Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 22 Issue 4
Aug 2011
Turn off MathJax
Article Contents
Zhongqin Li, Huilin Li, Yaning CHEN. Mechanisms and Simulation of Accelerated Shrinkage of Continental Glaciers: A Case Study of Urumqi Glacier No. 1 in Eastern Tianshan, Central Asia. Journal of Earth Science, 2011, 22(4): 423-430. doi: 10.1007/s12583-011-0194-5
Citation: Zhongqin Li, Huilin Li, Yaning CHEN. Mechanisms and Simulation of Accelerated Shrinkage of Continental Glaciers: A Case Study of Urumqi Glacier No. 1 in Eastern Tianshan, Central Asia. Journal of Earth Science, 2011, 22(4): 423-430. doi: 10.1007/s12583-011-0194-5

Mechanisms and Simulation of Accelerated Shrinkage of Continental Glaciers: A Case Study of Urumqi Glacier No. 1 in Eastern Tianshan, Central Asia

doi: 10.1007/s12583-011-0194-5
Funds:

the National Basic Research Program of China 2007CB411501

the Knowledge Innovation Project of the Chinese Academy of Sciences KZCX2-EW-311

the National Natural Science Foundation of China 91025012

the National Natural Science Foundation of China J0930003/J0109

More Information
  • Corresponding author: Zhongqin Li, lizq@lzb.ac.cn
  • Received Date: 08 Dec 2010
  • Accepted Date: 24 Mar 2011
  • Publish Date: 01 Aug 2011
  • Similar to most mountain glaciers in the world, Urumqi Glacier No. 1 (UG1), the best observed glacier in China with continued glaciological and climatological monitoring records of longer than 50 years has experienced an accelerated recession during the past several decades. The purpose of this study is to investigate the acceleration of recession. By taking UG1 as an example, we analyze the generic mechanisms of acceleration of shrinkage of continental mountain glaciers. The results indicate that the acceleration of mass loss of UG1 commenced first in 1985 and second in 1996 and that the latter was more vigorous. The air temperature rises during melting season, the ice temperature augment of the glacier and the albedo reduction on the glacier surface are considered responsible for the accelerated recession. In addition, the simulations of the accelerated shrinkage of UG1 are introduced in this article.

     

