Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 21 Issue 5
Oct 2010
Turn off MathJax
Article Contents
Yongsheng LIU, Shan GAO, Changgui GAO, Keqing ZONG, Zhaochu HU, Wenli LING. Garnet-Rich Granulite Xenoliths from the Hannuoba Basalts, North China: Petrogenesis and Implications for the Mesozoic Crust-Mantle Interaction. Journal of Earth Science, 2010, 21(5): 669-691. doi: 10.1007/s12583-010-0125-x
Citation: Yongsheng LIU, Shan GAO, Changgui GAO, Keqing ZONG, Zhaochu HU, Wenli LING. Garnet-Rich Granulite Xenoliths from the Hannuoba Basalts, North China: Petrogenesis and Implications for the Mesozoic Crust-Mantle Interaction. Journal of Earth Science, 2010, 21(5): 669-691. doi: 10.1007/s12583-010-0125-x

Garnet-Rich Granulite Xenoliths from the Hannuoba Basalts, North China: Petrogenesis and Implications for the Mesozoic Crust-Mantle Interaction

doi: 10.1007/s12583-010-0125-x
Funds:

the National Natural Science Foundation of China 90914007

the National Natural Science Foundation of China 40821061

the National Natural Science Foundation of China 90714010

the State Administration of Foreign Expert Affairs of China B07039

the MOST Special Fund of State Key Laboratory of Geological Processes and Mineral Resources and State Key Laboratory of Continental Dynamics 

the Special Fund For Basic Scientific Research of Central Colleges, China University of Geosciences (Wuhan) 

More Information
  • Corresponding author: Liu Yongsheng, yshliu@cug.edu.cn
  • Received Date: 04 Apr 2010
  • Accepted Date: 10 May 2010
  • Publish Date: 01 Oct 2010
  • Garnet-rich granulite xenoliths collected from the Hannuoba basalts, the North China craton (NCC), were studied to reveal the Mesozoic crust-mantle interaction. These xenoliths are characterized by low SiO2 (37.7 wt.%-46.0 wt.%) and high Al2O3 (10.8 wt.%-17.9 wt.%) contents. Their Mg# (60-75, Mg#=100×Mg/(Mg+Fe), atomic number) are relatively low for their low SiO2 contents. They have low rare-earth element (REE) contents and LREE-rich REE patterns, and show remarkable enrichments in Sr relative to the adjacent REE. Some of them exhibit convex REE patterns with a maximum at Nd and remarkably positive Eu anomalies. Taking into account their high garnet mode (generally > 30%), these features suggest that they are high-pressure metamorphic products of low-pressure cumulates (e.g., gabbro) after it had been depressed into the garnet stability field. They have evolved Nd and Sr isotopic compositions (143Nd/144Nd=0.511 763-0.512 173, 87Sr/86Sr=0.705 34-0.706 99) and fall in the trend defined by the > 110 Ma Mesozoic basalts and high-Mg# andesites from the NCC. Zircon U-Pb dating by LA-ICP-MS shows a wide age range from 83 to 2 581 Ma, most of which cluster in 83-134 Ma. CL images of some Mesozoic zircons from the granulites show typical features of igneous zircons, providing direct evidence for the Mesozoic underplating event in this area. Neither peridotite-derived basaltic underplating model nor residue model of ancient lower crust after lithospheric thinning alone can reasonably explain the above features of the garnet-rich granulite xenoliths. Combined with the previous research, we propose that most of the granulite xenoliths from the Hannuoba basalts are products of the Mesozoic magmatic underplating and mixing with the pre-existing lower crust (i.e., AFC process). However, the melts could be mostly derived from partial melting of basaltic layers that were previously subducted (a fossil oceanic slab) or underplated into the base of the lithospheric mantle, or from partial melting of Archean lithospheric mantle that was variably hybridised by melts derived from foundered lower crustal eclogite, although it cannot be excluded that some of the melts were derived from depleted mantle peridotite. In other words, parent melts of most granulite xenoliths could share the same petrogenesis as the > 110 Ma Mesozoic basalts from the NCC.

