Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 22 Issue 5
Oct 2011
Turn off MathJax
Article Contents
Fujiang Liu, Rong Yang, Ying Zhang, Le Qiao, Shun Wang, Yang Yang, Xiaopan Wang. Distribution of Olivine and Pyroxene Derived from Clementine Data in Crater Copernicus. Journal of Earth Science, 2011, 22(5): 586-594. doi: 10.1007/s12583-011-0209-2
Citation: Fujiang Liu, Rong Yang, Ying Zhang, Le Qiao, Shun Wang, Yang Yang, Xiaopan Wang. Distribution of Olivine and Pyroxene Derived from Clementine Data in Crater Copernicus. Journal of Earth Science, 2011, 22(5): 586-594. doi: 10.1007/s12583-011-0209-2

Distribution of Olivine and Pyroxene Derived from Clementine Data in Crater Copernicus

doi: 10.1007/s12583-011-0209-2
Funds:

the Research Foundation of Science and Technology, China University of Geosciences (Wuhan), and the Fundamental Research Funds for the Central Universities 2010119047

More Information
  • Corresponding author: Fujiang Liu, felixwuhan@163.com
  • Received Date: 13 Dec 2010
  • Accepted Date: 10 Mar 2011
  • Publish Date: 01 May 2011
  • In order to derive the distribution of olivine and pyroxene in Crater Copernicus, we compute two band ratios (950/750 and 2 000/1 500 nm), percent content of elements (Al%, Ca%, Mg%, FeO%) and maturity (Is/FeO) based on Clementine UVVIS and NIR image data. The central peaks of Copernicus, which are known to be olivine-rich or pyroxene-rich, are chosen as "ground truth" and ROIs used to derive the distribution of olivine and pyroxene with a decision tree and spectral angle mapper (SAM). Additionally, we compared previous works and the extraction results coming from the decision tree and the SAM method. The extraction of olivine by both decision tree and SAM agrees well with the previous works' descriptions, and the result by SAM is more accurate than that by decision tree because spectral features are fully used in SAM. For pyroxene extraction, there is a difference between SAM and the decision tree; one of the reasons is that the decision tree does not fully take advantage of spectral features but is only based on statistics. SAM uses band indices that can be easily extended to other areas on the Moon.

     

