Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 25 Issue 6
Dec 2014
Turn off MathJax
Article Contents
Yanbin Wang, Guoyin Shen. High-Pressure Experimental Studies on Geo-Liquids Using Synchrotron Radiation at the Advanced Photon Source. Journal of Earth Science, 2014, 25(6): 939-958. doi: 10.1007/s12583-014-0504-9
Citation: Yanbin Wang, Guoyin Shen. High-Pressure Experimental Studies on Geo-Liquids Using Synchrotron Radiation at the Advanced Photon Source. Journal of Earth Science, 2014, 25(6): 939-958. doi: 10.1007/s12583-014-0504-9

High-Pressure Experimental Studies on Geo-Liquids Using Synchrotron Radiation at the Advanced Photon Source

doi: 10.1007/s12583-014-0504-9
More Information
  • Corresponding author: Yanbin Wang, wang@cars.uchicago.edu
  • Received Date: 18 Feb 2014
  • Accepted Date: 25 Jun 2014
  • Publish Date: 01 Dec 2014
  • We review recent progress in studying silicate, carbonate, and metallic liquids of geological and geophysical importance at high pressure and temperature, using the large-volume high-pressure devices at the third-generation synchrotron facility of the Advanced Photon Source, Argonne National Laboratory. These integrated high-pressure facilities now offer a unique combination of experimental techniques that allow researchers to investigate structure, density, elasticity, viscosity, and interfacial tension of geo-liquids under high pressure, in a coordinated and systematic fashion. Experimental techniques are described, along with scientific highlights. Future developments are also discussed.

     

  • loading
  • Abe, Y., 1993, Physical State of the Very Early Earth. Lithos, 30(3–4): 223–235
    Abe, Y., 1997. Thermal and Chemical Evolution of the Terrestrial Magma Ocean. Physics of the Earth and Planetary Interiors, 100(1–4): 27–39 http://www.researchgate.net/profile/Yutaka_Abe2/publication/222490013_Abe_Y._Thermal_and_chemical_evolution_of_the_terrestrial_magma_ocean._Phys._Earth_Planet._Int._100_27-39/links/54fe754b0cf2672e223f5b9d.pdf
    Agee, C. B., Walker, D., 1988. Static Compression and Olivine Floatation in Ultrabasic Silicate Liquid. J. Geophys. Res. , 93(B4): 3437–3449 doi: 10.1029/JB093iB04p03437
    Allwardt, J. R., Stebbins, J. F., Schmidt, B. C., et al., 2005. Aluminum Coordination and the Densification of High-Pressure Aluminosilicate Glasses. American Mineralogist, 90(7): 1218–1222 doi: 10.2138/am.2005.1836
    Anderson, O. L., 1995. Equations of State of Solids for Geophysics and Cramic Sience. Oxford University Press, Oxford
    Bashforth, F., Adams, J. C., 1892. An Attempt to Test the Theory of Capillary Action. Cambridge University Press and Deighton Bell & Co., Cambridge
    Beckmann, F., Herzen, J., Haibel, A., et al., 2008. High Density Resolution in Synchrotron-Radiation-Based Attenuation-Contrast Microtomography. Paper Presented at Proc. SPIE, San Diego
    Birch, F., 1952. Elaticity and Constitution of the Earth's Interior. J. Geophys. Res. , 57: 227–286 doi: 10.1029/JZ057i002p00227
    Bottinga, Y., Weill, D. F., 1972. The Viscosity of Magmatic Silicate Liquids: A Model Calculation. American Journal of Science, 272(5): 438–475. doi: 10.2475/ajs.272.5.438.