     

  • loading
  • Chen, D. G., Zhi, X. C., Li, B. X., et al., 1997. Nd, Sr and Pb Isotopes and Petrogenesis of the Pyroxenite Xenoliths from the Hannuoba Basalt. Geochimica, 26(1): 1-11 (in Chinese with English Abstract)
    Chen, D. G., Zhi, X. C., Li, B. X., et al., 1995. Chemical and Isotopic Characteristics of Gabbroic Xenolith from Hannuoba, China. Chinese J. Geochem. , 14(3): 276-287 doi: 10.1007/BF02842051
    Chen, S. H., O'Reilly, S. Y., Zhou, X. H., et al., 2001. Thermal and Petrological Structure of the Lithosphere beneath Hannuoba, Sino-Korean Craton, China: Evidence from Xenoliths. Lithos, 56(4): 267-301 doi: 10.1016/S0024-4937(00)00065-7
    Davis, W. J., Canil, D., MacKenzie, J. M., et al., 2003. Petrology and U-Pb Geochronology of Lower Crustal Xenoliths and the Development of a Craton, Slave Province, Canada. Lithos, 71(2-4): 541-573 doi: 10.1016/S0024-4937(03)00130-0
    Downes, H., Dupuy, C., Leyreloup, A. F., 1990. Crustal Evolution of the Hercynian Belt of Western Europe: Evidence from Lower-Crustal Granulitic Xenoliths (French Massif Central). Chemical Geology, 83(3-4): 209-231 doi: 10.1016/0009-2541(90)90281-B
    Fan, Q. C., Liu, R. X., 1996. The High-Temperature Granulite Xenoliths in Hannuoba Basalt. Chinese Science Bulletin, 41(3): 235-238 (in Chinese) doi: 10.1360/csb1996-41-3-235
    Fan, Q. C., Liu, R. X., Li, H. M., et al., 1998. Zircon Geochronology and Rare Earth Element Geochemistry of Granulite Xenoliths from Hannuoba. Chinese Science Bulletin, 43(2): 133-137 (in Chinese)
    Gao, C. G., Liu, Y. S., Zong, K. Q., et al., 2010. Microgeochemistry of Rutile and Zircon in Eclogites from the CCSD Main Hole: Implications for the Fluid Activity and Thermo-history of the UHP Metamorphism. Lithos, 115(1-4): 51-64 doi: 10.1016/j.lithos.2009.11.007
    Gao, S., Rudnick, R. L., Carlson, R. W., et al., 2002. Re-Os Evidence for Replacement of Ancient Mantle Lithosphere beneath the North China Craton. Earth and Planetary Science Letters, 198(3-4): 307-322 doi: 10.1016/S0012-821X(02)00489-2
    Gao, S., Rudnick, R. L., Xu, W. L., et al., 2008. Recycling Deep Cratonic Lithosphere and Generation of Intraplate Magmatism in the North China Craton. Earth and Planetary Science Letters, 270(1-2): 41-53 doi: 10.1016/j.epsl.2008.03.008
    Gao, S., Rudnick, R. L., Yuan, H. L., et al., 2004. Recycling Lower Continental Crust in the North China Craton. Nature, 432(7019): 892-897 doi: 10.1038/nature03162
    Griffin, W. L., O'Reilly, S. Y., 1986. The Lower Crust in Eastern Australia: Xenolith Evidence. In: Dawson, J. B., Carswell, D. A., Hall, J., et al., eds., The Nature of the Lower Continental Crust. Geol. Soc. Spec. Pub. , 363-374
    Griffin, W. L., Zhang, A., O'Reilly, S. Y., et al., 1998. Phanerozoic Evolution of the Lithosphere beneath the Sino-Korean Craton. In: Flower, M., Chung, S. L., Lo, C. H., et al., eds., Mantle Dynamics and Plate Interactions in East Asia: Geodynamics Series. American Geophysical Union, Washington D.C. . 107-126
    Grimes, C. B., John, B. E., Kelemen, P. B., et al., 2007. Trace Element Chemistry of Zircons from Oceanic Crust: A Method for Distinguishing Detrital Zircon Provenance. Geology, 35(7): 643-646 doi: 10.1130/G23603A.1
