Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 25 Issue 1
Feb 2014
Turn off MathJax
Article Contents
Shifeng Tian, Zhong-Qiang Chen, Chunju Huang. Orbital Forcing and Sea-Level Changes in the Earliest Triassic of the Meishan Section, South China. Journal of Earth Science, 2014, 25(1): 64-73. doi: 10.1007/s12583-014-0400-3
Citation: Shifeng Tian, Zhong-Qiang Chen, Chunju Huang. Orbital Forcing and Sea-Level Changes in the Earliest Triassic of the Meishan Section, South China. Journal of Earth Science, 2014, 25(1): 64-73. doi: 10.1007/s12583-014-0400-3

Orbital Forcing and Sea-Level Changes in the Earliest Triassic of the Meishan Section, South China

doi: 10.1007/s12583-014-0400-3
More Information
  • Corresponding author: Shifeng Tian, shftian@gmail.com
  • Received Date: 22 Apr 2013
  • Accepted Date: 11 Jul 2013
  • Publish Date: 01 Feb 2014
  • The Earliest Triassic Yinkeng Formation is exposed at the well-known Meishan Section, South China, which contains the Global Stratotype of Section and Point (GSSP) for the Permian-Triassic boundary (PTB). It records centimeter-scale rhythmic alternations comprised mainly by marlstone and limestone. Seven types of couplet embedded in five types of bundles were recognized based on occurrence and thickness of the lithologic units, suggesting that their formation was controlled by cyclic processes. The various orders of cycles observed correlate well with other Early Triassic counterparts recorded in South China. Here, we present new cyclostratigraphic results based on lithologic thickness and relative carbonate content of the Yinkeng Formation. Power spectra of carbonate content show that the ratio of major wavelengths recognized throughout the formation is similar to that of the 100 kyr short eccentricity, 33 kyr obliquity, and 21 kyr precession cycles, indicating that astronomical signals are recorded in the Earliest Triassic rhythmic succession. Consistence between pronounced lithologic rhythmicity and sea-level changes obtained from Fischer plots indicates that high-frequency climatic cycles may have driven sea-level changes immediately after the PTB mass extinction. Furthermore, the 4th-order sea-level changes interpreted from the sedimentary record match well with 100 kyr short eccentricity component of carbonate content, reflecting that the 100 kyr short eccentricity-induced climate changes may have likely controlled the deposition of 4th-order sequences recognized from rhythmic successions.

     

  • loading
  • Algeo, T. J., Hinnov, L., Moser, J., et al., 2010. Changes in Productivity and Redox Conditions in the Panthalassic Ocean during the Latest Permian. Geology, 38(2): 187–190, doi: 10.1130/g30483.1
    Algeo, T. J., Kuwahara, K., Sano, H., et al., 2011. Spatial Variation in Sediment Fluxes, Redox Conditions, and Productivity in the Permian-Triassic Panthalassic Ocean. Palaeogeography, Palaeoclimatology, Palaeoecology, 308(1–2): 65–83, doi: 10.1016/j.palaeo.2010.07.007
    Andrews, J. E., Portman, C., Rowe, P. J., et al., 2007. Sub-Orbital Sea-Level Change in Early MIS 5e: New Evidence from the Gulf of Corinth, Greece. Earth and Planetary Science Letters, 259(3–4): 457–468, doi: 10.1016/j.epsl.2007.05.005
