Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 26 Issue 4
Aug 2015
Turn off MathJax
Article Contents
Mengkui Li, Shuangxi Zhang, Chaoyu Zhang, Yu Zhang. Fault slip model of 2013 Lushan Earthquake retrieved based on GPS coseismic displacements. Journal of Earth Science, 2015, 26(4): 537-547. doi: 10.1007/s12583-015-0557-4
Citation: Mengkui Li, Shuangxi Zhang, Chaoyu Zhang, Yu Zhang. Fault slip model of 2013 Lushan Earthquake retrieved based on GPS coseismic displacements. Journal of Earth Science, 2015, 26(4): 537-547. doi: 10.1007/s12583-015-0557-4

Fault slip model of 2013 Lushan Earthquake retrieved based on GPS coseismic displacements

doi: 10.1007/s12583-015-0557-4
More Information
  • Corresponding author: Shuangxi Zhang, shxzhang@sgg.whu.edu.cn
  • Received Date: 13 Aug 2014
  • Accepted Date: 26 Dec 2014
  • Publish Date: 12 Aug 2015
  • Lushan Earthquake (~Mw 6.6) occurred in Sichuan Province of China on 20 April 2013, was the largest earthquake in Longmenshan fault belt since 2008 Wenchuan Earthquake. To better understand its rupture pattern, we focused on the influences of fault parameters on fault slips and performed fault slip inversion using Akaike's Bayesian Information Criterion (ABIC) method. Based on GPS coseismic data, our inverted results showed that the fault slip was mainly confined at depths. The maximum slip amplitude is about 0.7 m, and the scalar seismic moment is about 9.47×1018 N·m. Slip pattern reveals that the earthquake occurred on the thrust fault with large dip-slip and small strike-slip, such a simple fault slip represents no second sub-event occurred. The Coulomb stress changes (ΔCFF) matched the most aftershocks with negative anomalies. The inverted results demonstrated that the source parameters have significant impacts on fault slip distribution, especially on the slip direction and maximum displacement.

     

