Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 24 Issue 4
Aug 2013
Turn off MathJax
Article Contents
Qingyang Li, Baotian Pan, Xiaofei Hu, Zhenbo Hu, Fuqiang Li, Shunzhi Yang. Apatite Fission Track Constraints on the Pattern of Faulting in the North Qilian Mountain. Journal of Earth Science, 2013, 24(4): 569-578. doi: 10.1007/s12583-013-0350-1
Citation: Qingyang Li, Baotian Pan, Xiaofei Hu, Zhenbo Hu, Fuqiang Li, Shunzhi Yang. Apatite Fission Track Constraints on the Pattern of Faulting in the North Qilian Mountain. Journal of Earth Science, 2013, 24(4): 569-578. doi: 10.1007/s12583-013-0350-1

Apatite Fission Track Constraints on the Pattern of Faulting in the North Qilian Mountain

doi: 10.1007/s12583-013-0350-1
More Information
  • Corresponding author: Qingyang Li, liqy0518@foxmail.com
  • Received Date: 20 Dec 2012
  • Accepted Date: 25 Mar 2013
  • Publish Date: 01 Aug 2013
  • The Qilian (祁连) Mountain is an active orogenic belt located at the northeastern margin of the Tibetan Plateau. During the process of continuous convergence between Indian and Eurasian plates, the Qilian Mountain grow correspondingly by means of reaction of old faults and generation of new ones. Here we present apatite fission-track data along a river profile crossing three minor fault (the Minle (民乐)-Damaying (大马营) fault, the Huangcheng (皇城)-Taerzhuang (塔尔庄) fault and the Kangningqiao (康宁桥) fault) which compose the North Qilian fault (NQF) to test the timing and patterns of the fault activities. Apatite fission-track (AFT) results indicate that these minor faults experienced two active phases in the Cretaceous and the Oligocene-Miocene. Further research indicate that the initiation timing of faulting became younger northward in both active periods and the later phase probably more active than the former phase. These tectonic activities might be highly related to the docking of the Lhasa Block to the south in the Cretaceous and uplift and expansion of the Tibetan Plateau in the Cenozoic.

     

