Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 25 Issue 6
Dec 2014
Turn off MathJax
Article Contents
Kai Wang, Yinhe Luo, Kaifeng Zhao, Limeng Zhang. Body Waves Revealed by Spatial Stacking on Long-Term Cross-Correlation of Ambient Noise. Journal of Earth Science, 2014, 25(6): 977-984. doi: 10.1007/s12583-014-0495-6
Citation: Kai Wang, Yinhe Luo, Kaifeng Zhao, Limeng Zhang. Body Waves Revealed by Spatial Stacking on Long-Term Cross-Correlation of Ambient Noise. Journal of Earth Science, 2014, 25(6): 977-984. doi: 10.1007/s12583-014-0495-6

Body Waves Revealed by Spatial Stacking on Long-Term Cross-Correlation of Ambient Noise

doi: 10.1007/s12583-014-0495-6
More Information
  • Corresponding author: Yinhe Luo, luoyinhe@cug.edu.cn
  • Received Date: 11 Oct 2013
  • Accepted Date: 27 Feb 2014
  • Publish Date: 01 Dec 2014
  • Theoretical and experimental studies indicate that complete Green's Function can be retrieved from cross-correlation in a diffuse field. High SNR (signal-to-noise ratio) surface waves have been extracted from cross-correlations of long-duration ambient noise across the globe. Body waves, not extracted in most of ambient noise studies, are thought to be more difficult to retrieve from regular ambient noise data processing. By stacking cross-correlations of ambient noise in 50 km inter-station distance bins in China, western United States and Europe, we observed coherent 20-100 s core phases (ScS, PKIKPPKIKP, PcPPKPPKP) and crustal-mantle phases (Pn, P, PL, Sn, S, SPL, SnSn, SS, SSPL) at distances ranging from 0 to 4 000 km. Our results show that these crustal-mantle phases show diverse characteristics due to different substructure and sources of body waves beneath different regions while the core phases are relatively robust and can be retrieved as long as stations are available. Further analysis indicates that the SNR of these body-wave phases depends on a compromise between stacking fold in spatial domain and the coherence of pre-stacked cross-correlations. Spatially stacked cross-correlations of seismic noise can provide new virtual seismograms for paths that complement earthquake data and that contain valuable information on the structure of the Earth. The extracted crustal-mantle phases can be used to study lithospheric heterogeneities and the robust core phases are significantly useful to study the deep structure of the Earth, such as detecting fine heterogeneities of the core-mantle boundary and constraining differential rotation of the inner core.

     