    Brazhkin, V., Farnan, I., Funakoshi, K., et al., 2010. Structural Transformations and Anomalous Viscosity in the B2O3 Melt under High Pressure. Phys. Rev. Lett. , 105: 115701 doi: 10.1103/PhysRevLett.105.115701
    Brizard, M., Megharfi, M., Mahé, E., et al., 2005. Design of a High Precision Falling-Ball Viscometer. Review of Scientific Instruments, 76(2): 025109 doi: 10.1063/1.1851471
    Butt, H. J., Graf, K., Kappl, M., 2003. Physics and Chemistry of Interfaces. Wyllie-VCH Verlag, Darmstadt. 361 http://www.researchgate.net/publication/345918476_Physics_and_Chemistry_of_Interfaces
    Coltice, N., Moreira, M., Hernlund, J., et al., 2011. Crystallization of a Basal Magma Ocean Recorded by Helium and Neon. Earth Planet. Sci. Lett. , 308(1–2): 193–199 http://perso.ens-lyon.fr/stephane.labrosse/sites/default/files/PDF/Coltice_etal2011.pdf
    Cromer, D. T., 1969. Compton Scattering Factors for Aspherical Free Atoms. The Journal of Chemical Physics, 50: 4857–4859 doi: 10.1063/1.1670980
    Cromer, D. T., Mann, J. B., 1967. Compton Scattering Factors for Spherically Symmetric Free Atoms. The Journal of Chemical Physics, 47: 1892–1893 doi: 10.1063/1.1712213
    Dobson, D. P., Crichton, W. A., Vocadlo, L., et al., 2000. In Situ Measurement of Viscosity of Liquids in the Fe-FeS System at High Pressures and Temperatures. American Mineralogist, 85: 1838–1842 doi: 10.2138/am-2000-11-1231
    Faber, T. E., Ziman, J. M., 1965. A Theory of the Electrical Properties of Liquid Metals. Philosophical Magazine, 11(109): 153–173 doi: 10.1080/14786436508211931
    Faxén, H., 1922. Der Widerstand Gegen Die Bewegung Einer Starren Kugel in Einer Zähen Flüssigkeit, Die Zwischen Zwei Parallelen Ebenen Wänden Eingeschlossen Ist. Annalen der Physik, 373(10): 89–119 doi: 10.1002/andp.19223731003
    Funakoshi, K., 1995. Energy-Dispersive X-Ray Diffraction Study for Alkali Silicate Melts Using Synchrotron Radiation Under High Pressure and Temperature: [Dissertation]. Tokyo Institute of Technology, Tokyo. 117
    Funamori, N., Yamamoto, S., Yagi, T., et al., 2004. Exploratory Studies of Silicate Melt Sructure at High Pressures and Temperatures by In Situ X-Ray Diffraction. J. Geophys. Res. , 109: B03203 doi: 10.1029/2003JB002650/full
    Gaetani, G., Grove, T., 1999. Wetting of Mantle Olivine by Sulfide Melt: Implications for Re/Os Ratios in Mantle Peridotite and Late-Stage Core Formation. Earth Planet. Sci. Lett. , 169: 147–163 doi: 10.1016/S0012-821X(99)00062-X
    Genge, M. J., Price, G. D., Jones, A. P., 1995. Molecular Dynamics Simulations of CaCO3 Melts to Mantle Pressures and Temperatures: Implications for Carbonatite Magmas. Earth Planet. Sci. Lett. , 131(3–4): 225–238 http://www3.imperial.ac.uk/pls/portallive/docs/1/6831920.PDF
    Ghiorso, M. S., 2004. An Equation of State for Silicate Melts. Ⅲ. Analysis of Soichiometric Liquids at Elevated Pressure: Shock Compression Data, Molecular Dynamics Simulations and Mineral Fusion Curves. American Journal of Science, 304(8–9): 752–810
    Giordano, D., Russell, J. K., Dingwell, D. B., 2008. Viscosity of Magmatic Liquids: A Model. Earth Planet. Sci. Lett. , 271(1–4): 123–134
    Greaves, G. N., Sen, S., 2007. Inorganic Glasses, Glass-Forming Liquids and Amorphizing Solids. Advances in Physics, 56(1): 1–166 doi: 10.1080/00018730601147426
    Hansen, F. K., 1993. Surface Tension by Image Analysis: Fast and Automatic Measurements of Pendant and Sessile Drops and Bubbles. Journal of Colloid and Interface Science, 160(1): 209–217 doi: 10.1006/jcis.1993.1386
