Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 22 Issue 2
Apr 2011
Turn off MathJax
Article Contents
Arie P van den Berg, David A Yuen, Michael H G Jacobs, Maarten V de Hoop. Small-Scale Mineralogical Heterogeneity from Variations in Phase Assemblages in the Transition Zone and D” Layer Predicted by Convection Modelling. Journal of Earth Science, 2011, 22(2): 160-168. doi: 10.1007/s12583-011-0168-7
Citation: Arie P van den Berg, David A Yuen, Michael H G Jacobs, Maarten V de Hoop. Small-Scale Mineralogical Heterogeneity from Variations in Phase Assemblages in the Transition Zone and D” Layer Predicted by Convection Modelling. Journal of Earth Science, 2011, 22(2): 160-168. doi: 10.1007/s12583-011-0168-7

Small-Scale Mineralogical Heterogeneity from Variations in Phase Assemblages in the Transition Zone and D” Layer Predicted by Convection Modelling

doi: 10.1007/s12583-011-0168-7
Funds:

the CMG Program of NSF, Senior Visiting Professorship by the Chinese Academy of Sciences 

The Netherlands Research Center for Integrated Solid Earth Science ISES 3.2.5

the 216 through ISES Project ME-2.7 

More Information
  • Corresponding author: Arie P. van den Berg, berg@geo.uu.nl
  • Received Date: 26 Sep 2010
  • Accepted Date: 30 Dec 2010
  • Publish Date: 01 Apr 2011
  • Small-scale heterogeneity in the deep mantle is concentrated in the upper-mantle transition zone (TZ), in the depth range 410–660 km and also at the bottom 250 km D″ region. This encourages a more detailed investigation of the potential for seismic reflectivity imaging by modelling heterogeneous structures in mantle convection models including phase transitions of the TZ and D″ regions. We applied finite elements with variable spacing near the boundary layers in 2-D cylindrical geometry that allow for sufficient spatial resolution. We investigated several models including an extended Boussinesq (EBA) model, focused on the D″ region, and a compressible (ALA) model for the TZ region. The results for the D″ region show typical lens-shaped structures of post-perovskite (PPV) embedded in the perovskite (PV) background mantle, where the thickness of the lenses, at 200–400 km, strongly depends on the Clapeyron slope of the PV-PPV transition. A second phase transition (double crossing) occurs in case the core temperature is higher than the intercept temperature Ti. Our phase-dependent rheology results in contrasting effective viscosity between PV and PPV. Our model results reveal a distinctly clear mechanical weakening of the PPV lenses with about an order of magnitude lower viscosity. The shear wave-speed distributions computed from our convection results are strongly correlated with the heterogeneous distribution of the mineral phase. Gradients in the seismic wave-speed that are the target of seismological reflectivity imaging are clearly revealed. The wave-speed results show a clear resolution of the top and bottom interfaces of the PPV lenses. Our ALA model for the TZ is based on a thermodynamical model for the magnesium end-member of an olivine-pyroxene mantle. The model predicts a much more complex distribution of mineral phases, compared to our D″ results, in agreement with the greater number of mineral phases involved in the olivine-pyroxene phase diagram for theP, T conditions of the transition zone. Near cold downwelling flows representing subducting lithospheric slabs, where the local geotherm can differ by up to 1 000 K from the horizontal average, and small-scale lateral variations in the mineral phases can occur.

     

