Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 26 Issue 1
Feb 2015
Turn off MathJax
Article Contents
Klaus Regenauer-Lieb, Andrew Bunger, Hui Tong Chua, Arcady Dyskin, Florian Fusseis, Oliver Gaede, Rob Jeffrey, Ali Karrech, Thomas Kohl, Jie Liu, Vladimir Lyakhovsky, Elena Pasternak, Robert Podgorney, Thomas Poulet, Sheik Rahman, Christoph Schrank, Mike Trefry, Manolis Veveakis, Bisheng Wu, David A. Yuen, Florian Wellmann, Xi Zhang. Deep Geothermal: The ‘Moon Landing’ Mission in the Unconventional Energy and Minerals Space. Journal of Earth Science, 2015, 26(1): 2-10. doi: 10.1007/s12583-015-0515-1
Citation: Klaus Regenauer-Lieb, Andrew Bunger, Hui Tong Chua, Arcady Dyskin, Florian Fusseis, Oliver Gaede, Rob Jeffrey, Ali Karrech, Thomas Kohl, Jie Liu, Vladimir Lyakhovsky, Elena Pasternak, Robert Podgorney, Thomas Poulet, Sheik Rahman, Christoph Schrank, Mike Trefry, Manolis Veveakis, Bisheng Wu, David A. Yuen, Florian Wellmann, Xi Zhang. Deep Geothermal: The ‘Moon Landing’ Mission in the Unconventional Energy and Minerals Space. Journal of Earth Science, 2015, 26(1): 2-10. doi: 10.1007/s12583-015-0515-1

Deep Geothermal: The ‘Moon Landing’ Mission in the Unconventional Energy and Minerals Space

doi: 10.1007/s12583-015-0515-1
More Information
  • Corresponding author: Klaus Regenauer-Lieb, klaus@unsw.edu.au
  • Received Date: 12 Jun 2014
  • Accepted Date: 03 Nov 2014
  • Publish Date: 01 Feb 2015
  • Deep geothermal from the hot crystalline basement has remained an unsolved frontier for the geothermal industry for the past 30 years. This poses the challenge for developing a new unconventional geomechanics approach to stimulate such reservoirs. While a number of new unconventional brittle techniques are still available to improve stimulation on short time scales, the astonishing richness of failure modes of longer time scales in hot rocks has so far been overlooked. These failure modes represent a series of microscopic processes: brittle microfracturing prevails at low temperatures and fairly high deviatoric stresses, while upon increasing temperature and decreasing applied stress or longer time scales, the failure modes switch to transgranular and intergranular creep fractures. Accordingly, fluids play an active role and create their own pathways through facilitating shear localization by a process of time-dependent dissolution and precipitation creep, rather than being a passive constituent by simply following brittle fractures that are generated inside a shear zone caused by other localization mechanisms. We lay out a new theoretical approach for the design of new strategies to utilize, enhance and maintain the natural permeability in the deeper and hotter domain of geothermal reservoirs. The advantage of the approach is that, rather than engineering an entirely new EGS reservoir, we acknowledge a suite of creep-assisted geological processes that are driven by the current tectonic stress field. Such processes are particularly supported by higher temperatures potentially allowing in the future to target commercially viable combinations of temperatures and flow rates.

     