  • loading
  • Aðalgeirsdóttir, G., Gudmundsson, G. H., Bjornsson, H., 2005. Volume Sensitivity of Vatnajokull Ice Cap, Iceland: To Perturbations in Equilibrium Line Altitude. Journal of Geophysical Research, 110(F4): F04001 http://www.researchgate.net/profile/Gudmundur_Gudmundsson/publication/251431362_Volume_sensitivity_of_Vatnajkull_Ice_Cap_Iceland_to_perturbations_in_equilibrium_line_altitude/links/00463537a0478abda6000000?ev=pub_ext_doc_dl_meta
    Aðalgeirsdóttir, G., Johannesson, T., Bjornsson, H., et al., 2006. Response of Hofsjokull and Southern Vatnajokull, Iceland: To Climate Change. Journal of Geophysical Research, 111(F3): F03001 http://www.onacademic.com/detail/journal_1000035771882710_ed89.html
    Ageta, Y., Fujita, K., 1996. Characteristics of Mass Balance of Summer—Accumulation Type Glaciers in the Himalayas and Tibetan Plateau. Zeitschrift Fuer Gletscherkunde und Glazialgeologie, 32: 61–65 http://www.cryoscience.net/pub/pdf/1996zgg_ageta.pdf
    Barry, R. G., 2006. The Status of Research on Glaciers and Global Glacier Recession: A Review. Progress in Physical Geography, 30(3): 285–306 http://juneauicefield.com/s/barry-2006_status-glaciology.pdf
    Braithwaite, R. J., 2002. Glacier Mass Balance: The First 50 Years of International Monitoring. Progress in Physical Geography, 26(1): 76–95 http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.883.1670&rep=rep1&type=pdf
    Braithwaite, R. J., 1995. Positive Degree-Day Factors for Ablation on the Greenland Ice Sheet Studied by Energy-Balance Modelling. Journal of Glaciology, 41(137): 153–160 doi: 10.1017/S0022143000017846
    Braithwaite, R. J., Raper, S. C. B., 2007. Glaciological Conditions in Seven Contrasting Regions Estimated with the Degree-Day Model. Annals of Glaciology, 46: 297–302 doi: 10.3189/172756407782871206
    Cai, B. L., Xie, Z. C., Huang, M. H., 1986. Mathematical-Models of the Temperature and Water-Heat Transfer in the Percolation Zone of a Glacier. Cold Regions Science and Technology, 12(1): 39–49 doi: 10.1016/0165-232X(86)90018-2
    Dyurgerov, M. B., Meier, M. F., 2000. Twentieth Century Climate Change: Evidence from Small Glaciers. Proceedings of the National Academy of Sciences of the United States of America, 97(4): 1406–1411 doi: 10.1073/pnas.97.4.1406
    Haeberli, W., Cihlar, J., Barry, R. G., 2000. Glacier Monitoring within the Global Climate Observing System. Annals of Glaciology, 31: 241–246 doi: 10.3189/172756400781820192
    Haeberli, W., Holzhauser, H., 2003. Alpine Glacier Mass Changes during the Past Two Millennia. Pages News, 11(1): 13–15 doi: 10.22498/pages.11.1.13
    Han, T. D., Ding, Y. J., Ye, B. S., et al., 2006. Mass-Balance Characteristics of Urumqi Glacier No. 1, Tien Shan, China. Annals of Glaciology, 43: 323–328 doi: 10.3189/172756406781811961
    Harper, J. T., 1993. Glacier Terminus Fluctuations on Mt. Baker, Washington, USA, 1940–1980, and Climate Variations. Arctic and Alpine Research, 25: 332–340
    Huintjes, E., Li, H., Sauter, T., et al., 2010. Degree-Day Modelling of the Surface Mass Balance of Urumqi Glacier No. 1, Tian Shan, China. The Cryosphere Discussions, 4: 207–232 http://the-cryosphere-discuss.net/4/207/2010/tcd-4-207-2010-print.pdf
    Hutter, K., 1983. Theoretical Glaciology: Material Science of Ice and the Mechanics of Glaciers and Ice Sheets. Springer, London
    Jing, Z. F., Jiao, K. Q., Yao, T. D., et al., 2006. Mass Balance and Recession of Urumqi Glacier No. 1, Tien Shan, China, over the Last 45 Years. Annals of Glaciology, 43: 214–217 doi: 10.3189/172756406781811899
    Johannesson, T., Sigurdsson, O., Laumann, T., et al., 1995. Degree-Day Glacier Mass-Balance Modelling with Applications to Glaciers in Iceland, Norway and Greenland. Journal of Glaciology, 41(138): 345–358 doi: 10.1017/S0022143000016221
