C., 1998. Isotopic Identification of CO2 from a Deep Origin in Thermomineral Waters of Southeastern Spain. Chemical Geology, 149(3–4): 251–258
    Chen, H. Z., Ren, J. Z., Sun, W. B., et al., 1999. New Discovered Historical Records on Laoheishan and Huoshaoshan Volcanoes, Wudalianchi and Their Significance. Earthquake Research in China, 15(3): 290–294 (in Chinese with English Abstract)
    Cheng, S. G., Mao, X. M, Wang, F. L., et al., 2008. Tephra Discovered in High Resolution Peat Sediment and Its Indication to Climatic Event. Journal of China University of Geosciences, 19(2): 174–183 doi: 10.1016/S1002-0705(08)60036-9
    Chivas, A. R., Barnes, I. E., Lupton, J. E., et al., 1984. Isotopic Studies of South-East Australian CO2-Rich Discharges: Deep Sources and Shallow Sources. Geological Society of Australia Abstracts, 12: 94–95
    Chivas, A. R., Barnes, I. E., William, C., et al., 1987. Liquid Carbon Dioxide of Magmatic Origin and Its Role in Volcanic Eruptions. Nature, 326(6113): 587–589 doi: 10.1038/326587a0
    Choi, H. S., Koh, Y. K., Bae, D. S., et al., 2005. Estimation of Deep-Reservoir Temperature of CO2-Rich Springs in Kangwon District, South Korea. Journal of Volcanology and Geothermal Research, 141: 77–89 doi: 10.1016/j.jvolgeores.2004.10.001
    Cook, A. C., Hainsworth, L. J., Sorey, M. L., et al., 2001. Radiocarbon Studies of Plant Leaves and Tree Rings from Mammoth Mountain, CA: A Long-Term Record of Magmatic CO2 Release. Chemical Geology, 177(1–2): 117–131
    Craig, H., Lupton, J. E., Horibe, Y., 1978. A Mantle Helium Component in Circum-Pacific Volcanic Gases: Hakone, the Marianas, and Mt. Lassen, Terrestrial Rare Gases. Japan Sci. Soc. Press, Tokyo. 3–16
    Cruz, J. V., França, Z., 2006. Hydrogeochemistry of Thermal and Mineral Water Springs of the Azores Archipelago (Portugal). Journal of Volcanology and Geothermal Research, 151(4): 382–398 doi: 10.1016/j.jvolgeores.2005.09.001
    Deines, P., 1970. The Carbon and Oxygen Isotopic Composition of Carbonates from the Oka Carbonatite Complex, Quebec, Canada. Geochimica et Cosmochimica Acta, 34(11): 1199–1225 doi: 10.1016/0016-7037(70)90058-X
    Doğan, T., Sumino, H., Nagao, K., et al., 2006. Release of Mantle Helium from Forearc Region of the Southwest Japan Arc. Chemical Geology, 233(3–4): 235–248
    Du, J. G., Li, S. Q., Liu, L. Z., et al., 1999. Geochemistry of Gases from the Wudalianchi Volcanic District, Northeastern China. Geochimica, 28(2): 171–176 (in Chinese with English Abstract)
    Elkins, L. J., Fischer, T. P., Hilton, D. R., et al., 2006. Tracing Nitrogen in Volcanic and Geothermal Volatiles from the Nicaraguan Volcanic Front. Geochimica et Cosmochimica Acta, 70(20): 5215–5235 doi: 10.1016/j.gca.2006.07.024
    Fan, Q. C., Sui, J. L., Liu, R. X., 2001. Sr-Nd Isotopic Geochemistry and Magmatic Evolutions of Wudalianchi Volcano, Tianchi Volcano and Tengchong Volcano. Acta Petrologica et Mineralogica, 20(3): 233–238 (in Chinese with English Abstract)
    Giggenbach, W. F., 1992. Isotopic Shifts in Waters from Geothermal and Volcanic Systems along Convergent Plate Boundaries and Their Origin. Earth and Planetary Science Letters, 113(4): 495–510 doi: 10.1016/0012-821X(92)90127-H
    Giggenbach, W. F., Corrales-Soto, R., 1992. Isotopic and Chemical Composition of Water and Steam Discharges from Volcanic-Magmatic-Hydrothermal Systems of the Guanacaste Geothermal Province, Coast Rica. Applied Geochemistry, 7(4): 309–332 doi: 10.1016/0883-2927(92)90022-U
    Griesshaber, E., O'Nions, R. K., Oxburgh, E. R., 1992. Helium and Carbon Isotope Systematics in Crustal Fluids from the Eifel, the Rhine Graben and Black Forest, F.R.G. . Chemical Geology, 99(4): 213–235 doi: 10.1016/0009-2541(92)90178-8
    Harris, C., Stock, W. D., Lanham, J., 1997. Stable Isotope Constraints on the Origin of CO2 Gas Exhalations at Bongwan, Natal. South African Journal of Geology, 100: 261–266
    Inguaggiato, S., Pecoraino, G., D'Amore, F., 2000. Chemical and Isotopical Characterisation of Fluid Manifestations of Ischia Island (Italy). Journal of Volcanology and Geothermal Research, 99(1–4): 151–178
    Ishibashi, J., Sano, Y., Wakita, H., et al., 1995. Helium and Carbon Geochemistry of Hydrothermal Fluids from the Mid-Okinawa Trough Back Arc Basin, Southwest of Japan. Chemical Geology, 123(1–4): 1–15
    Kharitonova, N. A., Chelnokov, G. A., Karabtsov, A. A., et al., 2007. Geochemistry of Na-HCO3 Ground Water and Sedimentary Bedrocks from the Central Part of the Sikhote-Alin Mountain Region (Far East of Russia). Applied Geochemistry, 22(8): 1764–1776 doi: 10.1016/j.apgeochem.2007.03.033