  • loading
  • Barbarand, J., Carter, A., Wood, I., et al., 2003. Compositional and Structural Control of Fission-Track Annealing in Apatite. Chemical Geology, 198: 107–137 doi: 10.1016/S0009-2541(02)00424-2
    Bovet, P. M., Ritts, B. D., Gehrels, G., et al., 2009. Evidence of Miocene Crustal Shortening in the North Qilian Shan from Cenozoic Stratigraphy of the Western Hexi Corridor, Gansu Province, China. American Journal of Science, 309: 290–329 doi: 10.2475/00.4009.02
    Brandon, M. T., 1992. Decomposition of Fission-Track Grain-Age Distributions. American Journal of Science, 292: 535–564 doi: 10.2475/ajs.292.8.535
    Braun, J., 2002. Quantifying the Effect of Recent Relief Changes on Age-Elevation Relationships. Earth and Planetary Science Letters, 200: 331–343 doi: 10.1016/S0012-821X(02)00638-6
    Carlson, W. D., Donelick, R. A., Ketcham, R. A., 1999. Variability of Apatite Fission-Track Annealing Kinetics: I. Experimental Results. American Mineralogist, 84: 1213–1223 doi: 10.2138/am-1999-0901
    Dunkl, I., 2002. Trackkey: A Windows Program for Calculation and Graphical Presentation of Fission Track Data. Computers & Geosciences, 28: 3–12 http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.534.7374&rep=rep1&type=pdf
    Fang, X. M., Zhao, Z. J., Li, J. J., et al., 2004. Paleomagnetism of the Late Cenozoic Stratigraphy in the Jiuxi Basin North of the Qilian Mts. and Uplift the Tibetan Plateau. Science in China Series D: Earth Sciences, 34: 97–106
    Fang, X. M., Zhao, Z. J., Li, J. J., et al., 2005. Magnetostratigraphy of the Late Cenozoic Laojunmiao Anticline in the Northern Qilian Mountains and Its Implications for the Northern Tibetan Plateau Uplift. Science in China Series D: Earth Sciences, 48: 1040–1051 doi: 10.1360/03yd0188
    Galbraith, R. F., 1981. On Statistical Models for Fission Track Counts. Mathematical Geology, 13: 471–478 doi: 10.1007/BF01034498
    GBGMR (Gansu Bureau of Geology and Mineral Resources), 1989. Regional Geology of Gansu Province. Geological Publishing House, Beijing (in Chinese with English Abstract)
    Gehrels, G. E., Yin, A., Wang, X. F., 2003. Magmatic History of the Northeastern Tibetan Plateau. Journal of Geophysical Research, 108: 2423 http://pubs.geoscienceworld.org/gsa/gsabulletin/article-pdf/115/7/881/3390495/i0016-7606-115-7-881.pdf
    George, A. D., Marshallsea, S. J., Wyrwoll, K. H., et al., 2001. Miocene Cooling in the Northern Qilian Shan, Northeastern Margin of the Tibetan Plateau, Revealed by Apatite Fission-Track and Vitrinite-Reflectance Analysis. Geology, 29: 939–942 doi: 10.1130/0091-7613(2001)029<0939:MCITNQ>2.0.CO;2
    Gleadow, A. J. W., Brown, R. W., 2000. Fission Track Thermochronology and the Long-Term Denudational Response to Tectonics. In: Summerfield, M. J., ed., Geomorphology and Global Tectonics. Wiley, New York. 57–75
    Gleadow, A. J. W., Duddy, I. R., 1981. A Natural Long-Term Track Annealing Experiment for Apatite. Nuclear Tracks and Radiation Measurements, 5: 160–174 http://www.sciencedirect.com/science/article/pii/0191278x81900391
    Gleadow, A. J. W., Duddy, I. R., Green, P. F., et al., 1986a. Fission Track Lengths in the Apatite Annealing Zone and the Interpretation of Mixed Ages. Earth and Planetary Science Letters, 78: 245–254 doi: 10.1016/0012-821X(86)90065-8
    Gleadow, A. J. W., Duddy, I. R., Green, P. F., et al., 1986b. Confined Fission Track Lengths in Apatite: A Diagnostic Tool for Thermal History Analysis. Contributions to Mineralogy and Petrology, 94: 405–415 doi: 10.1007/BF00376334
    Green, P. F., 1985. Comparison of Zeta Calibration Baseline for Fission Track Dating of Apatite, Zircon, and Sphene. Chemical Geology, 58: 1–22 doi: 10.1016/0168-9622(85)90023-5
    Green, P. F., 1986. On the Thermo-Tectonic Evolution of Northern England: Evidence from Fission Track Analysis. Geological Magazine, 123: 493–506 doi: 10.1017/S0016756800035081
    Green, P. F., 1988. The Relationship between Track Shortening and Fission Track Age Reduction in Apatite: Combined Influences of Inherent Instability Annealing Anisotropy, Length Bias and System Calibration. Earth and Planetary Science Letters, 89: 335–352 doi: 10.1016/0012-821X(88)90121-5
    Hu, S., O'Sullivan, P. B., Raza, A., et al., 2001. Thermal History and Tectonic Subsidence of the Bohai Basin, Northern China: A Cenozoic Rifted and Local Pull-Apart Basin. Physics of the Earth and Planetary Interiors, 126: 221–235 doi: 10.1016/S0031-9201(01)00257-6
    Hu, X. F., Pan, B. T., Eric, K., et al., 2010. Spatial Differences in Rock Uplift Rates Inferred from Channel Steepness Indices along the Northern Flank of the Qilian Mountain, Northeast Tibetan Plateau. Chinese Science Bulletin, 55: 3205–3214 http://www.cnki.com.cn/article/cjfdtotal-jxtw2010z2023.htm
