Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 26 Issue 5
Oct 2015
Turn off MathJax
Article Contents
Tananga Mathews Nyirenda, Jianwei Zhou, Lina Xie, Xizhe Pan, Yi Li. Determination of Carbonate Minerals Responsible for Alkaline Mine Drainage at Xikuangshan Antimony Mine, China: Using Thermodynamic Chemical Equilibrium Model. Journal of Earth Science, 2015, 26(5): 755-762. doi: 10.1007/s12583-015-0590-3
Citation: Tananga Mathews Nyirenda, Jianwei Zhou, Lina Xie, Xizhe Pan, Yi Li. Determination of Carbonate Minerals Responsible for Alkaline Mine Drainage at Xikuangshan Antimony Mine, China: Using Thermodynamic Chemical Equilibrium Model. Journal of Earth Science, 2015, 26(5): 755-762. doi: 10.1007/s12583-015-0590-3

Determination of Carbonate Minerals Responsible for Alkaline Mine Drainage at Xikuangshan Antimony Mine, China: Using Thermodynamic Chemical Equilibrium Model

doi: 10.1007/s12583-015-0590-3
More Information
  • Corresponding author: Jianwei Zhou, jw.zhou@cug.edu.cn
  • Received Date: 23 Jul 2014
  • Accepted Date: 15 May 2015
  • Publish Date: 01 Oct 2015
  • Minerals responsible for mine water quality at the Xikuangshan antimony mine were identified and characterized by a computer-assisted thermodynamic chemical equilibrium model. A total of 30 samples were collected and analyzed for major cations and anions. The Eh-pH diagrams identified Fe2O3 as the dominant iron species, while SO42- was the dominant sulfide species, which indicates acid production. The major acid producing minerals undergoing oxidation were identified to be pyrite, pyrrhotite, arsenopyrite and siderite. Other secondary sulfide minerals that contributed to SO42- concentration in the groundwater were gypsum and epsomite. Calcite and dolomite were the main buffering carbonate minerals. Identification of the specific acid producing and consuming minerals occurred in the mine area is critical to determine an effective water management plan.

     

  • loading
  • Abbassi, R., Khan, F., Hawboldt, K., 2009. Prediction of Minerals Producing Acid Mine Drainage Using a Computer-Assisted Thermodynamic Chemical Equilibrium Model. Mine Water and the Environment, 28(1): 74–78. doi: 10.1007/s10230-008-0062-4
    Banks, D., Younger, P. L., Arnesen, R. T., et al., 1997. Mine-Water Chemistry: The Good, the Bad and the Ugly. Environmental Geology, 32(3): 157–174. doi: 10.1007/s002540050204
    Blodau, C., 2006. A Review of Acidity Generation And Consumption in Acidic Coal Mine Lakes and Their Watersheds. Science of the Total Environment, 369: 307–332. doi: 10.1016/j.scitotenv.2006.05.004
    Campbell, K. M., Alpers, C. N., Nordstrom, D. K., et al., 2013. Characterization and Remediation of Iron (Ⅲ) Oxide-Rich Scale in a Pipeline Carrying Acid Mine Drainage at Iron Mountain Mine, California, U.S.A. http://ca.water.usgs.gov/projects/iron_mountain/Characterization_Remediation_%20Iron_Oxide_Iron_Mountain.pdf
    Dill, H. G., Pöllmann, H., Bosecker, K., et al., 2002. Supergene Mineralization in Mining Residues of the Matchless Cupreous Pyrite Deposit (Namibia)—A Clue to the Origin of Modern and Fossil Duricrusts in Semiarid Climates. Journal of Geochemical Exploration, 75(1–3); 43–70. doi: 10.1016/S0375-6742(01)00199-6
    Fan, D., Zhang, T., Ye, J., 2004. The XKS Sb Deposit Hosted by the Upper Devonian Black Shale Series, Hunan, China. Ore Geology Reviews, 24: 121–133. doi: 10.1016/j.oregeorev.2003.08.005
    Figueiredo, M. O., Pereira Da Silva, T., 2011. The Positive Environmental Contribution of Jarosite by Retaining Lead in Acid Mine Drainage Areas. International Journal of Environmental Research and Public Health, 8(5): 1575–1582. doi: 10.3390/ijerph8051575#sthash.ChM2wAo3.dpuf
    Fishman, M. J., Friedman, L. C., 1989. Solids, sum of constituents, calculation. In: Methods for determination of inorganic substances in water and fluvial sediments: U.S. Geol. Surv. Techniques Water Resour. Invest. 5-A1: 459–460. (http://pubs.usgs.gov/twri/twri5-a1/pdf/TWRI_5-A1.pdf).
    Fu, Z., Wu, F., Mo, C., et al., 2011. Bioaccumulation of Antimony, Arsenic, and Mercury in the Vicinities of a Large Antimony Mine, China. Microchemical Journal, 97(1): 12–19. doi: 10.1016/j.microc.2010.06.004
    Gomo, M., Vermeulen, D., 2014. Hydrogeochemical Characteristics of a Flooded Underground Coal Mine Groundwater System. Journal of African Earth Sciences, 92: 68–75. doi: 10.1016/j.jafrearsci.2014.01.014
    He, M., 2007. Distribution and Phytoavailability of Antimony at An Antimony Mining and Smelting Area, Hunan, China. Environmental Geochemistry and Health, 29(3): 209–219. doi: 10.1007/s10653-006-9066-9.
    Growth in Global Materials Use, GDP and Population during the 20th Century. Ecological Economics, 68(10): 2696–2705. doi: 10.1016/j.ecolecon.2009.05.007
    Levei, E., Frentiu, E., Ponta, M., et al., 2013. Characterization and Assessment of Potential Environmental Risk of Tailings Stored in Seven Impoundments in the Aries River Basin, Western Romania. Chemical Central Journal, 7(5). doi: 10.1186/1752-153X-7-5
    Liu, F., Le, X. C., McKnight-Whitford, A., et al., 2010. Antimony Speciation and Contamination of Waters in the Xikuangshan Antimony Mining and Smelting Area, China. Environmental Geochemistry and Health, 32(5): 401–413. doi: 10.1007/s10653-010-9284-z
    Parkhurst, D. L., Appelo, C. A. J., 2013. Description of Input and Examples for PHREEQC Version 3—A Computer Program for Speciation, Batch-Reaction, One-Dimensional Transport, and Inverse Geochemical Calculations. U. S. Geol. Surv. Techniques Methods, 6-A43: 497 (http://pubs.usgs.gov/tm/06/a43).
    Peng, J. T., Hu, R. Z., Burnard, P. G., 2003. Samarium–Neodymium Isotope Systematics of Hydrothermal Calcites from the Xikuangshan Antimony Deposit (Hunan, China): The Potential of Calcite as a Geochronometer. Chemical Geology, 200(1–2): 129–136. doi: 10.1016/S0009-2541(03)00187-6
    Wang, X., He, M., Xi, J., et al., 2011. Antimony Distribution and Mobility in Rivers around the World's Largest Antimony Mine of Xikuangshan, Hunan Province, China. Microchemical Journal, 97(1): 4–11. doi: 10.1016/j.microc.2010.05.011
    Yang, D. S., Shimizu, M., Shimazaki, H., et al., 2006. Sulfur Isotope Geochemistry of the Supergiant Xikuangshan Sb Deposit, Central Hunan, China: Constraints on Sources of Ore Constituents. Resource Geology, 56(4): 385–396. doi: 10.1111/j.1751-3928.2006.tb00291.x
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(3)

    Article Metrics

    Article views(887) PDF downloads(89) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return