Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 21 Issue 4
Aug 2010
Turn off MathJax
Article Contents
Qingjie Gong, Jun Deng, Qingfei Wang, Liqiang Yang, Min She. Experimental Determination of Calcite Dissolution Rates and Equilibrium Concentrations in Deionized Water Approaching Calcite Equilibrium. Journal of Earth Science, 2010, 21(4): 402-411. doi: 10.1007/s12583-010-0103-3
Citation: Qingjie Gong, Jun Deng, Qingfei Wang, Liqiang Yang, Min She. Experimental Determination of Calcite Dissolution Rates and Equilibrium Concentrations in Deionized Water Approaching Calcite Equilibrium. Journal of Earth Science, 2010, 21(4): 402-411. doi: 10.1007/s12583-010-0103-3

Experimental Determination of Calcite Dissolution Rates and Equilibrium Concentrations in Deionized Water Approaching Calcite Equilibrium

doi: 10.1007/s12583-010-0103-3
Funds:

the National Basic Research Program of China (973 Program) 2009CB421006

the State Key Laboratory of Geological Processes and Mineral Resources GPMR200843

More Information
  • Corresponding author: Qingjie Gong, qjiegong@cugb.edu.cn
  • Received Date: 12 Feb 2010
  • Accepted Date: 20 Apr 2010
  • Publish Date: 01 Aug 2010
  • The calcite dissolution rates at 50–250 ℃ and 20 MPa in deionized water with flow rate varying from 0.2 to 5 mL/min were experimentally measured in a continuous flow column pressure vessel reactor. Equilibrium concentration (ceq) of calcite dissolution in deionized water at 20 MPa was determined using dissolution data according to the iterative method presented by Jeschke and Dreybrodt. The equilibrium concentrations at 50, 100, 150, 200 and 250 ℃ are 1.84×10−4, 2.23×10−4, 2.25×10−4, 2.31×10−4 and 2.24×10−4 mol/L, respectively. The ceq increases first and then decreases with temperature varying from 50 to 250 ℃ at 20 MPa, and the same variation trend occurs at 10 MPa with lower values. The maximum value (or extremum) of ceq would increase with temperature at constant pressures. The dissolution reaction of calcite in this experiment is approaching the calcite equilibrium, and the reaction order doesn't keep a constant at different temperatures, which could imply that a change of the reaction mechanism was occurring. The Arrhenius equation shouldn't be used to calculate apparent activation energy using rate constant data at different temperatures when the reaction order or reaction mechanism changed.

     