    Henderson, G. S., Calas, G., Stebbins, J. F., 2006. The Structure of Silicate Glasses and Melts. Elements, 2: 269–273 doi: 10.2113/gselements.2.5.269
    Herzfeld, K. F., Litovitz, T. A., 1959. Absorption and Dispersion of Ultrasonic Waves. Academic Press, New York. 535
    Huang, H. J., Fei, Y. W., Cai, L. C., et al., 2011. Evidence for an Oxygen-Depleted Liquid Outer Core of the Earth. Nature, 479: 513–516 doi: 10.1038/nature10621
    Jing, Z., Karato, S. I., 2008. Compositional Effect on the Pressure Derivatives of Bulk Modulus of Silicate Melts. Earth Planet. Sci. Lett. , 272(1–2): 429–436
    Jing, Z., Karato, S. I., 2011. A New Approach to the Equation of State of Silicate Melts: An Application of the Theory of Hard Sphere Mixtures. Geochimica et Cosmochimica Acta, 75(22): 6780–6802 doi: 10.1016/j.gca.2011.09.004
    Jing, Z., Wang, Y., Kono, Y., et al., 2014. Moon's Molten Outer Core: Composition, Density and Thermal State. Earth Planet. Sci. Lett. , 396: 78–87 doi: 10.1016/j.epsl.2014.04.015
    Jones, A., Genge, M., Carmody, L., 2013. Carbonate Melts and Carbonatites. Reviews in Mineralogy and Geochemistry, 75: 289–322 doi: 10.2138/rmg.2013.75.10
    Kanzaki, M., Kurita, K., Fujii, T., et al., 1987. A New Technique to Measure the Viscosity and Density of Silicate Melts at High Pressure, In: Manghnani, M. H., Syono, Y., eds., High-Pressure Research in Mineral Physics. Terrapub/AGU, Tokyo. 195–200 http://ci.nii.ac.jp/naid/10003669474
    Kapilashrami, E., Jakobsson, A., Seetharaman, S., et al., 2003. Studies of the Wetting Characteristics of Liquid Iron on Dense Alumina by the X-Ray Sessile Drop Technique. Metall. and Materi. Trans. B, 34(2): 193–199 doi: 10.1007/s11663-003-0006-0
    Karki, B. B., 2010. First-Principles Molecular Dynamics Simulations of Silicate Melts: Structural and Dynamical Properties. Reviews in Mineralogy and Geochemistry, 71(1): 355–389 doi: 10.2138/rmg.2010.71.17
    Katayama, Y., 1996. Density Measurements of Non-Cystalline Materials under High Pressure and High Temperature. High Pressure Research, 14: 383–391 doi: 10.1080/08957959608201424
    Katayama, Y., 2002. In Situ Observation of a First-Order Liquid-Liquid Transition in Phosphorus. Journal of Non-Crystalline Solids, 312–314: 8–14
    Katayama, Y., Tsuji, K., Chen, J. Q., et al., 1993. Density of Liquid Tellurium under High Pressure. Journal of Non-Crystalline Solids, 156–158(Part 2): 687–690 http://www.onacademic.com/detail/journal_1000035322278210_81a1.html
    Ketcham, R. A., Carlson, W. D., 2001. Acquisition, Optimization and Interpretation of X-Ray Computed Tomographic Imagery: Applications to the Geosciences. Computers & Geosciences, 27(4): 381–400
    Kono, Y., Kenney-Benson, C., Hummer, D., et al., 2014a. Ultralow Viscosity of Carbonate Melts at High Pressures. Nat. Commun. , 5: 5091 doi: 10.1038/ncomms6091
    Kono, Y., Park, C., Kenney-Benson, C., et al., 2014b. Toward Comprehensive Studies of Liquids at High Pressures and High Temperatures: Combined Structure, Elastic Wave Velocity, and Viscosity Measurements in the Paris-Edinburgh Cell. Physics of the Earth and Planetary Interiors, 228: 269–280 doi: 10.1016/j.pepi.2013.09.006
    Kono, Y., Kenney-Benson, C., Kenney-Benson, C., et al., 2013. Anomaly in the Viscosity of Liquid KCl at High Pressures. Physical Review B, 87(2): 024302 http://www.researchgate.net/profile/Yanbin_Wang3/publication/235342810_Anomaly_in_the_viscosity_of_liquid_KCl_at_high_pressures/links/53ea88420cf2dc24b3cd7a0c.pdf
