Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 25 Issue 4
Aug 2014
Turn off MathJax
Article Contents
Ning MA, Dujie HOU, Hesheng SHI. Novel tetracyclic terpanes in crude oils and source rock extracts in pearl river mouth basin and their geological significance. Journal of Earth Science, 2014, 25(4): 713-718. doi: 10.1007/s12583-014-0468-9
Citation: Ning MA, Dujie HOU, Hesheng SHI. Novel tetracyclic terpanes in crude oils and source rock extracts in pearl river mouth basin and their geological significance. Journal of Earth Science, 2014, 25(4): 713-718. doi: 10.1007/s12583-014-0468-9

Novel tetracyclic terpanes in crude oils and source rock extracts in pearl river mouth basin and their geological significance

doi: 10.1007/s12583-014-0468-9
More Information
  • Corresponding author: Ning MA, mndd2007@163.com
  • Received Date: 10 Jan 2013
  • Accepted Date: 18 Jun 2013
  • Publish Date: 01 Aug 2014
  • Novel tetracyclic terpanes X and Y namely C24-des-A-oleanane and C27 tetracyclic terpane were detected in crude oils and source rock extracts in Zhu 1 depression in Pearl River Mouth Basin by GC-MS analysis technology. These compounds are similar to oleanane in the structure, and their relative abundance in m/z 191 partial mass chromatogram has a good correlation with oleanane. Here compounds X and Y are considered to be derived from the des-A degradation of oleanoid precursor. The ratio of X/(X+C24) and Y/(Y+C24) increase with the increasing inputs of terrigenous organic matter in crude oils. Wenchang Formation middle-deep lacustrine source rocks with planktonic algae organic matter inputs and oil generating from it contain low abundance of compounds X and Y, while Enping Formation coal measures source rocks with terrigenous higher plants organic matter inputs and oil generating from it usually have higher compounds X and Y. In general when two terrigenous compounds C19 tricyclic terpane and bicadinane-T are high in crude oils, there are also a corresponding high abundant compounds X and Y. Relative abundance of compounds X and Y is closely related to the source of organic matter and it can indicate the input of terrigenous organic matter.

     