    Boss, S. K., Rasmussen, K. A., 1995. Misuse of Fischer Plots as Sea-Level Curves. Geology, 23(3): 221–224, doi: 10.1130/0091-7613(1995)023〈0221:MOFPAS〉2.3.CO;2
    Boulila, S., Galbrun, B., Miller, K. G., et al., 2011. On the Origin of Cenozoic and Mesozoic "Third-Order" Eustatic Sequences. Earth-Science Reviews, 109(3–4): 94–112, doi: 10.1016/j.earscirev.2011.09.003
    Bowring, S. A., Erwin, D. H., Jin, Y. G., et al., 1998. U/Pb Zircon Geochronology and Tempo of the End-Permian Mass Extinction. Science, 280(5366): 1039–1045, doi: 10.1126/science.280.5366.1039
    Chen, Z. Q., Benton, M. J., 2012. The Timing and Pattern of Biotic Recovery Following the End-Permian Mass Extinction. Nature Geoscience, 5(6): 375–383, doi: 10.1038/NGEO1475
    Chen, Z. Q., Shi, G. R., Kaiho, K., 2002. A New Genus of Rhynchonellid Brachiopod from the Lower Triassic of South China and Implications for Timing the Recovery of Brachiopoda after the End-Permian Mass Extinction. Palaeontology, 45(1): 149–164, doi: 10.1111/1475-4983.00231
    Chen, Z. Q., Tong, J. N., Kaiho, K., et al., 2007. Onset of Biotic and Environmental Recovery from the End-Permian Mass Extinction within 1–2 Million Years: A Case Study of the Lower Triassic of the Meishan Section, South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 252(1–2): 176–187, doi: 10.1016/j.palaeo.2006.11.042
    Chen, Z. Q., Tong, J. N., Liao, Z. T., et al., 2010. Structural Changes of Marine Communities over the Permian-Triassic Transition: Ecologically Assessing the End-Permian Mass Extinction and Its Aftermath. Global and Planetary Change, 73(1–2): 123–140, doi: 10.1016/j.gloplacha.2010.03.011
    Cleaveland, L. C., Jensen, J. L., Goese, S., et al., 2002. Cyclostratigraphic Analysis of Pelagic Carbonates at Monte dei Corvi (Ancona, Italy) and Astronomical Correlation of the Serravallian-Tortonian Boundary. Geology, 30(10): 931–934, doi: 10.1130/0091-7613(2002)030〈0931:CAOPCA〉2.0.CO;2
    Day, P. I., 1997. The Fischer Diagram in the Depth Domain: A Tool for Sequence Stratigraphy. Journal of Sedimentary Research, 67(5): 982–984, doi: 10.2110/jsr.67.982
    Erwin, D. H., 1994. The Permo-Triassic Extinction. Nature, 367: 231–236, doi: 10.1038/367231a0
    Fischer, A. G., 1964. The Lofer Cyclothems of the Alpine Triassic. Kansas Geological Survey Bulletin, 38(1): 107–149
    Ghil, M., Allen, M. R., Dettinger, M. D., et al., 2002. Advanced Spectral Methods for Climatic Time Series. Reviews of Geophysics, 40(1): 1–41, doi: 10.1029/2001rg000092
    Goldhammer, R. K., Dunn, P. A., Hardie, L. A., 1990. Depositional Cycles, Composite Sea-Level Changes, Cycle Stacking Patterns, and the Hierarchy of Stratigraphic Forcing: Examples from Alpine Triassic Platform Carbonates. Geological Society of America Bulletin, 102(5): 535–562, doi: 10.1130/0016-7606(1990)102〈0535:dccslc〉2.3.co;2
    Guo, G., Tong, J. N., Zhang, S. X., et al., 2008. Cyclostratigraphy of the Induan (Early Triassic) in West Pingdingshan Section, Chaohu, Anhui Province. Science in China Series D: Earth Sciences, 51(1): 22–29, doi: 10.1007/s11430-007-0156-z