    Kono, Y., Park, C., Sakamaki, T., et al., 2012. Simultaneous Structure and Elastic Wave Velocity Measurement of SiO2 Glass at High Pressures and High Temperatures in a Paris-Edinburgh Cell. Review of Scientific Instruments, 83(3): 33905–33908 doi: 10.1063/1.3698000
    Kung, J., Li, B., Uchida, T., et al., 2004. In Situ Measurements of Sound Velocities and Densities across the Orthopyroxene—High-Pressure Clinopyroxene Tansition in MgSiO3 at High Pressure. Physics of the Earth and Planetary Interiors, 147(1): 27–44 doi: 10.1016/j.pepi.2004.05.008
    Kushiro, I., Mysen, B. O., 2002. A Possible Effect of Melt Sructure on the Mg-Fe2+ Partitioning between Olivine and Melt. Geochimica et Cosmochimica Acta, 66(12): 2267–2272 doi: 10.1016/S0016-7037(01)00835-3
    Labrosse, S., 2003. Thermal and Magnetic Evolution of the Earth's Core. Physics of the Earth and Planetary Interiors, 140(1–3): 127–143 http://courses.seas.harvard.edu/climate/eli/Courses/EPS281r/Sources/Earth-age-and-thermal-history/more/labrosse_pepi_2002.pdf
    Labrosse, S., Hernlund, J. W., Coltice, N., 2007. A Crystallizing Dense Magma Ocean at the Base of the Earth's Mantle. Nature, 450(7171): 866–869 doi: 10.1038/nature06355
    Lange, R. L., Carmichael, I. S. E., 1990. Thermodynamic Properties of Silicate Liquids with Emphasis on Density, Thermal Expansion and Compressibility. Reviews in Mineralogy and Geochemistry, 24(1): 25–64 http://scans.hebis.de/01/97/78/01977862_toc.pdf
    Lee, S. K., 2011. Simplicity in Melt Densification in Multicomponent Magmatic Reservoirs in Earth's Interior Revealed by Multinuclear Magnetic Resonance. Proceedings of the National Academy of Sciences, 108(17): 6847–6852 doi: 10.1073/pnas.1019634108
    Lee, S. K., Eng, P. J., Mao, H. K., 2014. Probing of Pressure-Induced Bonding Transitions in Crystalline and Amorphous Earth Materials: Insights from X-Ray Raman Scattering at High Pressure. Reviews in Mineralogy and Geochemistry, 78(1): 139–174 doi: 10.2138/rmg.2014.78.4
    Lesher, C. E., 2010. Self-Diffusion in Silicate Melts: Theory, Observations and Applications to Magmatic Systems, Reviews in Mineralogy and Geochemistry, 72(1): 269–309
    Lesher, C. E., Wang, Y., Gaudio, S., et al., 2009. Volumetric Properties of Magnesium Silicate Glasses and Supercooled Liquid at High Pressure by X-Ray Microtomography. Physics of the Earth and Planetary Interiors, 174(1–4): 292–301
    Li, B., Kung, J., Uchida, T., et al., 2005. Simultaneous Equation of State, Pressure Calibration and Sound Velocity Measurements to Lower Mantle Pressures Using Multi-Anvil Apparatus, In: Chen, J., Wang, Y., Duffy, T. S., et al., eds., Advances in High-Pressure Techniques for Geophysical Applications. Elsevier, Amsterdam. 49–66
    Lorch, E., 1969. Neutron Diffraction by Germania, Silica and Radiation-Damaged Silica Glasses. Journal of Physics C: Solid State Physics, 2(2): 229 doi: 10.1088/0022-3719/2/2/305
    Maude, A. D., 1961. End Effects in a Falling-Sphere Viscometer. British Journal of Applied Physics, 12(6): 293 doi: 10.1088/0508-3443/12/6/306
    Mezouar, M., 2002. Multichannel Collimator for Structural Investigation of Liquids and Amorphous Materials at High Pressures and Temperatures. Rev. Sci. Instrum. , 73(10): 3570 doi: 10.1063/1.1505104
    Minarik, W. G., Ryerson, F. J., Watson, E. B., 1996. Textural Entrapment of Core-Forming Melts. Science, 272(5261): 530–533 doi: 10.1126/science.272.5261.530
    Morard, G., Sanloup, C., Guillot, B., et al., 2008a. In Situ Structural Investigation of Fe-S-Si Immiscible Liquid System and Evolution of Fe-S Bond Properties with Pressure. J. Geophys. Res. , 113: B10205 doi: 10.1029/2008JB005663