  • loading
  • Ammann, M. W., Brodholt, J. P., Wookey, J., et al., 2010. First-Principles Constraints on Diffusion in Lower-Mantle Minerals and a Weak D″ Layer. Nature, 465(7297): 462–465 doi: 10.1038/nature09052
    Boehler, R., 2000. High-Pressure Experiments and the Phase Diagram of Lower Mantle and Core Materials. Reviews of Geophysics, 38(2): 221–245 doi: 10.1029/1998RG000053
    Cadek, O. Fleitout, L., 2006. Effect of Lateral Viscosity Variations in the Core-Mantle Boundary Region on Predictions of the Long-Wavelength Geoid. Stud. Geophys. Geod. , 50(2): 217–232 doi: 10.1007/s11200-006-0013-0
    Cao, Q., Wang, P., van der Hilst, R. D., et al., 2010. Imaging the Upper Mantle Transition Zone with a Generalized Radon Transform of SS Precursors. Phys. Earth Planet. Inter. , 180(1–2): 80–91
    Catalli, K., Shim, S. H., Prakapenka, V., 2009. Thickness and Claeyron Slope of the Post-Perovskite Boundary. Nature, 462(7274): 782–785 doi: 10.1038/nature08598
    Christensen, A. U. R., Yuen, D. A., 1985. Layered Convection Induced by Phase Transitions. J. Geophys. Res. , 90: 10291–10300 doi: 10.1029/JB090iB12p10291
    Connolly, J. A. D., 2005. Computation of Phase Equilibria by Linear Programming: A Tool for Geodynamic Modeling and Its Application to Subduction Zone Decarbonation. Earth Planet. Sci. Lett. , 236(1–2): 524–541
    Daessler, R., Yuen, D. A., 1993. The Effects of Phase Transition Kinetics on Subducting Slabs. Geophys. Res. Lett. , 20(23): 2603–2606 doi: 10.1029/93GL02811
    de Hoop, M. V., Smith, H., Uhlmann, G., et al., 2009. Seismic Imaging with the Generalized Radon Transform: A Curvelet Transform Perspective. Inverse Problems, 25(2): 025005 doi: 10.1088/0266-5611/25/2/025005
    Hernlund, J. W., Thomas, C., Tackley, P. J., 2005. A Doubling of the Post-Perovskite Phase Boundary and Structure of the Earth's Lowermost Mantle. Nature, 434(7035): 882–886 doi: 10.1038/nature03472
    Hunt, S. A., Weidner, D. J., Li, L., et al., 2009. Weakening of Calcium Iridate during Its Transformation from Perovskite to Post-Perovskite. Nature Geoscience, 2(11): 794–797 doi: 10.1038/ngeo663
    Jacobs, M. H. G., de Jong, B. H. W. S., 2007. Placing Constraints on Phase Equilibria and Thermophysical Properties in the System MgO-SiO2 by a Thermodynamically Consistent Vibrational Method. Geochimica et Cosmochimica Acta, 71(14): 3630–3655 doi: 10.1016/j.gca.2007.05.010
    Jacobs, M. H. G., van den Berg, A. P., 2011. Complex Phase Distribution and Seismic Velocity Structure of the Transition Zone: Convection Model Predictions for a Magnesium-Endmember Olivine-Pyroxene Mantle. Phys. Earth Planet. Inter. (Accepted)
    Jarvis, G. T., McKenzie, D. P., 1980. Convection in a Compressible Fluid with Infinite Prandtl Number. J. Fluid Mech. , 96: 515–583 doi: 10.1017/S002211208000225X
    Karato, S. I., 2008. Deformation of Earth Materials: An Introduction to the Rheology of Solid Earth. Cambridge University Press, Cambridge
    Karato, S. I., 2010. The Influence of Anisotropic Diffusion on the High-Temperature Creep of a Polycrystalline Aggregate. Phys. Earth Planet. Inter. , 183(3–4): 468–472
    King, S. D., Lee, C., van Keken, P. E., et al., 2010. A Community Benchmark for 2-D Cartesian Compressible Convection in the Earth's Mantle. Geophys. J. Int. , 180(1): 73–87 doi: 10.1111/j.1365-246X.2009.04413.x
    Lay, T., Hernlund, J., Garnero, E. J., et al., 2006. A Post-Perovskite Lens and D″ Heat Flux beneath the Central Pacific. Science, 314(5803): 1272–1276 doi: 10.1126/science.1133280
    Murakami, M., Hirose, K., Kawamura, K., et al., 2004. Post-Perovskite Phase Transition in MgSiO3. Science, 304(5672): 855–858 doi: 10.1126/science.1095932
    Nakagawa, T., Tackley, P. J., 2010. Influence of Initial CMB Temperature and Other Parameters on the Thermal Evolution of Earth's Core Resulting from Thermochemical Spherical Mantle Convection. Geochemistry, Geophysics, Geosystems, 11: Q06001
    Schubert, G., Turcotte, D. L., Olson, P., 2001. Mantle Convection in the Earth and Planets. Cambridge University Press, Cambridge
    Steinbach, V., Hansen, U., Ebel, A., 1989. Compressible Convection in the Earth's Mantle: A Comparison of Different Approaches. Geophys. Res. Lett. , 16: 633–636 doi: 10.1029/GL016i007p00633
    Tosi, N., Cadek, O., Martinec, Z., et al., 2009. Is the Long-Wavelength Geoid Sensitive to the Presence of Post-Perovskite above the Core-Mantle Boundary? Geophys. Res. Lett. , 36: L05303
    Vacher, P., Spakman, W., Wortel, M. J. R., 1999. Numerical Tests on the Seismic Visibility of Metastable Minerals in Subduction Zones. Earth Planet. Sci. Lett. , 170(3): 335–349 doi: 10.1016/S0012-821X(99)00107-7
    van den Berg, A. P., van Keken, P. E., Yuen, D. A., 1993. The Effects of a Composite Non-Newtonian and Newtonian Rheology on Mantle Convection. Geophysical Journal International, 115(1): 62–78 doi: 10.1111/j.1365-246X.1993.tb05588.x
    van den Berg, A. P., de Hoop, M. V., Yuen, D. A., et al., 2010. Geodynamical Modeling and Multiscale Seismic Expression of Thermo-chemical Heterogeneity and Phase Transitions in the Lowermost Mantle. Phys. Earth Planet. Int. , 180(3–4): 244–257
    van der Hilst, R. D., de Hoop, M. V., Wang, P., et al., 2007. Seismostratigraphy and Thermal Structure of Earth's Core-Mantle Boundary Region. Science, 315(5820): 1813–1817 doi: 10.1126/science.1137867
    van Hunen, J., van den Berg, A. P., Vlaar, N. J., 2002. On the Role of Subducting Oceanic Plateaus in the Development of Shallow Flat Subduction. Tectonophysics, 352(3–4): 317–33
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)

    Article Metrics

    Article views(968) PDF downloads(20) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return