    Ishikawa, A., Kuritani, T., Makishima, A., et al., 2007. Ancient Recycled Crust beneath the Ontong Java Plateau: Isotopic Evidence from the Garnet Clinopyroxenite Xenoliths, Malaita, Solomon Islands. Earth and Planetary Science Letters, 259(1-2): 134-148 doi: 10.1016/j.epsl.2007.04.034
    Jackson, S. E., Pearson, N. J., Griffin, W. L., et al., 2004. The Application of Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry to In Situ U-Pb Zircon Geochronology. Chemical Geology, 211(1-2): 47-69 doi: 10.1016/j.chemgeo.2004.06.017
    Jiang, N., Guo, J. H., 2010. Hannuoba Intermediate-Mafic Granulite Xenoliths Revisited: Assessment of a Mesozoic Underplating Model. Earth and Planetary Science Letters, 293(3-4): 277-288 doi: 10.1016/j.epsl.2010.02.042
    Jiang, N., Liu, Y. S., Zhou, W. G., et al., 2007. Derivation of Mesozoic Adakitic Magmas from Ancient Lower Crust in the North China Craton. Geochimica et Cosmochimica Acta, 71(10): 2591-2608 doi: 10.1016/j.gca.2007.02.018
    Kelemen, P. B., Hart, S. R., Bernstein, S., 1998. Silica Enrichment in the Continental Upper Mantle via Melt/Rock Reaction. Earth and Planetary Science Letters, 164(1-2): 387-406 doi: 10.1016/S0012-821X(98)00233-7
    Kusky, T. M., Li, J. H., Tucker, R. D., 2001. The Archean Dongwanzi Ophiolite Complex, North China Craton: 2.505-Billion-Year-Old Oceanic Crust and Mantle. Science, 292(5519): 1142-1145 doi: 10.1126/science.1059426
    Lee, C. T. A., Cheng, X., Horodyskyj, U., 2006. The Development and Refinement of Continental Arcs by Primary Basaltic Magmatism, Garnet Pyroxenite Accumulation, Basaltic Recharge and Delamination: Insights from the Sierra Nevada, California. Contributions to Mineralogy and Petrology, 151(2): 222-242 doi: 10.1007/s00410-005-0056-1
    Leeman, W. P., Menzies, M. A., Matty, D. J., et al., 1985. Strontium, Neodymium and Lead Isotopic Compositions of Deep Crustal Xenoliths from the Snake River Plain: Evidence for Archean Basement. Earth and Planetary Science Letters, 75(4): 354-368 doi: 10.1016/0012-821X(85)90179-7
    Li, J. H., Kusky, T. M., Huang, X. N., 2000. Archean Podiform Chromitites and Mantle Tectonites in Ophiolitic Melange, North China Craton: A Record of Early Oceanic Mantle Processes. GSA Today, 12(7): 4-11
    Liu, Y. S., Gao, S., Hu, Z. C., et al., 2010a. Continental and Oceanic Crust Recycling-Induced Melt-Peridotite Interactions in the Trans-North China Orogen: U-Pb Dating, Hf Isotopes and Trace Elements in Zircons of Mantle Xenoliths. Journal of Petrology, 51(1-2): 537-571 doi: 10.1093/petrology/egp082
    Liu, Y. S., Hu, Z. C., Zong, K. Q., et al., 2010b. Reappraisement and Refinement of Zircon U-Pb Isotope and Trace Element Analyses by LA-ICP-MS. Chinese Science Bulletin (in press)
    Liu, Y. S., Gao, S., Jin, S. Y., et al., 2001. Geochemistry of Lower Crustal Xenoliths from Neogene Hannuoba Basalt, North China Craton: Implications for Petrogenesis and Lower Crustal Composition. Geochimica et Cosmochimica Acta, 65(15): 2589-2604 doi: 10.1016/S0016-7037(01)00609-3
    Liu, Y. S., Gao, S., Kelemen, P. B., et al., 2008a. Recycled Crust Controls Contrasting Source Compositions of Mesozoic and Cenozoic Basalts in the North China Craton. Geochimica et Cosmochimica Acta, 72(9): 2349-2376 doi: 10.1016/j.gca.2008.02.018