    Morard, G., Andrault, D., Guignot, N., et al., 2008b. In Situ Determination of Fe-Fe3S Phase Diagram and Liquid Structural Properties up to 65 GPa. Earth and Planetary Science Letters, 272(3–4): 620–626 http://www.onacademic.com/detail/journal_1000035380864710_8b71.html
    Morard, G., Sanloup, C., Fiquet, G., et al., 2007. Structure of Eutectic Fe-FeS Melts to Pressures up to 17 GPa: Implications for Planetary Cores. Earth Planet. Sci. Lett. , 263(1–2): 128–139 http://www.onacademic.com/detail/journal_1000035379816810_f854.html
    Morard, G., Siebert, J., Andrault, D., et al., 2013. The Earth's Core Composition from High Pressure Density Measurements of Liquid Iron Alloys. Earth Planet. Sci. Lett. , 373: 169–178 doi: 10.1016/j.epsl.2013.04.040
    Mysen, B., 1983. The Structure of Silicate Melts. Ann. Rev. Earth Planet. Sci. , 11: 75–97 doi: 10.1146/annurev.ea.11.050183.000451
    Mysen, B., Richet, P., 2005. Chapter 4 Melt and Glass Structure: Basic Concepts, In: Mysen, B., Richet, P., eds., Silicate Glasses and Melts. Elsevier, Amsterdam. 101–129
    Nishida, K., Ohtani, E., Urakawa, S., et al., 2011. Density Measurement of Liquid FeS at High Pressures Using Synchrotron X-Ray Absorption. American Mineralogist, 96(5): 864
    Nishikawa, N., Iijima, T., 1984. Correction for Intensity Data in Energy-Dispersive X-Ray Diffractometry of Liquid, Application to Carbon Tetrachloride. Bull. Chem. Soc. Jpn. , 57: 1750–1759 doi: 10.1246/bcsj.57.1750
    Phillips, J. C., 1979. Topology of Covalent Non-Crystalline Solids I: Short-Range Order in Chalcogenide Alloys. Journal of Non-Crystalline Solids, 34(2): 153–181 doi: 10.1016/0022-3093(79)90033-4
    Poe, B. T., Romano, C., Liebske, C., et al., 2006. High-Temperature Viscosity Measurements of Hydrous Albite Liquid Using In-Situ Falling-Sphere Viscometry at 2.5 GPa. Chemical Geology, 229(1–3): 2–9
    Rigden, S. M., Ahrens, T. J., Stolper, E. M., 1988. Shock Compression of Molten Silicate: Results for a Model Basaltic Composition. J. Geophys. Res. , 93(B1): 367–382 doi: 10.1029/JB093iB01p00367
    Rotenberg, Y., Boruvka, L., Neumann, A. W., 1983. Determination of Surface Tension and Contact Angle from the Shapes of Axisymmetric Fluid Interfaces. Journal of Colloid and Interface Science, 93(1): 169–183 doi: 10.1016/0021-9797(83)90396-X
    Rutter, M. D., Secco, R. A., Liu, H., et al., 2002a. Viscosity of Liquid Fe at High Pressure. Physical Review B, 66(6): 060102 http://www.researchgate.net/profile/Yanbin_Wang3/publication/234167803_Viscosity_of_liquid_Fe_at_high_pressure/links/0912f5137d812578f1000000.pdf
    Rutter, M. D., Secco, R. A., Uchida, T., et al., 2002b. Towards Evaluating the Viscosity of the Earth's Outer Core: An Experimental High Pressure Study of Liquid Fe-S (8.5 wt. % S). Geophysical Research Letters, 29(8): 58-51–58-54
    Sakamaki, T., Kono, Y., Wang, Y., et al., 2014a. Contrasting Sound Velocity and Intermediate-Range Structural Order between Polymerized and Depolymerized Silicate Glasses under Pressure. Earth Planet. Sci. Lett. , 391: 288–295 doi: 10.1016/j.epsl.2014.02.008
    Sakamaki, T., Wang, Y., Park, C., et al., 2014b. Contrasting Behavior of Intermediate-Range Order Sructures in Jadeite Glass and Melt. Physics of the Earth and Planetary Interiors, 228: 281–286 doi: 10.1016/j.pepi.2014.01.008
    Sakamaki, T., Ohtani, E., Urakawa, S., et al., 2009. Measurement of Hydrous Peridotite Magma Density at High Pressure Using the X-Ray Absorption Method. Earth Planet. Sci. Lett. , 287(3–4): 293–297