  • loading
  • Bensen, G. D., Ritzwoller, M. H., Barmin, M. P., et al., 2007. Processing Seismic Ambient Noise Data to Obtain Reliable Broad-Band Surface Wave Dispersion Measurements. Geophysical Journal International, 169(3): 1239–1260 doi: 10.1111/j.1365-246X.2007.03374.x
    Boué, P., Poli, P., Campillo, M., et al., 2013. Teleseismic Correlations of Ambient Seismic Noise for Deep Global Imaging of the Earth. Geophysical Journal International, 194(2): 844–848 doi: 10.1093/gji/ggt160
    Campillo, M., 2006. Phase and Correlation in 'Random' Seismic Fields and the Reconstruction of the Green Function. Pure and Applied Geophysics, 163: 475–502 doi: 10.1007/s00024-005-0032-8
    Crotwell, H. P., Owens, T. J., Ritsema, J., 1999. The TauP Toolkit: Flexible Seismic Travel-Time and Ray-Path Utilities. Seismological Research Letters, 70: 154–160 doi: 10.1785/gssrl.70.2.154
    Cupillard, P., Stehly, L., Romanowicz, B., 2011. The One-Bit Noise Correlation: A Theory Based on the Concepts of Coherent and Incoherent Noise. Geophysical Journal International, 184(3): 1397–1414 doi: 10.1111/j.1365-246X.2010.04923.x
    Draganov, D., Campman, X., Thorbecke, J., et al., 2009. Reflection Images from Ambient Seismic Noise. Geophysics, 74(5): A63–A67 doi: 10.1190/1.3193529
    Draganov, D., Wapenaar, K., Mulder, W., et al., 2007. Retrieval of Reflections from Seismic Background-Noise Measurements. Geophysical Research Letters, 34: L043054. doi: 10.1029/2006GL028735
    Fu, Y. V., Li, A., Chen, Y. J., 2010. Crustal and Upper Mantle Structure of Southeast Tibet from Rayleigh Wave Tomography. Journal of Geophysical Research, 115: B12323. doi: 10.1029/2009JB007160
    Gouédard, P., Stehly, L., Brenguier, F., et al., 2008. Cross-Correlation of Random Fields: Mathematical Approach and Applications. Geophysical Prospecting, 56: 375–393 doi: 10.1111/j.1365-2478.2007.00684.x
    Guo, Z., Gao, X., Wang, W., et al., 2012. Upper- and Mid-Crustal Radial Anisotropy beneath the Central Himalaya and Southern Tibet from Seismic Ambient Noise Tomography. Geophysical Journal International, 189(2): 1169–1182 doi: 10.1111/j.1365-246X.2012.05425.x
    Guo, Z., Gao, X., Yao, H., et al., 2009. Midcrustal Low-Velocity Layer beneath the Central Himalaya and Southern Tibet Revealed by Ambient Noise Array Tomography. Geochemistry, Geophysics, Geosystems, 10: Q05007. doi: 10.1029/2009GC002458
    Kennett, B. L. N., Engdahl, E. R., Buland, R., 1995. Constraints on Seismic Velocities in the Earth from Travel Times. Geophysical Journal International, 122: 108–124 doi: 10.1111/j.1365-246X.1995.tb03540.x
    Larose, E., Margerin, L., Derode, A., et al., 2006. Correlation of Random Wave-Fields: An Interdisciplinary Review. Geophysics, 71(4): SI11–SI21 doi: 10.1190/1.2213356
    Li, H., Liu, X., Li, X. F., et al., 2011. Rayleigh Wave Group Velocity Distribution in Ningxia. Journal of Earth Science, 22(1): 117–123 doi: 10.1007/s12583-011-0162-0
    Li, H., Su, W., Wang, C., et al., 2010. Ambient Noise Love Wave Tomography in the Eastern Margin of the Tibetan Plateau. Tectonophysics, 491(1–4): 194–204
    Lin, F. C., Ritzwoller, M. H., Townend, J., et al., 2007. Ambient Noise Rayleigh Wave Tomography of New Zealand. Geophysical Journal International, 170(2): 649–666 doi: 10.1111/j.1365-246X.2007.03414.x
    Lin, F. C., Tsai, V. C., Schmandt, B., et al., 2013. Extracting Seismic Core Phases with Array Interferometry. Geophysical Research Letters, 40: 1–5 doi: 10.1029/2012GL054022
    Lobkis, O. I., Weaver, R. L., 2001. On the Emergence of the Green's Function in the Correlations of a Diffuse Field. Journal of the Acoustical Society of United States, 110(6): 3011–3017 doi: 10.1121/1.1417528
    Luo, Y., Xu, Y., Yang, Y., 2012. Crustal Structure beneath the Dabie Orogenic Belt from Ambient Noise Tomography. Earth and Planetary Science Letters, 313/314: 12–22
    Luo, Y., Xu, Y., Yang, Y., 2013. Crustal Radial Anisotropy beneath the Dabie Orogenic Belt from Ambient Noise Tomography. Geophysical Journal International, 195(2): 1149–1164 doi: 10.1093/gji/ggt281
    Nakata, N., Snieder, R., 2011. Shear Wave Imaging from Traffic Noise Using Seismic. Geophysics, 76(6): SA97–SA106 doi: 10.1190/geo2010-0188.1