    Liu, Y. S., Hu, Z. C., Gao, S., et al., 2008b. In Situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS without Applying an Internal Standard. Chemical Geology, 257(1-2): 34-43 doi: 10.1016/j.chemgeo.2008.08.004
    Liu, Y. S., Zong, K. Q., Kelemen, P. B., et al., 2008c. Geochemistry and Magmatic History of Eclogites and Ultramafic Rocks from the Chinese Continental Scientific Drill Hole: Subduction and Ultrahigh-Pressure Metamorphism of Lower Crustal Cumulates. Chemical Geology, 247(1-2): 133-153 doi: 10.1016/j.chemgeo.2007.10.016
    Liu, Y. S., Gao, S., Lee, C. T. A., et al., 2005. Melt-Peridotite Interactions: Links between Garnet Pyroxenite and High-Mg# Signature of Continental Crust. Earth and Planetary Science Letters, 234(1-2): 39-57 doi: 10.1016/j.epsl.2005.02.034
    Liu, Y. S., Gao, S., Liu, X. M., et al., 2003. Thermodynamic Evolution of Lithosphere of the North China Craton: Records from Lower Crust and Upper Mantle Xenoliths from Hannuoba. Chinese Science Bulletin, 48(21): 2371-2377 doi: 10.1360/03wd0133
    Liu, Y. S., Gao, S., Luo, T. C., 1999. Geochemistry of Terrain Granulites from North China Craton: Implications for the Composition of the Lower Continental Crust. Geol. Geochem. , 27(3): 40-46 (in Chinese with English Abstract)
    Liu, Y. S., Gao, S., Yuan, H. L., et al., 2004. U-Pb Zircon Ages and Nd, Sr, and Pb Isotopes of Lower Crustal Xenoliths from North China Craton: Insights on Evolution of Lower Continental Crust. Chemical Geology, 211(1-2): 87-109 doi: 10.1016/j.chemgeo.2004.06.023
    Ludwig, K. R., 2003. ISOPLOT 3.00: A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center, Berkeley
    McDonough, W. F., Sun, S. S., 1995. The Composition of the Earth. Chemical Geology, 120(3-4): 223-253 doi: 10.1016/0009-2541(94)00140-4
    Menzies, M. A., Fan, W. M., Zhang, M., 1993. Paleozoic and Cenozoic Lithoprobes and the Loss of > 120 km of Archean Lithosphere, Sino-Korean Craton, China. In: Prichard, H. M., Alabaster, T., Harris, N. B. W., et al., eds., Magmatic Processes and Plate Tectonics. Geol. Soc. Spec. Pub., Londan. 71-81
    Pertermann, M., Hirschmann, M. M., 2003. Anhydrous Partial Melting Experiments on MORB-Like Eclogites Phase Relations, Phase Composition and Mineral-Melt Partitioning of Major Elements at 2-3 GPa. Journal of Petrology, 44(12): 2173-2201 doi: 10.1093/petrology/egg074
    Rubatto, D., Hermann, J., 2007. Experimental Zircon/Melt and Zircon/Garnet Trace Element Partitioning and Implications for the Geochronology of Crustal Rocks. Chemical Geology, 241(1-2): 38-61 doi: 10.1016/j.chemgeo.2007.01.027
    Rudnick, R. L., 1992. Xenoliths-Samples of the Lower Continental Crust. In: Fountain, D. M., Arculus, R., Kay, R. W., eds., Continental Lower Crust (Developments in Geotectonics). Elsevier, Amsterdam. 269-316
    Rudnick, R. L., Gao, S., Ling, W. L., et al., 2004. Petrology and Geochemistry of Spinel Peridotite Xenoliths from Hannuoba and Qixia, North China Craton. Lithos, 77(1-4): 609-637 doi: 10.1016/j.lithos.2004.03.033