  • loading
  • Akaike, H., 1980. Likelihood and the Bayes Procedure. In: Barnardo, J. M., DeGroot, M. H., Lindley, D. V., et al., eds., Bayesian Statistics. Valencia University Press, Valencia. 143-166
    Bro, R., De Jong, S. D., 1997. A Fast Non-Negativity-Constrained Least Squares Algorithm. Journal of Chemometrics, 11(5): 393-401 doi: 10.1002/(SICI)1099-128X(199709/10)11:5<393::AID-CEM483>3.0.CO;2-L
    Chen, W. W., Wang, D. C., Wei, S. J., 2013. A Study on the Uncertainties of the Centroid Depth of the 2013 Lushan Earthquake from Teleseimic Body Wave Data. Earthquake Science, 26(3/4): 161-168. doi: 10.1007/s11589-013-0042-z
    Duputel, Z., Agram, P. S., Simons, M., et al., 2014. Accounting for Prediction Uncertainty when Inferring Subsurface Fault Slip. Geophysical Journal International, 197(1): 464-482. doi: 10.1093/gji/ggt517
    Duputel, Z., Rivera, L., Fukahata, Y., et al., 2012. Uncertainty Estimations for Seismic Source Inversions. Geophysical Journal International, 190(2): 1243-1256. doi: 10.1111/j.1365-246x.2012.05554.x
    Feng, W., Li, Z., Elliott, J. R., et al., 2013. The 2011 Mw 6.8 Burma Earthquake: Fault Constraints Provided by Multiple SAR Techniques. Geophysical Journal International, 195(1): 650-660. doi: 10.1093/gji/ggt254
    Fukahata, Y., 2003. Waveform Inversion for Seismic Source Processes Using ABIC with Two Sorts of Prior Constraints: Comparison between Proper and Improper Formulations. Geophysical Research Letters, 30(6): 2002GL16293. doi: 10.1029/2002gl016293
    Fukahata, Y., Wright, T. J., 2008. A Non-Linear Geodetic Data Inversion Using ABIC for Slip Distribution on a Fault with an Unknown Dip Angle. Geophysical Journal International, 173(2): 353-364. doi: 10.1111/j.1365-246x.2007.03713.x
    Funning, G. J., 2005. Surface Displacements and Source Parameters of the 2003 Bam (Iran) Earthquake from Envisat Advanced Synthetic Aperture Radar Imagery. Journal of Geophysical Research, 110(B9): B09406. doi: 10.1029/2004jb003338
    Funning, G. J., Fukahata, Y., Yagi, Y., et al., 2014. A Method for the Joint Inversion of Geodetic and Seismic Waveform Data Using ABIC: Application to the 1997 Manyi, Tibet, Earthquake. Geophysical Journal International, 196(3): 1564-1579. doi: 10.1093/gji/ggt406
    Funning, G. J., Parsons, B., Wright, T. J., 2007. Fault Slip in the 1997 Manyi, Tibet Earthquake from Linear Elastic Modelling of InSAR Displacements. Geophysical Journal International, 169(3): 988-1008. doi: 10.1111/j.1365-246x.2006.03318.x
    Görgün, E., 2014. Source Characteristics and Coulomb Stress Change of the 19 May 2011 Mw 6.0 Simav-Kütahya Earthquake, Turkey. Journal of Asian Earth Sciences, 87: 79-88. doi: 10.1016/j.jseaes.2014.02.016
    Han, L. B., Zeng, X. F., Jiang, C. S., et al., 2014. Focal Mechanisms of the 2013 Mw 6.6 Lushan, China Earthquake and High-Resolution Aftershock Relocations. Seismological Research Letters, 85(1): 8-14. doi: 10.1785/0220130083
    Hao, J. L., Ji, C., Wang, W. M., et al., 2013. Rupture History of the 2013 Mw 6.6 Lushan Earthquake Constrained with Local Strong Motion and Teleseismic Body and Surface Waves. Geophysical Research Letters, 40(20): 5371-5376. doi: 10.1002/2013gl056876
    He, P., Wen, Y. M., Xu, C. J., et al., 2013. The Large Aftershocks Triggered by the 2011 Mw 9.0 Tohoku-Oki Earthquake, Japan. Journal of Asian Earth Sciences, 74: 1-10. doi: 10.1016/j.jseaes.2013.05.023
    Jiang, Z. S., Wang, M., Wang, Y. Z., et al., 2014. GPS Constrained Coseismic Source and Slip Distribution of the 2013 Mw 6.6 Lushan, China, Earthquake and Its Tectonic Implications. Geophysical Research Letters, 41(2): 407-413. doi: 10.1002/2013gl058812
    Jónsson, S., Zebker, H., Segall, P., et al., 2002. Fault Slip Distribution of the 1999 Mw 7.1 Hector Mine, California, Earthquake, Estimated from Satellite Radar and GPS Measurements. Bulletin of the Seismological Society of America, 92(4): 1377-1389. doi: 10.1785/0120000922
    King, G. C., Stein, R. S., Lin, J., 1994. Static Stress Changes and the Triggering of Earthquakes. Bulletin of the Seismological Society of America, 84(3): 935-953 http://gji.oxfordjournals.org/cgi/ijlink?linkType=ABST&journalCode=ssabull&resid=84/3/935
    Lin, J., Stein, R. S., 2004. Stress Triggering in Thrust and Subduction Earthquakes and Stress Interaction between the Southern San Andreas and nearby Thrust and Strike-Slip Faults. Journal of Geophysical Research, 109(B2): B02303. doi: 10.1029/2003jb002607
    Liu, C. L., Zheng, Y., Ge, C., et al., 2013. Rupture Process of the Ms 7.0 Lushan Earthquake, 2013. Science China: Earth Sciences, 56(7): 1187-1192. doi: 10.1007/s11430-013-4639-9
    Miao, M., Zhu, S. B., 2013. The Static Coulomb Stress Change of the 2013 Lushan Ms 7.0 Earthquake and Its Impact on the Spatial Distribution of Aftershocks. Acta Seismologica Sinica, 35(5): 619-631 (in Chinese with English Abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZXB201305001.htm
    Minson, S. E., Simons, M., Beck, J. L., 2013. Bayesian Inversion for Finite Fault Earthquake Source Models Ⅰ-Theory and Algorithm. Geophysical Journal International, 194(3): 1701-1726. doi: 10.1093/gji/ggt180