  • loading
  • Abdeen, M. M., Thurmond, A. K., Abdelsalam, M. G., et al., 2001. Application of ASTER Band-Ratio Images for Geological Mapping in Arid Regions: The Neoproterozoic Allaqi Suture, Egypt. In: Proceedings of GSA 2001 Annual Meeting. Boston
    Banerjee, M., McKeague, I. W., 2007. Confidence Sets for Split Points in Decision Trees. Annals of Statistics, 35(2): 543–574
    Cohen, J. L., Pieters, C. M., 2001. Compositional Diversity at Copernicus: Analysis of Integrated Data Using GIS. In: Proceedings of 32nd Lunar and Planetary Science Conference. Houston, United States. 1034
    Donaldson, C. H., Usselman, T. M., Williams, R. J., et al., 1975. Experimental Modeling of the Cooling History of Apollo 12 Olivine Basalts. In: Proceedings of 6th Lunar Science Conference. New York, United States. 843–869
    Head, J. W., 1982. Lava Flooding of Ancient Planetary Crusts: Geometry, Thickness, and Volumes of Flooded Lunar Impact Basins. Moon, and Planets, 26(1): 61–88 doi: 10.1007/BF00941369
    Heiken, G. H., Vaniman, D. T., French, B. M., 1991. Lunar Sourcebook: A User's Guide to the Moon. Cambridge University Press, New York
    Kruse, F. A., Lefkoff, A. B., Boardman, J. W., et al., 1993. The Spectral Image Processing System (SIPS): Interactive Visualization and Analysis of Imaging Spectrometer Data. Remote Sensing of Environment, 44(2–3): 145–163
    Le Mouélic, S., Langevin, Y., 2001. The Olivine at the Lunar Crater Copernicus as Seen by Clementine NIR Data. Planetary and Space Science, 49(1): 65–70 doi: 10.1016/S0032-0633(00)00091-X
    Li, Y. Q., Liu, J. Q., Ouyang, Z. Y., et al., 2007. Petrologic Distributions on the Moon: Based on the Lunar Prospector (LP) Gamma-Ray Spectrometer Data Transformation. Acta Petrologica Sinica, 23(5): 1169–1174 (in Chinese with English Abstract)
    Lucey, P. G., Blewett, D. T., Jolliff, B. L., 2000. Lunar Iron and Titanium Abundance Algorithms Based on Final Processing of Clementine Ultraviolet-Visible Images. Journal of Geophysical Research, 105(E8): 20297–20305 doi: 10.1029/1999JE001117
    Lucey, P. G., Hawke, B. R., Horton, K., 1991. The Distribution of Olivine in the Crater Copernicus. Geophysical Research Letters, 18(11): 2133–2136 doi: 10.1029/91GL02538
    McEwen, A. S., Robinson, M. S., 1997. Mapping of the Moon by Clementine. Advances in Space Research, 19(10): 1523–1533 doi: 10.1016/S0273-1177(97)00365-7
    Min, X., Pakorn, W., Pramod, K. V., et al., 2005. Decision Tree Regression for Soft Classification of Remote Sensing Data. Remote Sensing of Environment, 97(3): 322–336 doi: 10.1016/j.rse.2005.05.008
    Morris, R. V., 1978. The Surface Exposure (Maturity) of Lunar Soils: Some Concepts and Is/FeO Compilation. In: Processing of 9th Lunar and Planetary Science Conference. Houston, United States. 2287–2297
    Nozette, S., 1994. The Clementine Mission: Past, Present, and Future. Acta Astronautica, 35: 161–169
    Ouyang, Z. Y., 2005. Introduction to Lunar Science. China Astronautic Publishing House, Beijing (in Chinese)
    Pieters, C. M., 1982. Copernicus Crater Central Peak: Lunar Mountain of Unique Composition. Science, 215(4528): 59–61 doi: 10.1126/science.215.4528.59
    Pieters, C. M., Wilhelms, D. E., 1985. Origin of Olivine at Copernicus. Journal of Geophysical Research, 90(Suppl. S): C415–C420
    Pieters, C., Shkuratov, Y., Kaydash, V., et al., 2006. Lunar Soil Characterization Consortium Analyses: Pyroxene and Maturity Estimates Derived from Clementine Image Data. ICARUS, 184(1): 83–101 doi: 10.1016/j.icarus.2006.04.013
    Shkuratov, Y. G., Kaydash, V. G., Stankevich, D. G., et al., 2005. Derivation of Elemental Content Maps at Intermediate Resolution from Optical Interpolation of Lunar Prospector Gamma-Ray Spectrometer Data. Planetary and Space Science, 53(12): 1287–1301 doi: 10.1016/j.pss.2005.07.001
    Smith, J. V., Anderson, A. T., Newton, R. C., et al., 1970. Petrologic History of the Moon Inferred from Petrography, Mineralogy and Petrogenesis of Apollo 11 Rocks. In: Proceedings of the Apollo 11 Lunar Science Conference. New York, Oxford. 1: 897–925
    Sunshine, J. M., Tompkins, S., 2001. Yet Another New Look at Copernicus: Projecting Telescopic Spectra onto Clementine Multispectral Images through Spectral Mixture Analysis. In: Proceedings of 32nd Lunar and Planetary Science Conference. Houston, United States. 1324
    Wan, Y. Q., Tan, K. L., Zhou, R. P., 2006. The Study and Application of Hyperspectral Remote Sensing. Science Press, Beijing. 127–134 (in Chinese)
    Yang, H. J., Roe, B. P., Zhu, J., 2007. Studies of Stability and Robustness for Artificial Neural Networks and Boosted Decision Trees. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 574(2): 342–349
    Yue, Z. Y., 2008. The Tentative Study of Lunar Tectonic Features and Remote Sensing Images Interpretation: [Dissertation]. China University of Geosciences, Beijing (in Chinese with English Abstract)
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(5)

    Article Metrics

    Article views(941) PDF downloads(15) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return