Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 21 Issue 5
Oct 2010
Turn off MathJax
Article Contents
Matthew L Whitaker, Wei Liu, Liping Wang, Baosheng Li. Acoustic Velocities and Elastic Properties of Pyrite (FeS2) to 9.6 GPa. Journal of Earth Science, 2010, 21(5): 792-800. doi: 10.1007/s12583-010-0115-z
Citation: Matthew L Whitaker, Wei Liu, Liping Wang, Baosheng Li. Acoustic Velocities and Elastic Properties of Pyrite (FeS2) to 9.6 GPa. Journal of Earth Science, 2010, 21(5): 792-800. doi: 10.1007/s12583-010-0115-z

Acoustic Velocities and Elastic Properties of Pyrite (FeS2) to 9.6 GPa

doi: 10.1007/s12583-010-0115-z
Funds:

the USA National Science Foundation EAR00135550

the USA National Science Foundation EAR0635860

the USA Department of Energy, Office of Science, Office of Basic Energy Sciences DE-AC02-98CH10886

the Consortium for Materials Properties Research in Earth Sciences under NSF Cooperative Agreement EAR01-35554

the Mineral Physics Institute, Stony Brook University MPI Publication No. 480

More Information
  • Corresponding author: Matthew L Whitaker, matt@mattwhitaker.net
  • Received Date: 04 May 2010
  • Accepted Date: 07 Jun 2010
  • Publish Date: 01 Oct 2010
  • Ultrasonic interferometry was utilized in conjunction with synchrotron-based X-ray diffraction and X-radiographic imaging to determine the compressional and shear wave velocities and unit-cell volumes of pyrite (FeS2) at room temperature and pressures up to 9.6 GPa. Fitting all of the experimental volume and velocity data to third-order finite-strain equations yielded the adiabatic zero-pressure bulk and shear moduli and their first pressure derivatives: KS0=138.9(7) GPa, G0=112.3(3) GPa, (∂KS0/∂P) T=KS0′=6.0(1), (∂G0/∂P) T=G0′=3.0(< 1), where the numbers in parentheses represent the 1σ uncertainty in the last significant digit. These results are in good agreement with several previous static compression studies on this material but differ quite strongly from the results obtained via first principles calculations. This study presents the first direct measurement of the bulk shear properties of this material.

     