    Okada, Y., 1985. Surface Deformation due to Shear and Tensile Faults in a Half-Space. Bulletin of the Seismological Society of America, 75(4): 1135-1154 doi: 10.1785/BSSA0750041135
    Pollitz, F. F., 1996. Coseismic Deformation from Earthquake Faulting on a Layered Spherical Earth. Geophysical Journal International, 125(1): 1-14. doi: 10.1111/j.1365-246x.1996.tb06530.x
    Sun, W. K., Okubo, S., Vaníček, P., 1996. Global Displacements Caused by Point Dislocations in a Realistic Earth Model. Journal of Geophysical Research, 101(B4): 8561. doi: 10.1029/95jb03536
    Toda, S., 2005. Forecasting the Evolution of Seismicity in Southern California: Animations Built on Earthquake Stress Transfer. Journal of Geophysical Research, 110(B5): B05S16. doi: 10.1029/2004jb003415
    Toda, S., Lin, J., Meghraoui, M., et al., 2008. 12 May 2008 M= 7.9 Wenchuan, China, Earthquake Calculated to Increase Failure Stress and Seismicity Rate on Three Major Fault Systems. Geophysical Research Letters, 35(17): L17305. doi: 10.1029/2008gl034903
    Toda, S., Stein, R. S., Lin, J., 2011. Widespread Seismicity Excitation Throughout Central Japan Following the 2011 M=9.0 Tohoku Earthquake and Its Interpretation by Coulomb Stress Transfer. Geophysical Research Letters, 38(7): L00G03. doi: 10.1029/2011gl047834
    Wang, R., Lorenzo-Martín, F., Roth, F., 2003. Computation of Deformation Induced by Earthquakes in a Multi-Layered Elastic Crust-FORTRAN Programs EDGRN/EDCMP. Computers & Geosciences, 29(2): 195-207. doi: 10.1016/s0098-3004(02)00111-5
    Wessel, P., Smith, W. H. F., 1998. New, Improved Version of Generic Mapping Tools Released. Eos, Transactions American Geophysical Union, 79(47): 579. doi: 10.1029/98eo00426
    Weston, J., Ferreira, A. M. G., Funning, G. J., 2012. Systematic Comparisons of Earthquake Source Models Determined Using InSAR and Seismic Data. Tectonophysics, 532-535: 61-81. doi: 10.1016/j.tecto.2012.02.001
    Wright, T. J., Lu, Z., Wicks, C., 2004. Constraining the Slip Distribution and Fault Geometry of the Mw 7.9, 3 November 2002, Denali Fault Earthquake with Interferometric Synthetic Aperture Radar and Global Positioning System Data. Bulletin of the Seismological Society of America, 94(6B): S175-S189. doi: 10.1785/0120040623
    Xu, C. J., Liu, Y. M., Wen, Y. M., et al., 2010. Coseismic Slip Distribution of the 2008 Mw 7.9 Wenchuan Earthquake from Joint Inversion of GPS and InSAR Data. Bulletin of the Seismological Society of America, 100(5B): 2736-2749. doi: 10.1785/0120090253
    Xu, C. J., Wang, L. Y., 2010. Progress of Joint Inversion of Geodetic and Seismological Data for Seismic Source Rupture Process. Geomatics and Information Science of Wuhan University, 35(4): 457-462 (in Chinese with English Abstract) http://www.researchgate.net/publication/289603458_Progress_of_joint_inversion_of_geodetic_and_seismological_data_for_seismic_source_rupture_process
    Xu, X. W., Wen, X. Z., Han, Z. J., et al., 2013. Lushan MS 7.0 Earthquake: A Blind Reserve-Fault Event. Chinese Science Bulletin, 58(28/29): 3437-3443. doi: 10.1007/s11434-013-5999-4
    Yabuki, T., Matsu'ura, M., 1992. Geodetic Data Inversion Using a Bayesian Information Criterion for Spatial Distribution of Fault Slip. Geophysical Journal International, 109(2): 363-375. doi: 10.1111/j.1365-246x.1992.tb00102.x
    Yagi, Y., Fukahata, Y., 2011. Introduction of Uncertainty of Green's Function into Waveform Inversion for Seismic Source Processes. Geophysical Journal International, 186(2): 711-720. doi: 10.1111/j.1365-246x.2011.05043.x
    Yagi, Y., Fukahata, F., 2008. Importance of Covariance Components in Inversion Analyses of Densely Sampled Observed Data: An Application to Waveform Data Inversion for Seismic Source Processes. Geophysical Journal International, 175: 215-221 doi: 10.1111/j.1365-246X.2008.03884.x
    Zeng, X. F., Yan, L., Han, L. B., et al., 2013. The Lushan Ms 7.0 Earhtquake on 20 April 2013: A High-Angle Thrust Event. Chinese Journal of Geophysics, 56(4): 1418-1424 (in Chinsese with English Abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQWX201304039.htm
    Zhang, Y., Chen, Y., Xu, L., 2013. Rupture Process of the Lushan 4.20 Earthquake and Preliminary Analysis on the Disaster-Causing Mechanism. Chinese Journal of Geophysiscs, 56(4): 1408-1411 (in Chinsese with English Abstract)
    Zhang, Y., Wang, R. J., Chen, Y. T., et al., 2014. Kinematic Rupture Model and Hypocenter Relocation of the 2013 Mw 6.6 Lushan Earthquake Constrained by Strong-Motion and Teleseismic Data. Seismological Research Letters, 85(1): 15-22. doi: 10.1785/0220130126
    Zhao, Z., Fan, J., Zheng, S. H., 1997. Precision Determination of the Crustal Structure and Hypocentral Locations in the Longmenshan Thrust Nappe Belt. Acta Seismologica Sinica, 19: 615-622 (in Chinsese) http://www.researchgate.net/publication/288896455_Precision_determination_of_the_crustal_structure_and_hypocentral_locations_in_the_Longmenshan_thrust_nappe_belt
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(2)

    Article Metrics

    Article views(713) PDF downloads(78) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return