    Hansen, H. J., Lojen, S., Toft, P., et al., 2000. Magnetic Susceptibility and Organic Carbon Isotopes of Sediments across Some Marine and Terrestrial Permo-Triassic Boundaries. In: Yin, H. F., Dickins, J. M., Shi, G. R., et al., eds., Permian-Triassic Evolution of Tethys and Western-Circum Pacific. Elsevier, Amsterdam. 271–289
    Haq, B. U., Hardenbol, J., Vail, P. R., 1987. Chronology of Fluctuating Sea Levels since the Triassic. Science, 235(4793): 1156–1167, doi: 10.1126/science.235.4793.1156
    Haq, B. U., Hardenbol, J., Vail, P. R., 1988. Mesozoic and Cenozoic Chronostratigraphy and Cycles of Sea-Level Change. SEPM Special Publication, 42: 71–108 http://ci.nii.ac.jp/naid/10003771943
    Hays, J. D., Imbrie, J., Shackleton, N. J., 1976. Variations in the Earth's Orbit: Pacemarker of the Ice Age. Science, 194(4270): 1121–1132, doi: 10.1126/science.194.4270.1121
    Hinnov, L. A., 2000. New Perspectives on Orbitally Forced Stratigraphy. Annual Review of Earth and Planetary Science, 28(1): 419–475, doi: 10.1146/annurev.earth.28.1.419
    Huang, C. J., Tong, J. N., Hinnov, L., et al., 2011. Did the Great Dying of Life Take 700 k. y.? Evidence from Global Astronomical Correlation of the Permian-Triassic Boundary Interval. Geology, 39(8): 779–782, doi: 10.1130/g32126.1
    Husinec, A., Basch, D., Rose, B., et al., 2008. FISCHERPLOTS: An Excel Spreadsheet for Computing Fischer Plots of Accommodation Change in Cyclic Carbonate Successions in both the Time and Depth Domains. Computers & Geosciences, 34(3): 269–277, doi: 10.1016/j.cageo.2007.02.004
    Laskar, J., Fienga, A., Gastineau, M., et al., 2011. La2010: A New Orbital Solution for the Long-Term Motion of the Earth. Astronomy & Astrophysics, 532: A89, doi: 10.1051/0004-6361/201116836
    Lehrmann, D. J., Yang, W., Wei, J., et al., 2001. Lower Triassic Peritidal Cyclic Limestone: An Example of Anachronistic Carbonate Facies from the Great Bank of Guizhou, Nanpanjiang Basin, Guizhou Province, South China. Palaeogeography, 173(3): 103–123, doi: 10.1016/S0031-0182(01)00302-9
    Li, S., Tong, J. N., Liu, K., et al., 2007. The Lower Triassic Cyclic Deposition in Chaohu, Anhui Province, China. Palaeogeography, 252(1): 188–199, doi: 10.1016/j.palaeo.2006.11.043
    Locklair, R. E., Sageman, B. B., 2008. Cyclostratigraphy of the Upper Cretaceous Niobrara Formation, Western Interior, U.S.A. : A Coniacian-Santonian Orbital Timescale. Earth and Planetary Science Letters, 269(3–4): 540–553, doi: 10.1016/j.epsl.2008.03.021
    Mann, M. E., Lees, J. M., 1996. Robust Estimation of Background Noise and Signal Detection in Climatic Time Series. Climatic Change, 33(3): 409–445, doi: 10.1007/BF00142586
    Martín-Chivelet, J., Osleger, D. A., Montañez, I. P., 2000. Modified Fischer Plots as Graphical Tools for Evaluating Thickness Patterns in Stratigraphic Successions. Journal of Geoscience Education, 48(2): 179–183 doi: 10.5408/1089-9995-48.2.179
    Mundil, R., Ludwig, K. R., Metcalfe, I., et al., 2004. Age and Timing of the Permian Mass Extinctions: U/Pb Dating of Closed-System Zircons. Science, 305(5691): 1760–1763, doi: 10.1126/science.1101012
    Paillard, D., Labeyrie, L. D., Yiou, P., 1996. Macintosh Program Performs Time-Series Analysis. EOS, Transactions American Geophysical Union, 77(39): 379, doi: 10.1029/96EO00259