    Sakamaki, T., Ohtani, E., Urakawa, S., et al., 2010. Density of Dry Peridotite Magma at High Pressure Using an X-Ray Absorption Method. American Mineralogist, 95(1): 144–147 doi: 10.2138/am.2010.3143
    Sakamaki, T., Ohtani, E., Urakawa, S., et al., 2011. Density of Carbonated Peridotite Magma at High Pressure Using an X-Ray Absorption Method. American Mineralogist, 96(4): 553–557 doi: 10.2138/am.2011.3577
    Sakamaki, T., Suzuki, A., Ohtani, E., 2006. Stability of Hydrous Melt at the Base of the Earth's Upper Mantle. Nature, 439(7073): 192–194 doi: 10.1038/nature04352
    Sakamaki, T., Suzuki, A., Ohtani, E., et al., 2013. Ponded Melt at the Boundary between the Lithosphere and Asthenosphere. Nature Geosci. , 6(12): 1041–1044 doi: 10.1038/ngeo1982
    Sakamaki, T., Wang, Y., Park, C., et al., 2012. Structure of Jadeite Melt at High Pressures up to 4.9 GPa. Journal of Applied Physics, 111(11): 112623–112625 doi: 10.1063/1.4726246
    Sanloup, C., Fiquet, G., Gregoryanz, E., et al., 2004. Effect of Si on Liquid Fe Compressibility: Implications for Sound Velocity in Core Materials. Geophysical Research Letters, 31: L07604
    Sanloup, C., Guyot, F., Gillet, P., 2000. Density Measurements of Liquid Fe-S Alloys at High Pressure. Geophysical Research Letters, 27: 811–814 doi: 10.1029/1999GL008431
    Schubert, G., Turcotte, D. L., Olson, P., 2001. Mantle Convection in the Earth and Planets. Cambridge University Press, Cambridge
    Secco, R. A., Rutter, M. D., Balog, S. P., et al., 2002. Viscosity and Density of Fe-S Liquids at High Pressures. Journal of Physics: Condensed Matter, 14(44): 11325 doi: 10.1088/0953-8984/14/44/476
    Shannon, M. C., Agee, C. B., 1998. Percolation of Core Melts at Lower Mantle Conditions. Science, 280(5366): 1059–1061 doi: 10.1126/science.280.5366.1059
    Shen, G., Prakapenka, V. B., Rivers, M. L., et al., 2004. Structure of Liquid Iron at Pressures up to 58 GPa. Physical Review Letters, 92: 185701 doi: 10.1103/PhysRevLett.92.185701
    Shenoy, G. K., Viccaro, P. J., Mills, D. M., 1988. Characteristics of the 7-GeV Advanced Photon Source: A Guide for Users. Rep. ANL-88-9. Argonne National Laboratory, Argonne. 1–57
    Stebbins, J. F., 1995. Dynamics and Structure of Slicate and Oxide Melts: Nuclear Magnetic Resonance Studies. Reviews in Mineralogy and Geochemistry, 32(1): 191–246
    Stebbins, J. F., Xue, X., 2014. NMR Spectroscopy in Inorganic Earth Materials, In: Henderson, G. S., Neuville, D., eds., Spectroscopic and Other Characterization Methods in Mineralogy and Materials Sciences. Mineralogical Society of America, Chantilly, VA. 650–653
    Stevenson, D. J., 2003. Planetary Magnetic Fields. Earth Planet. Sci. Lett. , 208(1–2): 1–11
    Susman, S., Volin, K. J., Price, D. L., et al., 1991. Intermediate-Range Order in Permanently Densified Vitreous SiO2: A Neutron-Diffraction and Molecular-Dynamics Study. Physical Review B, 43(1): 1194–1197 doi: 10.1103/PhysRevB.43.1194
    Suzuki, A., Ohtani, E., Terasaki, H., et al., 2005. Viscosity of Silicate Melts in CaMgSi 2O6-NaAlSi2O6 System at High Pressure. Physics and Chemistry of Minerals, 32(2): 140–145 doi: 10.1007/s00269-005-0452-0
    Terasaki, H., Frost, D. J., Rubie, D. C., et al., 2005. The Effect of Oxygen and Sulphur on the Dihedral Angle between Fe-O-S Melt and Silicate Minerals at High Pressure: Implications for Martian Core Formation. Earth Planet. Sci. Lett. , 232(3–4): 379–392
    Terasaki, H., Suzuki, A., Ohtani, E., et al., 2006. Effect of Pressure on the Viscosity of Fe-S and Fe-C Liquids up to 16 GPa. Geophysical Research Letters, 33: L22307 doi: 10.1029/2006GL027147