    Lan, T. F., Yang, T. F., Lee, H. F., et al., 2007. Compositions and Flux of Soil Gas in Liu-Huang-Ku Hydrothermal Area, Northern Taiwan. Journal of Volcanology and Geothermal Research, 165(1–2): 32–45
    Liu, D. L., Yang, Q., Yang, X. Y., et al., 2003. Prediction of Abiogenetic CO2 Accumulation Zones in North Songliao Basin. Natural Gas Industry, 23(4): 13–15 (in Chinese with English Abstract)
    Lü, Z. W., 1996. Tectonic Environment and Eruption Mechanism of Wudalianchi Volcanic Cluster. Seismological Research of Northeast China, 12(1): 25–30 (in Chinese with English Abstract)
    Lü, Z. W., Sun, S. J., 1996. Wudalianchi Volcano and Cold Spring. Seismological and Geomagnetic Observation and Research, 17(6): 75–79 (in Chinese with English Abstract)
    Lupton, J. E., 1983. Terrestrial Inert Gases: Isotope Tracer Studies and Clues to Primordial Components in the Mantle. Ann. Rev. Earth Planet. Sci. , 11: 371–414 doi: 10.1146/annurev.ea.11.050183.002103
    Mamyrin, B. A., Tolstikhin, I. N., 1984. Helium Isotopes in Nature. Elsevier, Amsterdam. 273
    Marty, B., Jambon, A., 1987. C/3He in Volatile Fluxes from the Solid Earth: Implications for Carbon Geodynamics. Earth and Planetary Science Letters, 83: 16–26 doi: 10.1016/0012-821X(87)90047-1
    Poreda, R. J., Craig, H., 1989. Helium Isotope Ratios in Circum-Pacific Volcanic Arcs. Nature, 338(6215): 473–478 doi: 10.1038/338473a0
    Ren, J. Z., Chen, H. Z., Wu, X. J., 1999. New Historical Data of Wudalianchi Volcanic and Discussion on Eruption Process. Seismological Research of Northeast China, 15(1): 46–52
    Sakamoto, M., Sano, Y., Wakita, H., 1992. 3He/4He Ratio Distribution in and around the Hakone Volcano. Geochem. J. , 26(4): 189–195 doi: 10.2343/geochemj.26.189
    Sano, Y., Gamo, T., Notsu, K., et al., 1995. Secular Variations of Carbon and Helium Isotopes at Izu-Oshima Volcano, Japan. Journal of Volcanology and Geothermal Research, 64(1–2): 83–94
    Sano, Y., Gamo, T., Williams, S. N., 1997. Secular Variations of Helium and Carbon Isotopes at Galeras Volcano, Colombia. Journal of Volcanology and Geothermal Research, 77(1–4): 255–265
    Sano, Y., Marty, B., 1995. Origin of Carbon in Fumarolic Gas from Island Arc. Chem. Geol. , 119(1–4): 265–274
    Sano, Y., Wakita, H., 1985. Geographical Distribution of 3He/4He Ratios in Japan: Implications for Arc Tectonics and Incipient Magmatism. J. Geophys. Res. , 90(B10): 8729–8741 doi: 10.1029/JB090iB10p08729
    Schoell, M., 1983. Genetic Characterization of Natural Gases. American Association of Petroleum Geologists Bulletin, 67: 2225–2238
    Shaw, A. M., Hilton, D. R., Fischer, T. P., et al., 2003. Contrasting He-C Relationships in Nicaragua and Costa Rica: Insights into C Cycling through Subduction Zones. Earth and Planetary Science Letters, 214(3–4): 499–513
    Siebe, C., Goff, F., Armienta, M. A., et al., 2007. Geology and Hydrogeochemistry of the Jungapeo CO2-Rich Thermal Springs, State of Michoacán, Mexico. Journal of Volcanology and Geothermal Research, 163(1–4): 1–33
    Sun, R. B., Du, J. G., 1998. The Hydro-geochemical Background of the Wudalianchi Volcanic Area. Bulletin of Mineralogy, Petrology and Geochemistry, 17(3): 150–155 (in Chinese with English Abstract)
    Sun, R. B., Gao, Q. W., Pan, Y. L., et al., 2003. Relationship of Gas Th, Rn to Fracture Structure and Volcanic Activity in Wudalianchi Volcanic Area. Seismological Research of Northeast China, 19(4): 9–17 (in Chinese with English Abstract)
    Umeda, K., Ogawa, Y., Asamori, K., et al., 2006. Aqueous Fluids Derived from a Subducting Slab: Observed High 3He Emanation and Conductive Anomaly in a Non-volcanic Region, Kii Peninsula, Southwest Japan. Journal of Volcanology and Geothermal Research, 149(1–2): 47–61
    Weaver, T. R., Cartwright, I., Tweed, S. O., et al., 2006. Controls on Chemistry during Fracture-Hosted Flow of Cold CO2-Bearing Mineral Waters, Daylesford, Victoria, Australia: Implications for Resource Protection. Applied Geochemistry, 21(2): 289–304 doi: 10.1016/j.apgeochem.2005.09.011
    Weise, S. M., Moser, H., 1987. Groundwater Dating with Helium Isotopes. Proc. Int. IAEA Symp, Isotope Techniques in Water Resources Development. Int. At. Energy Agency, Vienna, Austria. 105–126
    Zhang, F. L., Yin, X. L., Wang, Z. P., et al., 2003. The Characteristics, Development and Protection Countermeasures of Mineral Spring Water from Wudalianchi. Territory & Natural Resources Study, 3: 61–62 (in Chinese with English Abstract)
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(3)

    Article Metrics

    Article views(365) PDF downloads(28) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return