    Hurford, A., 1991. Uplift and Cooling Pathways Derived from Fission Track Analysis and Mica Dating: A Review. Geologische Rundschau, 80: 349 doi: 10.1007/BF01829371
    IGCEA (institure of Geology, China Earthquake Administration), 1993. Qilianshan Mountain-Hexi Corridor Active Fault System. Earthquake Press, Beijing. 11–94 (in Chinese with English Summary)
    Jolivet, M., Brunel, M., Seward, D., et al., 2001. Mesozoic and Cenozoic Tectonics of the Northern Edge of the Tibetan Plateau: Fission-Track Constraints. Tectonophysics, 343: 111–134 doi: 10.1016/S0040-1951(01)00196-2
    Ketcham, R. A., 2005. Forward and Inverse Modeling of Low-Temperature Thermochronometry Data. Reviews in Mineralogy and Geochemistry, 58: 275–314 doi: 10.2138/rmg.2005.58.11
    Ketcham, R. A., Carter, A., Donelick, R. A., et al., 2007. Improved Modeling of Fission-Track Annealing in Apatite. American Mineralogist, 92: 799–810 doi: 10.2138/am.2007.2281
    Ketcham, R. A., Donelick, R. A., Donelick, M. B., 2003. AFTSolve: A Program for Multi-Kinetic Modeling of Apatite Fission-Track Data. American Mineralogist, 88: 929
    Laslett, G. M., Green, P. F., Duddy, I. R., et al., 1987. Thermal Annealing of Fission Tracks in Apatite 2. A Quantitative Analysis. Chemical Geology, 65: 1–13 doi: 10.1016/0168-9622(87)90057-1
    Meyer, B., Tapponnier, P., Bourjot, L., et al., 1998. Crustal Thickening in Gansu-Qinghai, Lithospheric Mantle Subduction, and Oblique, Strike-Slip Controlled Growth of the Tibet Plateau. Geophysical Journal International, 135: 1–47 doi: 10.1046/j.1365-246X.1998.00567.x
    Molnar, P., England, P., Martinod, J., 1993. Mantle Dynamics, Uplift of the Tibetan Plateau, and the Indian Monsoon. Review of Geophysics, 31: 357–396 doi: 10.1029/93RG02030
    Pan, B. T., Hu, X. F., Gao, H. S., et al., 2012. Late Quaternary River Incision Rates and Rock Uplift Pattern of the Eastern Qilian Shan Mountain, China. Geomorphology, doi: 10.1016/j.geomorph.2012.11.020
    Roger, F., Jolivet, M., Cattin, R., et al., 2011. Mesozoic-Cenozoic Tectonothermal Evolution of the Eastern Part of the Tibetan Plateau (Songpan-Garzê, Longmen Shan Area): Insights from Thermochronological Data and Simple Thermal Modelling. Geological Society, London, Special Publications, 353: 9–25 doi: 10.1144/SP353.2
    Roger, F., Jolivet, M., Malavieille, J., 2008. Tectonic Evolution of the Triassic Fold Belts of Tibet. Comptes Rendus Geoscience, 340: 180–189 doi: 10.1016/j.crte.2007.10.014
    Roger, F., Jolivet, M., Malavieille, J., 2010. The Tectonic Evolution of the Songpan-Garzê (North Tibet) and Adjacent Areas from Proterozoic to Present: A Synthesis. Journal of Asian Earth Sciences, 39: 254–269 doi: 10.1016/j.jseaes.2010.03.008
    Tapponnier, P., Meyer, B., Avouac, J. P., et al., 1990. Active Thrusting and Folding in the Qilian Shan, and Decoupling between Upper Crust and Mantle in Northeastern Tibet. Earth and Planetary Science Letters, 97: 382–403 doi: 10.1016/0012-821X(90)90053-Z
    Tapponnier, P., Xu, Z. Q., Roger, F., et al., 2001. Oblique Stepwise Rise and Growth of the Tibet Plateau. Science, 294: 1671–1677 doi: 10.1126/science.105978
    Wang, C. S., Zhao, X. X., Liu, Z. F., et al., 2008. Constraints on the Early Uplift History of the Tibetan Plateau. Proceedings of the National Academy of Sciences, 105: 4987–4992 doi: 10.1073/pnas.0703595105
    Yin, A., Rumelhart, P. E., Butler, R., et al., 2002. Tectonic History of the Altyn Tagh Fault System in Northern Tibet Inferred from Cenozoic Sedimentation. Geological Society of America Bulletin, 114: 1257–1295 doi: 10.1130/0016-7606(2002)114<1257:THOTAT>2.0.CO;2
    Yuan, W. M., Dong, J. Q., Wang, S. C., et al., 2006. Apatite Fission Track Evidence for Neogene Uplift in the Eastern Kunlun Mountains, Northern Qinghai-Tibet Plateau, China. Journal of Asian Earth Sciences, 27: 847–856 doi: 10.1016/j.jseaes.2005.09.002
    Yue, Y. J., Graham, S. A., Ritts, B. D., et al., 2005. Detrital Zircon Provenance Evidence for Large-Scale Extrusion along the Altyn Tagh Fault. Tectonophysics, 406: 165–178 doi: 10.1016/j.tecto.2005.05.023
    Zheng, D. W., Clark, M. K., Zhang, P. Z., et al., 2010. Erosion, Fault Initiation and Topographic Growth of the North Qilian Shan (Northern Tibetan Plateau). Geosphere, 6: 1–5 doi: 10.1130/GES00192.1
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(1)

    Article Metrics

    Article views(738) PDF downloads(62) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return