    Terasaki, H., Urakawa, S., Funakoshi, K., et al., 2008. Interfacial Tension Measurement of Ni-S Liquid Using High-Pressure X-Ray Micro-Tomography. High Pressure Research, 28(3): 327–334 doi: 10.1080/08957950802208902
    Terasaki, H., Urakawa, S., Funakoshi, K., et al., 2009. In Situ Measurement of Interfacial Tension of Fe-S and Fe-P Liquids under High Pressure Using X-Ray Radiography and Tomography Techniques. Physics of the Earth and Planetary Interiors, 174(1–4): 220–226
    Thomas, C. W., Asimow, P. D., 2013a. Direct Shock Compression Experiments on Premolten Forsterite and Progress toward a Consistent High-Pressure Equation of State for CaO-MgO-Al2O3-SiO2-FeO Liquids. Journal of Geophysical Research: Solid Earth, 118(11): 2013JB010232
    Thomas, C. W., Asimow, P. D., 2013b. Preheated Shock Experiments in the Molten CaAl2Si2O8-CaFeSi2O6-CaMgSi2O6 Ternary: A Test for Linear Mixing of Liquid Volumes at High Pressure and Temperature. Journal of Geophysical Research: Solid Earth, 118(7): 3354–3365 doi: 10.1002/jgrb.50269
    Thorpe, M. F., 1983. Continuous Deformations in Random Networks. Journal of Non-Crystalline Solids, 57(3): 355–370 doi: 10.1016/0022-3093(83)90424-6
    Tinker, D., Lesher, C. E., Baxter, G. M., et al., 2004. High-Pressure Viscometry of Polymerized Silicate Melts and Limitations of the Eyring Equation. American Mineralogist, 89(11–12): 1701–1708
    Tsuji, K., Yaoita, K., Imai, M., et al., 1989. Measurements of X-Ray Diffraction for Liquid Metals under High Pressure. Review of Scientific Instruments, 60(7): 2425–2428 doi: 10.1063/1.1140736
    Wang, Y., Durham, W. B., Getting, I. C., et al., 2003. The Deformation-DIA: A New Apparatus for High Temperature Triaxial Deformation to Pressures up to 15 GPa. Review of Scientific Instruments, 74: 3002–3011 doi: 10.1063/1.1570948
    Wang, Y., Rivers, M., Sutton, S., et al., 2009. The Large-Volume High-Pressure Facility at GSECARS: A "Swiss-Army-Knife" Approach to Synchrotron-Based Experimental Studies. Physics of the Earth and Planetary Interiors, 174(1–4): 270–281
    Wang, Y., Sakamaki, T., Skinner, L. B., et al., 2014. Atomistic Insight into Viscosity and Density of Silicate Melts under Pressure. Nat. Commun. , 5: 3241 doi: 10.1038/ncomms4241
    Wang, Y., Shen, G., Rivers, M. L., 2002. High Pressure Research Techniques at Third Generation Synchrotron Radiation Sources, In: Mills, D. M., ed., Third-Generation Hard X-Ray Synchrotron Radiation Sources. John Wiley & Sons, New York. 203–236
    Wang, Y., Uchida, T., Westferro, F., et al., 2005. High-Pressure X-Ray Tomography Microscope: Synchrotron Computed Microtomography at High Pressure and Temperature. Review of Scientific Instruments, 40(21): 5763–5766
    Yamada, A., Inoue, T., Urakawa, S., et al., 2007. In Situ X-Ray Experiment on the Structure of Hydrous Mg-Silicate Melt under High Pressure and High Temperature. Geophysical Research Letters, 34(10): L10303 doi: 10.1029/2006GL028823
    Yamada, A., Wang, Y., Inoue, T., et al., 2011. High-Pressure X-Ray Diffraction Studies on the Structure of Liquid Silicate Using a Paris—Edinburgh Type Large Volume Press. Review of Scientific Instruments, 82(1): 15103–05107 doi: 10.1063/1.3514087
    Zouboulis, E., Grimsditch, M., Ramdas, A., et al., 1998. Temperature Dependence of the Elastic Moduli of Diamond: A Brillouin-Scattering Study. Physical Review B, 57(5): 2889 doi: 10.1103/PhysRevB.57.2889
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(15)

    Article Metrics

    Article views(590) PDF downloads(128) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return