  • loading
  • Ahrens, T. J., Jeanloz, R., 1987. Pyrite-Shock Compression, Isentropic Release, and Composition of the Earth's Core. Journal of Geophysical Research, 92(B10): 10363–10375 doi: 10.1029/JB092iB10p10363
    Badro, J., Fiquet, G., Guyot, F., et al., 2007. Effect of Light Elements on the Sound Velocities in Solid Iron: Implications for the Composition of Earth's Core. Earth and Planetary Science Letters, 254(1–2): 233–238 https://www.sciencedirect.com/science/article/abs/pii/S0012821X06008405
    Benbattouche, N., Saunders, G. A., Lambson, E. F., et al., 1989. The Dependences of the Elastic Stiffness Moduli and the Poisson Ratio of Natural Iron Pyrites FeS2 upon Pressure and Temperature. Journal of Physics D: Applied Physics, 22(5): 670–675 doi: 10.1088/0022-3727/22/5/015
    Blanchard, M., Alfredsson, M., Brodholt, J., et al., 2005. Electronic Structure Study of the High-Pressure Vibrational Spectrum of FeS2 Pyrite. Journal of Physical Chemistry B, 109(46): 22067–22073 doi: 10.1021/jp053540x
    Bridgman, P. W., 1949. Linear Compressions to 30 000 kg/cm2, Including Relatively Incompressible Substances. Proceedings of the American Academy of Arts and Sciences, 77(6): 189–234 doi: 10.2307/20023541
    Chattopadhyay, T., von Schnering, H. G., 1985. High Pressure X-Ray Diffraction Study on P-FeS2, M-FeS2 and MnS2 to 340 kbar: A Possible High Spin-Low Spin Transition in MnS2. Journal of Physics and Chemistry of Solids, 46(1): 113–116 doi: 10.1016/0022-3697(85)90204-5
    Chrystall, R. S. B., 1965. Thermal Expansion of Iron Pyrites. Transactions of the Faraday Society, 61(512P): 1811 https://pubs.rsc.org/en/content/articlelanding/1965/tf/tf9656101811#!
    Dreibus, G., Palme, H., 1996. Cosmochemical Constraints on the Sulfur Content in the Earth's Core. Geochimica et Cosmochimica Acta, 60(7): 1125–1130 doi: 10.1016/0016-7037(96)00028-2
    Drickamer, H. G., Lynch, R. W., Clendenen, R. L., et al., 1967. X-Ray Diffraction Studies of the Lattice Parameters of Solids under very High Pressure. Solid State Physics, 19: 135–228 https://www.sciencedirect.com/science/article/abs/pii/S0081194708605299
    Dziewonski, A. M., Anderson, D. L., 1981. Preliminary Reference Earth Model. Physics of the Earth and Planetary Interiors, 25(4): 297–356 doi: 10.1016/0031-9201(81)90046-7
    Fujii, T., Yoshida, A., Tanaka, K., et al., 1986. High Pressure Compressibilities of Pyrite and Cattierite. Mineralogical Journal, 13(4): 202–211 doi: 10.2465/minerj.13.202
    Hofmeister, A. M., Mao, H. K., 2003. Pressure Derivatives of Shear and Bulk Moduli from the Thermal Gruneisen Parameter and Volume-Pressure Data. Geochimica et Cos mochimica Acta, 67(6): 1207–1227 https://www.sciencedirect.com/science/article/abs/pii/S0016703702012899
    Jeanloz, R., 1990. The Nature of the Earth's Core. Annual Review of Earth and Planetary Sciences, 18: 357–386 doi: 10.1146/annurev.ea.18.050190.002041
    Jephcoat, A., Olson, P., 1987. Is the Inner Core of the Earth Pure Iron. Nature, 325(6102): 332–335 doi: 10.1038/325332a0
    Kleppe, A P. . K., Jephcoat, A. P., 2004. High-Pressure Raman Spectroscopic Studies of FeS2 Pyrite. Mineralogical Magazine, 68(3): 433–441 doi: 10.1180/0026461046830196
    Le Page, Y., Rodgers, J. R., 2005. Ab Initio Elasticity of FeS2 Pyrite from 0 to 135 GPa. Physics and Chemistry of Minerals, 32(8–9): 564–567 https://www.ingentaconnect.com/content/ssam/03421791/2005/00000032/00000008/art00005
    Li, B. S., Chen, K., Kung, J., et al., 2002. Sound Velocity Measurement Using Transfer Function Method. Journal of Physics—Condensed Matter, 14(44): 11337–11342 doi: 10.1088/0953-8984/14/44/478
    Li, B. S., Kung, J., Liebermann, R. C., 2004. Modern Techniques in Measuring Elasticity of Earth Materials at High Pressure and High Temperature Using Ultrasonic Interferometry in Conjunction with Synchrotron X-Radiation in Multi-anvil Apparatus. Physics of the Earth and Planetary Interiors, 143–144: 559–574 https://www.sciencedirect.com/science/article/abs/pii/S0031920104000883
    Li, J., Agee, C. B., 2001. Element Partitioning Constraints on the Light Element Composition of the Earth's Core. Geophysical Research Letters, 28(1): 81–84 doi: 10.1029/2000GL012114
    Li, J., Fei, Y., Mao, H. K., et al., 2001. Sulfur in the Earth's Inner Core. Earth and Planetary Science Letters, 193(3–4): 509–514 https://www.sciencedirect.com/science/article/abs/pii/S0012821X01005210
    Mao, H. K., Shu, J. F., Shen, G. Y., et al., 1998. Elasticity and Rheology of Iron above 220 GPa and the Nature of the Earth's Inner Core. Nature, 396(6713): 741–743 doi: 10.1038/25506
    McDonough, W. F., Sun, S. S., 1995. The Composition of the Earth. Chemical Geology, 120(3–4): 223–253 https://www.sciencedirect.com/science/article/abs/pii/0009254194001404?via%3Dihub
    Merkel, S., Jephcoat, A. P., Shu, J., et al., 2002. Equation of State, Elasticity, and Shear Strength of Pyrite under High Pressure. Physics and Chemistry of Minerals, 29(1): 1–9 doi: 10.1007/s002690100207
    Oldham, R. D., 1906. The Constitution of the Interior of the Earth, as Revealed by Earthquakes. Quarterly Journal of the Geological Society, 62(1–4): 456–475 https://www.nature.com/articles/092684c0
    Prasad, S. C., Wooster, W. A., 1956. The Elasticity of Iron Pyrites, FeS2. Acta Crystallographica, 9(2): 169–173 doi: 10.1107/S0365110X56000371
    Robie, R. A., Hemingway, B. S., Fisher, J. R., 1979. Thermodynamic Properties of Minerals ad Related Substances at 298.15 K and 1 bar (105 Pascals) Pressure and at Higher Temperatures. United States Geological Survey Bulletin, 1452: 298–310 https://ui.adsabs.harvard.edu/abs/1978BUSGS.....1452R/abstract
    Simmons, G., Birch, F., 1963. Elastic Constants of Pyrite. Journal of Applied Physics, 34(9): 2736–2738 doi: 10.1063/1.1729801
    Sithole, H. M., Ngoepe, P. E., Wright, K., 2003. Atomistic Simulation of the Structure and Elastic Properties of Pyrite (FeS2) as a Function of Pressure. Physics and Chemistry of Minerals, 30(10): 615–619 doi: 10.1007/s00269-003-0359-6
    Skinner, B. J., 1966. Thermal Expansion. In: Clark, S. P. J., ed., Handbook of Physical Constants. Geological Society of America, Boulder, CO. 75–95
    Smith, F. G., 1942. Variation in the Properties of Pyrite. American Mineralogist, 27(1): 1–19 https://pubs.geoscienceworld.org/msa/ammin/article-abstract/27/1/1/538180/Variation-in-the-properties-of-pyrite1?redirectedFrom=PDF
    Whitaker, M. L., Liu, W., Liu, Q., et al., 2008. Combined In Situ Synchrotron X-Ray Diffraction and Ultrasonic Interferometry Study of Epsilon-FeSi at High Pressure. High Pressure Research, 28(3): 385–395 doi: 10.1080/08957950802246480
    Whitaker, M. L., Liu, W., Liu, Q., et al., 2009. Thermoelasticity of Epsilon-FeSi to 8 GPa and 1 273 K. American Mineralogist, 94(7): 1039–1044 doi: 10.2138/am.2009.3166
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(2)

    Article Metrics

    Article views(356) PDF downloads(32) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return