  • loading
  • Aquino Neto, F. R., Trendel, J. M., Restle, A., et al., 1981. Occurrence and Formation of Tricyclic and Tetracyclic Terpanes in Sediments and Petroleums. In: Bjory, M., ed., Advances in Organic Geochemistry 1981: International Conference Proceedings. John Wiley & Sons Ltd. . 659–667
    Bechtel, A., Woszczyk, M., Reischenbacher, D., et al., 2007. Biomarkers and Geochemical Indicators of Holocene Environmental Changes in Coastal Lake Sarbsko (Poland). Organic Geochemistry, 38(7): 1112–1131 doi: 10.1016/j.orggeochem.2007.02.009
    Boreham, C. J., Blevin, J. E., Radlinski, A. P., et al., 2003. Coal as a Source of Oil and Gas: A Case Study from the Bass Basin, Australia. APPEA Journal, 43(1): 117–148 doi: 10.1071/AJ02006
    Clark, J. P., Philp, R. P., 1989. Geochemical Characterization of Evaporite and Carbonate Depositional Environments and Correlation of Associated Crude Oils in the Black Creek Basin, Alberta. Bulletin of Canadian Petroleum Geology, 37(4): 401–416
    Connan, J., Bouroullec, J., Dessort, D., et al., 1986. The Microbial Input in Carbonate-Anhydrite Facies of a Sabkha Palaeoenvironment from Guatemala: A Molecular Approach. Organic Geochemistry, 10(1): 29–50 http://www.onacademic.com/detail/journal_1000035333198410_9cdc.html
    Farrimond, P., Bevan, J. C., Bishop, A. N., 1999. Tricyclic Terpane Maturity Parameters: Response to Heating by an Igneous Intrusion. Organic Geochemistry, 30(8): 1011–1019 doi: 10.1016/S0146-6380(99)00091-1
    Gong, S., George, S. C., Volk, H., et al., 2007. Petroleum Charge History in the Lunnan Low Uplift, Tarim Basin, China—Evidence from Oil-Bearing Fluid Inclusions. Organic Geochemistry, 38(8): 1341–1355 doi: 10.1016/j.orggeochem.2007.02.014
    Grice, K., Audino, M., Boreham, C. J., et al., 2001. Distributions and Stable Carbon Isotopic Compositions of Biomarkers in Torbanites from Different Palaeogeographical Locations. Organic Geochemistry, 32(10): 1195–1210 doi: 10.1016/S0146-6380(01)00087-0
    Jacob, J., Disnar, J. R., Boussafir, M., et al., 2007. Contrasted Distributions of Triterpene Derivatives in the Sediments of Lake Caçó Reflect Paleoenvironmental Changes during the Last 20 000 Yrs in NE Brazil. Organic Geochemistry, 38(2): 180–197 doi: 10.1016/j.orggeochem.2006.10.007
    Lu, H., Chen, T., Grice, K., et al., 2009. Distribution and Significance of Novel Low Molecular Weight Sterenes in an Immature Evaporitic Sediment from the Jinxian Sag, North China. Organic Geochemistry, 40(8): 902–911 doi: 10.1016/j.orggeochem.2009.04.015
    Peters, K. E., Walters, C. C., Moldowan, J. M., 2005. The Biomarker Guide: Biomarkers and Isotopes in the Environment and Human History. Cambridge University Press, London. 93–97
    Philp, R. P., Gilbert, T. D., 1982. Unusual Distribution of Biological Markers in an Australian Crude Oil. Nature, 299: 245–247 doi: 10.1038/299245a0
    Philp, R. P., Gilbert, T. D., 1986. Biomarker Distributions in Australian Oils Predominantly Derived from Terrigenous Source Material. Organic Geochemistry, 10(1): 73–84 http://www.onacademic.com/detail/journal_1000035332055810_a185.html
    Samuel, O. J., Kildahl-Andersen, G., Nytoft, H. P., et al., 2010. Novel Tricyclic and Tetracyclic Terpanes in Tertiary Deltaic Oils: Structural Identification, Origin and Application to Petroleum Correlation. Organic Geochemistry, 41(12): 1326–1337 doi: 10.1016/j.orggeochem.2010.10.002
    Simoneit, B. R., Xu, Y., Neto, R. R., et al., 2009. Photochemical Alteration of 3-Oxygenated Triterpenoids: Implications for the Origin of 3, 4-Seco-Triterpenoids in Sediments. Chemosphere, 74(4): 543–550 doi: 10.1016/j.chemosphere.2008.09.080
    Trendel, J. M., Restle, A., Connan, J., et al., 1982. Identification of a Novel Series of Tetracyclic Terpene Hydrocarbons (C24-C27) in Sediments and Petroleums. Journal of the Chemical Society, Chemical Communications, (5): 304–306 doi: 10.1039/C39820000304
    Tritz, J. P., Herrmann, D., Bisseret, P., et al., 1999. Abiotic and Biological Hopanoid Transformation: Towards the Formation of Molecular Fossils of the Hopane Series. Organic Geochemistry, 30(7): 499–514 doi: 10.1016/S0146-6380(99)00033-9
    Van Aarssen, B. G. K., Cox, H. C., Hoogendoorn, P., et al., 1990. A Cadinene Biopolymer in Fossil and Extant Dammar Resins as a Source for Cadinanes and Bicadinanes in Crude Oils from South East Asia. Geochimica et Cosmochimica Acta, 54(11): 3021–3031 doi: 10.1016/0016-7037(90)90119-6
    Woodhouse, A. D., Oung, J. N., Philp, R. P., et al., 1992. Triterpanes and Ring—A Degraded Triterpanes as Biomarkers Characteristic of Tertiary Oils Derived from Predominantly Higher Plant Sources. Organic Geochemistry, 18(1): 23–31 doi: 10.1016/0146-6380(92)90140-S
    Zhang, S., Huang, H., 2005. Geochemistry of Palaeozoic Marine Petroleum from the Tarim Basin, NW China: Part 1. Oil Family Classification. Organic Geochemistry, 36(8): 1204–1214
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)

    Article Metrics

    Article views(644) PDF downloads(154) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return