    Rudnick, R. L., Goldstein, S. L., 1990. The Pb Isotopic Compositions of Lower Crustal Xenoliths and the Evolution of Lower Crustal Pb. Earth and Planetary Science Letters, 98(2): 192-207 doi: 10.1016/0012-821X(90)90059-7
    Rudnick, R. L., McDonough, W. F., McCulloch, M. T., et al., 1986. Lower Crust Xenoliths from Queensland, Australia: Evidence for Deep Crustal Assimilation and Fractionation of Continental Basalts. Geochimica et Cosmochimica Acta, 50(6): 1099-1115 doi: 10.1016/0016-7037(86)90391-1
    Schmitz, M. D., Bowring, S. A., 2001. The Significance of U-Pb Zircon Dates in Lower Crustal Xenoliths from the Southwestern Margin of the Kaapvaal Craton, Southern Africa. Chemical Geology, 172(1-2): 59-76 doi: 10.1016/S0009-2541(00)00236-9
    Song, Y., Frey, F. A., Zhi, X. C., 1990. Isotopic Characteristics of Hannuoba Basalts, Eastern China: Implications for Their Petrogenesis and the Composition of Subcontinental Mantle. Chemical Geology, 88(1-2): 35-52 doi: 10.1016/0009-2541(90)90102-D
    Tang, Y. J., Zhang, H. F., Nakamura, E., et al., 2007. Lithium Isotopic Systematics of Peridotite Xenoliths from Hannuoba, North China Craton: Implications for Melt-Rock Interaction in the Considerably Thinned Lithospheric Mantle. Geochimica et Cosmochimica Acta, 71(17): 4327-4341 doi: 10.1016/j.gca.2007.07.006
    Taylor, S. R., McLennan, S. M., 1985. The Continental Crust: Its Composition and Evolution. Oxford, Blackwell Scientific Publications, London. 328
    Wiedenbeck, M., Hanchar, J. M., Peck, W. H., et al., 2004. Further Characterisation of the 91500 Zircon Crystal. Geostandards and Geoanalytical Research, 28(1): 9-39 doi: 10.1111/j.1751-908X.2004.tb01041.x
    Wilde, S. A., Zhao, G. C., Sun, M., 2002. Development of the North China Craton during the Late Archaean and Its Final Amalgamation at 1.8 Ga: Some Speculations on Its Position within a Global Palaeoproterozoic Supercontinent. Gondwana Research, 5(1): 85-94 doi: 10.1016/S1342-937X(05)70892-3
    Wilde, S. A., Zhou, X. H., Nemchin, A. A., et al., 2003. Mesozoic Crust-Mantle Interaction beneath the North China Craton: A Consequence of the Dispersal of Gondwanaland and Accretion of Asia. Geology, 31(9): 817-820 doi: 10.1130/G19489.1
    Wu, F. Y., Lin, J. Q., Wilde, S. A., et al., 2005. Nature and Significance of the Early Cretaceous Giant Igneous Event in Eastern China. Earth and Planetary Science Letters, 233(1-2): 103-119 doi: 10.1016/j.epsl.2005.02.019
    Xu, W. L., Hergt, J. A., Gao, S., et al., 2008. Interaction of Adakitic Melt-Peridotite: Implications for the High-Mg# Signature of Mesozoic Adakitic Rocks in the Eastern North China Craton. Earth and Planetary Science Letters, 265(1-2): 123-137 doi: 10.1016/j.epsl.2007.09.041
    Xu, Y. G., 2002. Evidence for Crustal Components in the Mantle and Constraints on Crustal Recycling Mechanisms: Pyroxenite Xenoliths from Hannuoba, North China. Chemical Geology, 182(2-4): 301-322 doi: 10.1016/S0009-2541(01)00300-X
    Yuan, H. L., Wu, F. Y., Gao, S., et al., 2003. Determination of U-Pb Age and Rare Earth Element Concentrations of Zircons from Cenozoic Intrusions in Northeastern China by Laser Ablation ICP-MS. Chinese Science Bulletin, 48(22): 2411-2421