  • loading
  • Abe, H., Niitsuma, H., Murphy, H., 1999. Summary of Discussions, Structured Academic Review of HDR/HWR Reservoirs. Geothermics, 28: 671–676 doi: 10.1016/S0375-6505(99)00037-1
    Alevizos, S., Poulet, T., Veveakis, E., 2014. Thermo-Poro-Mechanics of Chemically Active Creeping Faults: 1. Theory and Steady State Considerations. Journal of Geophysical Research: Solid Earth, 119(6): 4558–4582 doi: 10.1002/2013JB010070
    Ashby, M. F., Gandhi, C., Taplin, D. M. R., 1979. Overview No. 3. Acta Metallurgica, 27: 699–729 doi: 10.1016/0001-6160(79)90105-6
    Brown, D., DuTeaux, R., Kruger, P., et al., 1999. Fluid Circulation and Heat Extraction from Engineered Geothermal Reservoirs. Geothermics, 28: 553–572 doi: 10.1016/S0375-6505(99)00028-0
    Bunger, A. P., Zhang, X., Jeffrey, R., 2012. Parameters Affecting the Interaction among Closely Spaced Hydraulic Fractures. SPE Journal, 17: 292–306 doi: 10.2118/140426-PA
    Cuderman, J. F., Cooper, P. W., Chen, E. P., et al., 1981. A Multiple Fracturing Technique for Enhanced Gas Recovery. International Gas Conference, Los Angeles
    Dyskin, A., Pasternak, E., 2008. Rotational Mechanism of In-Plane Shear Crack Growth in Rocks under Compression. In: Potvin, Y., Carter, J., Dyskin, A., et al., eds., 1st Southern Hemisphere International Rock Mechanics Symposium SHIRMS 2008, Perth. 111–120
    Dyskin, A., Pasternak, E., 2010. Cracks in Cosserat Continuum—Macroscopic Modelling. In: Maugin, G., Metrikine, A., eds., Mechanics of Generalized Continua: One Hundred Years after the Cosserats. Springer, New York. 35–42
    Dyskin, A., Pasternak, E., 2013. Mechanism of In-Plane Fracture Growth in Particulate Materials Based on Relative Particle Rotations. Proc. 13th International Conference on Fracture, Bejing. S09–003
    Dyskin, A., Pasternak, E., 2014. Energy Criterion of In-Plane Fracture Propagation in Geomaterials with Rotating Particles. Proc. IWBDG, 14–27 doi: 10.1007/978-3-319-13506-9_22
    Dyskin, A., Pasternak, E., Bunger, A., et al., 2013. Blue Shift in the Spectrum of Arrival Times of Acoustic Signals Emitted during Laboratory Hydraulic Fracturing. In: Bunger, A. P., McLennan, J., Jeffrey, R., eds., The International Conference for Effective and Sustainable Hydraulic Fracturing. 467–476
    Fowler, A. C., Yang, X. S., 2003. Dissolution/Precipitation Mechanisms for Diagenesis in Sedimentary Basins. Journal of Geophysical Research: Solid Earth, 108: 2509 http://adsabs.harvard.edu/abs/2003JGRB..108.2509F
    Fusseis, F., Regenauer-Lieb, K., Liu, J., et al., 2009. Creep Cavitation can Establish a Granular Fluid Pump through the Middle Crust. Nature, 459: 974–977 doi: 10.1038/nature08051
    Gaede, O., Karrech, A., Regenauer-Lieb, K., 2013. Anisotropic Damage Mechanics as a Novel Approach to Improve Pre- and Post-Failure Borehole Stability Analysis. Geophysical Journal International, 193: 1095–1109 doi: 10.1093/gji/ggt045
    Genter, A., Evans, K., Cuenot, N., et al., 2010. Contribution of the Exploration of Deep Crystalline Fractured Reservoir of Soultz to the Knowledge of Enhanced Geothermal Systems (EGS). Comptes Rendus Geoscience, 342: 502– 516 doi: 10.1016/j.crte.2010.01.006
    Ghandi, C., Ashby, M. F., 1979. Overview No. 5 Fracture-Mechanism Maps for Materials which Cleave: F. C. C., B. C. C. and H. C. P. Metals and Ceramics. Acta Metallurgica, 27: 1565–1602 doi: 10.1016/0001-6160(79)90042-7
    Gratier, J. P., Dysthe, D., Renard, F., 2013. The Role of Pressure Solution Creep in the Ductility of the Earth's Upper Crust. Advances in Geophysics, 54: 47–179 http://www.sciencedirect.com/science/article/pii/B9780123809407000020
    Haimson, B., 2006. Micromechanisms of Borehole Instability Leading to Breakouts in Rocks. International Journal of Rock Mechanics & Mining Sciences, 44(2): 157–173 http://www.sciencedirect.com/science/article/pii/S1365160906001079