    Paulissen, W. E., Luthi, S. M., 2011. High-Frequency Cyclicity in a Miocene Sequence of the Vienna Basin Established from High-Resolution Logs and Robust Chronostratigraphic Tuning. Palaeogeography, 307(1–4): 313–323, doi: 10.1016/j.palaeo.2011.05.029
    Pekar, S., Miller, K. G., 1996. New Jersey Oligocene "Icehouse" Sequences (ODP Leg 150X) Correlated with Global δ 18O and Exxon Eustatic Records. Geology, 24(6): 567–570, doi: 10.1130/0091-7613(1996)024〈0567:njoiso〉2.3.co;2
    Prokoph, A., Thurow, J., 2000. Diachronous Pattern of Milankovitch Cyclicity in Late Albian Pelagic Marlstones of the North German Basin. Sedimentary Geology, 134(3): 287–303, doi: 10.1016/S0037-0738(00)00050-6
    Rampino, M. R., Prokoph, A., Adler, A., 2000. Tempo of the End-Permian Event: High-Resolution Cyclostratigraphy at the Permian-Triassic Boundary. Geology, 28(7): 643–646, doi: 10.1130/0091-7613(2000)28〈643:TOTEEH〉2.0.CO;2
    Read, J. F., Goldhammer, R. K., 1988. Use of Fischer Plots to Define Third-Order Sea-Level Curves in Ordovician Peritidal Cyclic Carbonates, Appalachians. Geology, 16(10): 895–899, doi: 10.1130/0091-7613(1988)016〈0895:UOFPTD〉2.3.CO;2
    Read, J. F., Koerschner, W. F., Osleger, D. A., et al., 1991. Field and Modelling Studies of Cambrian Carbonate Cycles, Virginia Appalachians: Reply. Journal of Sedimentary Petrology, 61(4): 647–652
    Sadler, P. M., Osleger, D. A., Montañez, I. P., 1993. On the Labeling, Length, and Objective Basis of Fischer Plots. Journal of Sedimentary Research, 63(3): 360–368, doi: 10.1306/D4267AFF-2B26-11D7-8648000102C1865D
    Soreghan, G. S., 1994. Stratigraphic Responses to Geologic Processes: Late Pennsylvanian Eustasy and Tectonics in the Pedregosa and Orogrande Basins, Ancestral Ricky Mountains. Geological Society of America Bulletin, 106(9): 1195–1211, doi: 10.1130/0016-7606(1994)106〈1195:srtgpl〉2.3.co;2
    Stoll, H. M., Schrag, D. P., 2000. High-Resolution Stable Isotope Records from the Upper Cretaceous Rocks of Italy and Spain: Glacial Episodes in a Greenhouse Planet? Geological Society of America Bulletin, 112(2): 308–319, doi: 10.1130/0016-7606 (2000)112〈308:hsirft〉2.0.co;2
    Strasser, A., Hilgen, F. J., Heckel, P. H., 2006. Cyclostratigraphy-Concepts, Definitions, and Applications. Newsletters on Stratigraphy, 42(2): 75–114, doi: 10.1127/0078-0421/2006/0042-0075
    Strasser, A., Hillgärtner, H., Hug, W., et al., 2000. Third-Order Depositional Sequences Reflecting Milankovitch Cyclicity. Terra Nova, 12(6): 303–311, doi: 10.1046/j.1365-3121.2000.00315.x
    Strasser, A., Pittet, B., Hillgärtner, H., et al., 1999. Depositional Sequences in Shallow Carbonate Dominated Sedimentary Systems: Concepts for a High-Resolution Analysis. Sedimentary Geology, 128(3): 201–221, doi: 10.1016/S0037-0738(99)00070-6
    Sun, Y., Joachimski, M. M., Wignall, P. B., et al., 2012. Lethally Hot Temperatures during the Early Triassic Green House. Science, 338(6105): 366–370, doi: 10.1126/science.1224126
    Thomson, D. J., 1982. Spectrum Estimation and Harmonic Analysis. Proceedings of the IEEE, 70(9): 1055–1096, doi: 10.1109/PROC.1982.12433