    Nishida, K., 2013. Global Propagation of Body Waves Revealed by Cross-Correlation Analysis of Seismic Hum. Geophysical Research Letters, 40: 1691–1696 doi: 10.1002/grl.50269
    Poli, P., Campillo, M., Pedersen, H., et al., 2012a. Body-Wave Imaging of Earth's Mantle Discontinuities from Ambient Seismic Noise. Science, 338(6110): 1063–1065 doi: 10.1126/science.1228194
    Poli, P., Campillo, M., Pedersen, H., et al., 2012b. Emergence of Body Waves from Cross-Correlation of Short Period Seismic Noise. Geophysical Journal International, 188(2): 549–558 doi: 10.1111/j.1365-246X.2011.05271.x
    Prieto, G. A., Denolle, M., Lawrence, J. F., et al., 2011. On the Amplitude Information Carried by Ambient Seismic field. Comptes Rendus Geoscience, 343(8–9): 600–614
    Roux, P., 2005. P-Waves from Cross-Correlation of Seismic Noise. Geophysical Research Letters, 32(19): L19303. doi: 10.1029/2005GL023803
    Ruigrok, E., Campman, X., Wapenaar, K., 2012. Basin Delineation with a 40-Hour Passive Seismic Record. Bulletin of the Seismological Society of America, 102(5): 2165–2176 doi: 10.1785/0120110242
    Shapiro, N. M., Campillo, M., 2005. High Resolution Surface Wave Tomography from Ambient Seismic Noise. Science, 307: 1615–1618 doi: 10.1126/science.1108339
    Shen, Y., Ren, Y., Gao, H. Y., et al., 2012. An Improved Method to Extract Very-Broadband Empirical Green's Functions from Ambient Seismic Noise. Bulletin of the Seismological Society of America, 102(4): 1872–1877 doi: 10.1785/0120120023
    Snieder, R., 2004. Extracting the Green's Function from the Correlation of Coda Waves: A Derivation Based on Stationary Phase. Physical Review E, 69: 046610. doi: 10.1103/PhysRevE.69.046610
    Song, X. D., Richards, P. G., 1996. Seismological Evidence for Differential Rotation of the Earth's Inner Core. Nature, 382: 221–224 doi: 10.1038/382221a0
    Wapenaar, K., 2004. Retrieving the Elastodynamic Green's Function of an Arbitrary Inhomogeneous Medium by Cross Correlation. Physical Review Letters, 93: 254301. doi: 10.1103/PhysRevLett.93.254301
    Xu, Z., Juhlin, C., Gudmunsson, O., et al., 2012. Reconstruction of Subsurface Structure from Ambient Seismic Noise: An Example from Ketzin, Germany. Geophysical Journal International, 189(2): 1085–1102 doi: 10.1111/j.1365-246X.2012.05411.x
    Yang, Y., Ritzwoller, M. H., Levshin, A. L., et al., 2007. Ambient Noise Rayleigh Wave Tomography across Europe. Geophysical Journal International, 168(1): 259–274 doi: 10.1111/j.1365-246X.2006.03203.x
    Yang, Y., Zheng, Y., Chen, J., et al., 2010. Rayleigh Wave Phase Velocity Maps of Tibet and the Surrounding Regions from Ambient Seismic Noise Tomography. Geochemistry, Geophysics, Geosystems, 11: Q08010. doi: 10.1029/2010GC003119
    Yao, H. J., Van der Hilst, R. D., de Hoop, M. V., 2006. Surface-Wave Array Tomography in SE Tibet from Ambient Seismic Noise and Two-Station Analysis—I. Phase Velocity Maps. Geophysical Journal International, 166(2): 732–744 doi: 10.1111/j.1365-246X.2006.03028.x
    Zeng, X. F., Ni, S. D., 2013. Constraining Shear Wave Velocity and Density Contrast at the Inner Core Boundary with PKiKP/P Amplitude Ratio. Journal of Earth Science, 24(4): 716–724
    Zhan, Z., Ni, S., Helmberger, D. V., et al., 2010. Retrieval of Moho-Reflected Shear Wave Arrivals from Ambient Seismic Noise. Geophysical Journal International, 182: 408–420
    Zheng, X. F., Yao, Z. X., Liang, J. H., et al., 2010. The Role Played and Opportunities Provided by IGP DMC of China National Seismic Network in Wenchuan Earthquake Disaster Relief and Researches. Bulletin of the Seismological Society of America, 100(5B): 2866–2872 doi: 10.1785/0120090257
    Zheng, Y., Shen, W., Zhou, L., et al., 2011. Crust and Uppermost Mantle beneath the North China Craton, Northeastern China, and the Sea of Japan from Ambient Noise Tomography. Journal of Geophysical Research, 116: B12312. doi: 10.1029/2011JB008637
    Zhou, L., Xie, J., Shen, W., et al., 2012. The Structure of the Crust and Uppermost Mantle beneath South China from Ambient Noise and Earthquake Tomography. Geophysical Journal International, 189(3): 1565–1583 doi: 10.1111/j.1365-246X.2012.05423.x
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)

    Article Metrics

    Article views(473) PDF downloads(172) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return