    Karrech, A., Regenauer-Lieb, K., Poulet, T., 2011. Continuum Damage Mechanics for the Lithosphere. Journal of Geophysical Research, 116: B04205 doi: 10.1029/2010JB007501/full
    Karrech, A., Schrank, C., Freij-Ayoub, R., et al., 2014. A Multi-Scaling Approach to Predict Hydraulic Damage of Poromaterials. International Journal of Mechanical Sciences, 78: 1–7 doi: 10.1016/j.ijmecsci.2013.10.010
    Liu, J., Karrech, A., Regenauer-Lieb, K., 2014. Combined Mechanical and Melting Damage Model for Geomaterials. Geophysical Journal International, 198(3): 1319–1328 doi: 10.1093/gji/ggu200
    Pasternak, E., Dyskin, A., 2012a. Frequency Signatures of Damage Localisation. Philosophical Magazine, 92: 3665–3679 doi: 10.1080/14786435.2012.690906
    Pasternak, E., Dyskin, A., 2012b. Intermediate Asymptotics for Scaling of Stresses at the Tip of Crack in Cosserat Continuum. 12th Intern. Conf. Fracture ICF12, Ottawa. T40.014
    Pasternak, E., Dyskin, A., 2012c. Spectral Indicator of Microseismic Localisation. Proc. Rock Engineering & Technology for Sustainable Underground Construction, Eurock. 131
    Poulet, T., Veveakis, E., Regenauer-Lieb, K., et al., 2014. Thermo-Poro-Mechanics of Chemically Active Creeping Faults: 3. The Role of Serpentinite in Episodic Tremor and Slip Sequences, and Transition to Chaos. Journal of Geophysical Research: Solid Earth, 119(6): 4606–4625 doi: 10.1002/2014JB011004
    Raj, R., 1982a. Creep in Polycrystalline Aggregates by Matter Transport through a Liquid Phase. Journal of Geophysical Research: Solid Earth, 87: 4731–4739 doi: 10.1029/JB087iB06p04731
    Raj, R., 1982b. Intergranular Creep Fracture in Aggressive Environnments. Acta Metallurgica, 30: 1259–1268 doi: 10.1016/0001-6160(82)90022-0
    Regenauer-Lieb, K., 1999. Dilatant Plasticity Applied to Alpine Collision: Ductile Void Growth in the Intraplate Area beneath the Eifel Volcanic Field. Journal of Geodynamics, 27: 1–21 http://www.sciencedirect.com/science/article/pii/S0264370797000240
    Regenauer-Lieb, K., Veveakis, M., Poulet, T., et al., 2013a. Multiscale Coupling and Multiphysics Approaches in Earth Sciences: Applications. Journal of Coupled Systems and Multiscale Dynamics, 1(3): 281–323 doi: 10.1166/jcsmd.2013.1021
    Regenauer-Lieb, K., Veveakis, M., Poulet, T., et al., 2013b. Multiscale Coupling and Multiphysics Approaches in Earth Sciences: Theory. Journal of Coupled Systems and Multiscale Dynamics, 1(1): 49–73 doi: 10.1166/jcsmd.2013.1012
    Regenauer-Lieb, K., Yuen, D., Fusseis, F., 2009. Landslides, Ice Quakes, Earthquakes: A Thermodynamic Approach to Surface Instabilities. Pure and Applied Geophysics, 166: 1–24 doi: 10.1007/s00024-009-0442-0
    Rybacki, E., Wirth, R., Dresen, G., 2007. High-Strain Creep of Feldspar Rocks: Implications for Cavitation and Ductile Failure in the Lower Crust. Geophysical Research Letters, 35: L04304 doi: 10.1029/2007GL032478/full
    Schrank, C., Fusseis, F., Karrech, A., et al., 2012. Thermal-Elastic Stresses and the Criticality of the Continental Crust. Geochemistry, Geophysics, Geosystems, 13: Q09005. doi: 10.1029/2012GC004085
    Somerville, M., Wyborn, D., Chopra, P., et al., 1994. Hot Dry Rock Feasibility Study. Energy Research & Development Corporation, ERDC Report. 133
    Veveakis, E., Poulet, T., Alevizos, S., 2014. Thermo-Poro-Mechanics of Chemically Active Creeping Faults: 2. Transient Considerations. Journal of Geophysical Research: Solid Earth, 119(6): 4583–4605 doi: 10.1002/2013JB010071
    Zhu, C., Lu, P., 2009. Alkali Feldspar Dissolution and Secondary Mineral Precipitation in Batch Systems: 3. Saturation States of Product Minerals and Reaction Paths. Geochimica et Cosmochimica Acta, 73: 3171–3200 doi: 10.1016/j.gca.2009.03.015
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)

    Article Metrics

    Article views(808) PDF downloads(198) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return