    Kutuzov, S. S., Mikhalenko, V. N., Thompson, L. G., et al., 2004. Glacier Recession in the Tien Shan Mountains, Central Asia: Ice-Core and Borehole Temperature Evidence. Geophysical Research Abstracts, 6: 00662 http://www.cosis.net/members/meetings/abstracts/file.php/13/29797/jpdf/EGU04-J-00662.pdf
    Li, J. F., 1991. The Climate of Xinjiang. Meteorology Press, Beijing (in Chinese)
    Li, Z. Q., Han, T. D., Jing, Z. F., et al., 2003. A Summary of 40-Year Observed Variation Facts of Climate and Glacier No. 1 at Headwaters of Urumqi River, Tianshan, China. Journal of Glaciology and Geocryology, 25(2): 117–123 (in Chinese with English Abstract) http://www.researchgate.net/publication/281539116_A_summary_of_40-year_observed_variation_facts_of_climate_and_Glacier_No1_at_headwater_of_Urumqi_River_Tianshan_China
    Li, Z. Q., Li, K. M., Wang, L., 2010. Study on Recent Glacier Changes and Their Impact on Water Resources in Xinjiang, North Western China. Quaternary Sciences, 30(1): 96–106 (in Chinese with English Abstract)
    Li, Z. Q., Shen, Y. P., Li, H. L., et al., 2008. Response of the Melting Urumqi Glacier No. 1 in Eastern Tianshan to Climate Change. Advances in Climate Change Research, 4: 67–72 http://www.climatechange.cn/CN/article/downloadArticleFile.do?attachType=PDF&id=8525
    Li, Z. Q., Shen, Y. P., Wang, F. T., et al., 2007. Response of Glacier Melting to Climate Change-Take Urümqi Glacier No. 1 as an Example. Journal of Glaciology and Geocryology, 29(3): 333–342 (in Chinese with English Abstract) http://www.scienceopen.com/document?vid=0c3ad3b1-ad0b-422e-a392-7e635cb61a2d
    Li, Z. Q., Wang, W. B., Zhang, M. J., et al., 2010. Observed Changes in Streamflow at the Headwaters of the Urumqi River, Eastern Tianshan, Central Asia. Hydrological Processes, 24(2): 217–224 http://www.onacademic.com/detail/journal_1000033848006510_b261.html
    Li, Z. Q., Ye, B. S., Zhang, M. J., 1999. Ten Years of Progress in the Tianshan Glaciological Station. Journal of Glaciology and Geocryology, 21(4): 326–335 http://en.cnki.com.cn/Article_en/CJFDTotal-BCDT803.012.htm
    Meier, M. F., 1984. Contribution of Small Glaciers to Global Sea Level. Science, 226(4681): 1418–1421 doi: 10.1126/science.226.4681.1418
    Oerlemans, J., 2001. Glaciers and Climate Change. A. A. Balkema Publishers Lisse, Abingdon
    Oerlemans, J., Anderson, B., Hubbard, A., et al., 1998. Modelling the Response of Glaciers to Climate Warming. Climate Dynamics, 14(4): 267–274 doi: 10.1007/s003820050222
    Oerlemans, J., Fortuin, J. P. F., 1992. Sensitivity of Glaciers and Small Ice Caps to Greenhouse Warming. Science, 258(5079): 115–117 doi: 10.1126/science.258.5079.115
    Paterson, W., 1994. The Physics of Glaciers. 3rd ed. . Elsevier Science Ltd., Oxford
    Pelto, M. S., Hedlund, C., 2001. Terminus Behavior and Response Time of North Cascade Glaciers, Washington, USA. Journal of Glaciology, 47(158): 497–506 doi: 10.3189/172756501781832098
    Shumskii, P. A., 1964. Principles of Structural Glaciology (Translated from the Russian by David Kraus). Dover Publications, New York
    Sun, B., He, M. B., Zhang, P., et al., 2003. Determination of Ice Thickness, Subice Topography and Ice Volume at Glacier No. 1 in the Tien Shan, China, by Ground Penetrating Radar. Chinese Journal of Polar Research, 15(1): 35–44 (in Chinese with English Abstract) http://www.cnki.com.cn/Article/CJFDTotal-JDYJ200302001.htm
    Takeuchi, N., Li, Z. Q., 2008. Characteristics of Surface Dust on Urumqi Glacier No. 1 in the Tien Shan Mountains, China. Arctic, Antarctic, and Alpine Research, 40(4): 744–750 doi: 10.1657/1523-0430(07-094)[TAKEUCHI]2.0.CO;2
    WGMS, 2007. Glacier Mass Balance Bulletin. ICSU (FAGS)/IUGG (IACS)/UNEP/UNESCO/WMO, World
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)

    Article Metrics

    Article views(877) PDF downloads(100) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return