    Zhai, M. G., Bian, A. G., Zhao, T. P., 2000. The Amalgamation of the Supercontinent of North China Craton at the End of the Neoarchaean, and Its Break-up during the Late Palaeoproterozoic and Mesoproterozoic. Sci. China (D), 43(Suppl. ): 219-232
    Zhang, G. H., Sun, M., 1998. Sr, Nd and Pb Isotopic Characteristics of Granulite and Pyroxenite Xenoliths in the Hannuoba Basalts, Hebei Province: Implications for Geological Processes. Acta Petrologica Sinica, 14(2): 190-197 (in Chinese with English Abstract)
    Zhang, G. H., Zhou, X. H., Sun, M., et al., 1998. Heterogeneity of the Lower Crust: Evidence from Geochemistry of the Hannuoba Granulite Xenoliths, Hebei Province. Geochimica, 27(2): 153-163 (in Chinese with English Abstract)
    Zhang, H. F., Sun, M., Zhou, X. H., et al., 2003. Secular Evolution of the Lithosphere beneath the Eastern North China Craton: Evidence from Mesozoic Basalts and High-Mg Andesites. Geochimica et Cosmochimica Acta, 67(22): 4373-4387 doi: 10.1016/S0016-7037(03)00377-6
    Zhang, Q., Wang, Y., Qian, Q., et al., 2001a. Existence of East China Plateau in Mid-Late Yanshan Period: Implication from Adakite. Scientia Geologica Sin. , 36(2): 248-255 (in Chinese with English Abstract)
    Zhang, Q., Wang, Y., Wang, Y. L., 2001b. Preliminary Study on the Components of the Lower Crust in East China Plateau during Yanshanian Period: Constraints on Sr and Nd Isotopic Compositions of Adakite-Like Rocks. Acta Petrologica Sinica, 17(4): 505-513 (in Chinese with English Abstract)
    Zhao, G. C., Wilde, S. A., Cawood, P. A., et al., 2001. Archean Blocks and Their Boundaries in the North China Craton: Lithological, Geochemical, Structural and P-T Path Constraints and Tectonic Evolution. Precambrian Research, 107(1-2): 45-73 doi: 10.1016/S0301-9268(00)00154-6
    Zhao, G. C., Cawood, P. A., Wilde, S. A., et al., 2000. Metamorphism of Basement Rocks in the Central Zone of the North China Craton: Implications for Paleoproterozoic Tectonic Evolution. Precambrian Research, 103(1-2): 55-88 doi: 10.1016/S0301-9268(00)00076-0
    Zheng, J. P., Griffin, W. L., Qi, L., et al., 2009. Age and Composition of Granulite and Pyroxenite Xenoliths in Hannuoba Basalts Reflect Paleogene Underplating beneath the North China Craton. Chemical Geology, 264(1-4): 266-280 doi: 10.1016/j.chemgeo.2009.03.011
    Zhou, X. H., Sun, M., Zhang, G. H., et al., 2002. Continental Crust and Lithospheric Mantle Interaction beneath North China: Isotopic Evidence from Granulite Xenoliths in Hannuoba, Sino-Korean Craton. Lithos, 62(3-4): 111-124 doi: 10.1016/S0024-4937(02)00110-X
    Zhu, B. Q., 1998. Theory and Applications of Isotope Systematics in Geosciences: Evolution of Continental Crust and Mantle in China. Science Press, Beijing (in Chinese)
    Zong, K. Q., Liu, Y. S., Gao, C. G., et al., 2010. In Situ U-Pb Dating and Trace Element Analysis of Zircons in Thin Sections of Eclogite: Refining Constraints on the Ultra High-Pressure Metamorphism of the Sulu Terrane, China. Chemical Geology, 269(3-4): 237-251 doi: 10.1016/j.chemgeo.2009.09.021
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(4)

    Article Metrics

    Article views(1104) PDF downloads(26) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return