    Tong, J. N., 1997. A Study on the Griesbachian Cyclostratigraphy of Meishan Section, Changxing, Zhejiang Province. Symposium of the International Conference on Stratigraphy and Tectonic Evolution of Southeast Asia and the South Pacific. Bangkok, Thailand. 158–163 http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZXW199701009.htm
    Tong, J. N., Yin, H. F., 1998. The Marine Triassic Sequence Stratigraphy of Lower Yangtze. Science in China Series D: Earth Sciences, 41(3): 255–261, doi: 10.1007/BF02973113
    Tong, J. N., Zhang, S. X., Zuo, J. X., et al., 2007. Events during Early Triassic Recovery from the End-Permian Extinction. Global and Planetary Change, 55(1): 66–80, doi: 10.1016/j.gloplacha.2006.06.015
    Vail, P. R., Audemard, F., Bowman, S. A., et al., 1991. The Stratigraphic Signatures of Tectonics, Eustasy and Sedimentology: An Overview. In: Einsele, G., Ricken, W., Seilacher, A., eds. Cycles and Events in Stratigraphy. Springer, Berlin. 617–659
    Vail, P. R., hardenbol, J., Todd, R. G., 1984. Jurassic Unconformities, Chronostratigraphy, and Sea-Level Changes from Seismic Stratigraphy and Biostratigraphy. In: Schlee, J. S., ed., Interregional Unconformities and Hydrocarbon Accumulation. American Association of Petroleum Geologists, Tulsa. 129–144
    Weedon, G. P., 2003. Time-Series Analysis and Cyclostratigraphy: Examining Stratigraphic Records of Environmental Cycles. Cambridge University Press, New York
    Wu, H., Zhang, S., Feng, Q., et al., 2012. Milankovitch and Sub-Milankovitch Cycles of the Early Triassic Daye Formation, South China and Their Geochronological and Paleoclimatic Implications. Gondwana Research, 22(2): 748–759, doi: 10.1016/j.gr.2011.12.003
    Yang, W., Lehrmann, D. J., 2003. Milankovitch Climatic Signals in Lower Triassic (Olenekian) Peritidal Carbonate Successions, Nanpanjiang Basin, South China. Palaeogeography, 201(3–4): 283–306, doi: 10.1016/s0031-0182(03)00614-x
    Yin, H. F., Tong, J. N., 1996. Late Permian-Middle Triassic Sea-Level Changes of Yangtze Platform. Journal of China University of Geosciences, 7(1): 101–104 http://www.researchgate.net/profile/Xulong_Lai/publication/271908064_Late_Permian-_Middle_Triassic_sea_level_changes_of_Yangtze_platform/links/5665b5e608ae4931cd624da2.pdf
    Yin, H. F., Zhang, K. X., Tong, J. N., et al., 2001. The Global Stratotype Section and Point (GSSP) of the Permian-Triassic Boundary. Episodes, 24(2): 102–114 doi: 10.18814/epiiugs/2001/v24i2/004
    Zhang, K. X., Tong, J. N., Shi, G. R., et al., 2007. Early Triassic Conodont-Palynological Biostratigraphy of the Meishan D Section in Changxing, Zhejiang Province, South China. Palaeogeography, 252(1–2): 4–23, doi: 10.1016/j.palaeo.2006.11.031
    Zhang, K. X., Tong, J. N., Yin, H. F., et al., 1997. Sequence Stratigraphy of the Permian-Triassia Boundary Section of Changxing, Zhejiang, Southern China. Acta Geologica Sinica (English Edition), 71(1): 90–103, doi: 10.1111/j.1755-6724.1997.tb00349.x
    Ziegler, A. M., Gibbs, M. T., Hulver, M. L., 1998. A Mini-Altas of Oceanic Water Masses in the Permian Period. Proceedings of Royal Society of Victoria, 110: 323–343
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)

    Article Metrics

    Article views(525) PDF downloads(101) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return