  • loading
  • Alkattan, M., Oelkers, E. H., Dandurand, J. L., et al., 1998. An Experimental Study of Calcite and Limestone Dissolution Rates as a Function of pH from −1 to 3 and Temperature from 25 to 80 ℃. Chemical Geology, 151: 199–214 doi: 10.1016/S0009-2541(98)00080-1
    Berner, R. A., Morse, J. W., 1974. Dissolution Kinetics of Calcium Carbonate in Sea Water: IV. Theory of Calcite Dissolution. American Journal of Science, 274: 108–134
    Buhmann, D., Dreybrodt, W., 1985a. The Kinetics of Calcite Dissolution and Precipitation in Geologically Relevant Situations of Karst Areas: 1. Open System. Chemical Geology, 48(1–4): 189–211
    Buhmann, D., Dreybrodt, W., 1985b. The Kinetics of Calcite Dissolution and Precipitation in Geologically Relevant Situations of Karst Areas: 2. Closed System. Chemical Geology, 53(1–2): 109–124
    Cardell-Fernández, C., Vleugels, G., Torfs, K., et al., 2002. The Processes Dominating Ca Dissolution of Limestone When Exposed to Ambient Atmospheric Conditions as Determined by Comparing Dissolution Models. Environmental Geology, 43(1–2): 160–171
    Cubilias, P., Köhler, S., Prieto, M., et al., 2005. How do Mineral Coatings Affect Dissolution Rates? An Experimental Study of Coupled CaCO3 Dissolution-CdCO3 Precipitation. Geochimica et Cosmochimica Acta, 69: 5459–5476
    Eisenlohr, L., Meteva, K., Gabrovšek, F., et al., 1999. The Inhibiting Action of Intrinsic Impurities in Natural Calcium Carbonate Minerals to Their Dissolution Kinetics in Aqueous H2O-CO2 Solutions. Geochimica et Cosmochimica Acta, 63: 989–1002 doi: 10.1016/S0016-7037(98)00301-9
    Gledhill, D. K., Morse, J. W., 2006. Calcite Dissolution Kinetics in Na-Ca-Mg-Cl Brines. Geochimica et Cosmochimica Acta, 70: 5802–5813 doi: 10.1016/j.gca.2006.03.024
    Gong, Q. J., Deng, J., Wang, Q. F., et al., 2008. Calcite Dissolution in Deionized Water from 50 ℃ to 250 ℃ at 10 MPa: Rate Equation and Reaction Order. Acta Geologica Sinica, 82: 994–1001
    Jeschke, A. A., Dreybrodt, W., 2002a. Dissolution Rates of Minerals and Their Relation to Surface Morphology. Geochimica et Cosmochimica Acta, 66: 3055–3062 doi: 10.1016/S0016-7037(02)00893-1
    Jeschke, A. A., Dreybrodt, W., 2002b. Pitfalls in the Determination of Empirical Dissolution Rate Equations of Minerals from Experimental Data and a Way out: An Iterative Procedure to Find Valid Rate Equations, Applied to Ca-Carbonates and -Sulphates. Chemical Geology, 192: 183–194 doi: 10.1016/S0009-2541(02)00135-3
    Kaufmann, G., Dreybrodt, W., 2007. Calcite Dissolution Kinetics in the System CaCO3-H2O-CO2 at High Undersaturation. Geochimica et Cosmochimica Acta, 71(6): 1398–1410 doi: 10.1016/j.gca.2006.10.024
    Liu, Z. H., Yuan, D. X., Dreybrodt, W., 2005. Comparative Study of Dissolution Rate-Determining Mechanism of Limestone and Dolomite. Environmental Geology, 49(2): 274–279 doi: 10.1007/s00254-005-0086-z
    Morse, J. W., Arvidson, R. S., 2002. The Dissolution Kinetics of Major Sedimentary Carbonate Minerals. Earth-Science Reviews, 58(1–2): 51–84
    Morse, J. W., Berner, R. A., 1972. Dissolution Kinetics of Cal cium Carbonate in Seawater: II. A Kinetic Origin for Lysocline. American Journal of Science, 272: 840–851
    Plummer, L. N., Wigley, T. M. L., Parkhurst, D. L., 1978. The Kinetics of Calcite Dissolution in CO2-Water Systems at 5 ℃ to 60 ℃ and 0.0 to 1.0 atm CO2. American Journal of Science, 278(2): 179–216 doi: 10.2475/ajs.278.2.179
    Pokrovsky, O. S., Golubev, S. V., Schott, J., 2005. Dissolution Kinetics of Calcite, Dolomite and Magnesite at 25 ℃ and 0 to 50 atm pCO2. Chemical Geology, 217(3–4): 239–255
    Sjöberg, E. L., 1976. A Fundamental Equation for Calcite Dissolution Kinetics. Geochimica et Cosmochimica Acta, 40: 441–447 doi: 10.1016/0016-7037(76)90009-0
    Svensson, U., Dreybrodt, W., 1992. Dissolution Kinetics of Natural Calcite Minerals in CO2-Water Systems Approaching Calcite Equilibrium. Chemical Geology, 100(1–2): 129–145
    Yu, B. S., Dong, H. L., Ruan, Z., 2008. Mechanism for Calcite Dissolution and Its Contribution to Development of Reservoir Porosity and Permeability in the Kela 2 Gas Field, Tarim Basin, China. Science in China (Series D), 51(4): 567–578 doi: 10.1007/s11430-008-0027-2
    Zhang, H. J., Ding, L., Wang, X. L., et al., 2006. Carbonate Diagenesis Controlled by Glacioeustatic Sea-Level Changes: A Case Study from the Carboniferous-Permian Boundary Section at Xikou, China. Journal of China University of Geosciences, 17(2): 103–114 doi: 10.1016/S1002-0705(06)60014-9
    Zhu, X. M., Chen, H. Q., Zhong, D. K., et al., 2008. Mechanism of Secondary Pore Formation and Prediction of Favorable Reservoir of Paleogene in Jiyang Sag, Eastern China. Journal of China University of Geosciences, 19(6): 675–684
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(4)

    Article Metrics

    Article views(680) PDF downloads(29) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return