Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 26 Issue 6
Nov 2015
Turn off MathJax
Article Contents
Estella A. Atekwana, Gamal Z. Abdel Aal. Iron biomineralization controls on geophysical signatures of hydrocarbon contaminated sediments. Journal of Earth Science, 2015, 26(6): 835-843. doi: 10.1007/s12583-015-0611-2
Citation: Estella A. Atekwana, Gamal Z. Abdel Aal. Iron biomineralization controls on geophysical signatures of hydrocarbon contaminated sediments. Journal of Earth Science, 2015, 26(6): 835-843. doi: 10.1007/s12583-015-0611-2

Iron biomineralization controls on geophysical signatures of hydrocarbon contaminated sediments

doi: 10.1007/s12583-015-0611-2
More Information
  • Corresponding author: Estella A. Atekwana, estealla.atekwana@okstate.edu
  • Received Date: 20 Jan 2015
  • Accepted Date: 10 May 2015
  • Publish Date: 01 Dec 2015
  • The interpretation of geophysical data from mature hydrocarbon contaminated sites has relied on a conductive plume model where the conductivity of the subsurface contaminant volume is the result of microbial mediated changes in pore fluid chemistry. This conductive anomalous region is characterized by high total dissolved solids and occurs within the water table fluctuation zone where microbial activity is the maximum. Here we update this conductive plume model by providing new insights from recent laboratory investigations and geophysical data from hydrocarbon contaminated sites suggesting the unrecognized role of the impact that microbial-mediated metallic mineral precipitates have on geophysical signatures. We show that microbial redox processes (e.g., iron and sulfate reduction) during the biodegradation process involve mineralogical transformations and the precipitation of new minerals (e.g., magnetite, and pyrite) that can impact the electrical and magnetic properties of contaminated sediments. We provide examples from laboratory experiments and field studies and suggest that knowledge of the dominant redox processes occurring at hydrocarbon contaminated sites and the mineral phases formed is critical for a more robust interpretation of geophysical data associated with microbial-mediated changes at hydrocarbon contaminated sites. We also show that integration of both magnetic and electrical techniques may help reduce ambiguity in data interpretation.

     

  • loading
  • Abdel Aal, G. Z., Atekwana, E. A., Revil, A., 2014. Geophysical Signatures of Disseminated Iron Minerals: A Proxy for Understanding Subsurface Biophysicochemical Processes. Journal of Geophysical Research: Biogeosciences, 119(9): 1831-1849. doi: 10.1002/2014jg002659
    Allen, J. P., Atekwana, E. A., Atekwana, E. A., et al., 2007. The Microbial Community Structure in Petroleum-Contaminated Sediments Corresponds to Geophysical Signatures. Applied and Environmental Microbiology, 73(9): 2860-2870. doi: 10.1128/aem.01752-06
    Anderson, R. T., Lovley, D. R., 2000. Anaerobic Bioremediation of Benzene under Sulfate-Reducing Conditions in a Petroleum-Contaminated Aquifer. Environmental Science & Technology, 34(11): 2261-2266. doi: 10.1021/es991211a
    Atekwana, E. A., Atekwana, E. A., 2009. Geophysical Signatures of Microbial Activity at Hydrocarbon Contaminated Sites: A Review. Surveys in Geophysics, 31(2): 247-283. doi: 10.1007/s10712-009-9089-8
    Atekwana, E. A., Mewafy, F. M., Aal, G. A., et al., 2014. High-Resolution Magnetic Susceptibility Measurements for Investigating Magnetic Mineral Formation during Microbial Mediated Iron Reduction. Journal of Geophysical Research: Biogeosciences, 119(1): 80-94. doi: 10.1002/2013jg002414
    Atekwana, E. A., Sauck, W. A., Aal, G. Z. A., et al., 2002. Geophysical Investigation of Vadose Zone Conductivity Anomalies at a Hydrocarbon Contaminated Site: Implications for the Assessment of Intrinsic Bioremediation. Journal of Environmental and Engineering Geophysics, 7(3): 103-110. doi: 10.4133/jeeg7.3.103
    Atekwana, E. A., Werkema, D. D., Duris, J. W., et al., 2004. In-situ Apparent Conductivity Measurements and Microbial Population Distribution at a Hydrocarbon-Contaminated Site. Geophysics, 69(1): 56-63. doi: 10.1190/1.1649375
    Atlas, R. M., Bartha, R., 1997. Microbial Ecology: Fundamentals and Applications (4th Ed. ). Benjamin/Cummings, Menlo Park
    Beaver, C. L., Williams, A. E., Atekwana, E. A., et al., 2015. Microbial Communities Associated with Zones of Elevated Magnetic Susceptibility in Hydrocarbon-Contaminated Sediments. Geomicrobilogy (in press)
    Bekins, B. A., Cozzarelli, I. M., Godsy, E. M., et al., 2001. Progression of Natural Attenuation Processes at a Crude Oil Spill Site: Ⅱ. Controls on Spatial Distribution of Microbial Populations. Journal of Contaminant Hydrology, 53(3-4): 387-406. doi: 10.1016/s0169-7722(01)00175-9
    Bennett, P. C., Hiebert, F. K., Choi, W. J., 1996. Microbial Colonization and Weathering of Silicates in a Petroleum-Contaminated Groundwater. Chemical Geology, 132(1-4): 45-53. doi: 10.1016/s0009-2541(96)00040-x
    Cassidy, D. P., Hudak, A. J., Werkema, D. D., et al., 2002. In Situ Rhamnolipid Production at an Abandoned Petroleum Refinery. Soil and Sediment Contamination, 11(5): 769-787. doi: 10.1080/20025891107087
    Chapelle, F. H., 2001, Ground Water Microbiology and Geochemistry. John Wiley & Sons, New York
    Che-Alota, V., Atekwana, E. A., Atekwana, E. A., et al., 2009. Temporal Geophysical Signatures from Contaminant-Mass Remediation. Geophysics, 74(4): B113-B123. doi: 10.1190/1.3139769
    Cozzarelli, I. M., Bekins, B. A., Baedecker, M. J., et al., 2001. Progression of Natural Attenuation Processes at a Crude Oil Spill Site: I. Geochemical Evolution of the Plume. Journal of Contaminant Hydrology, 53(3-4): 369-385. doi: 10.1016/s0169-7722(01)00175-9
    Dearing, J. A., Maher, B. A., Oldfield, F., 1985. Geomorphological Linkages between Soils and Sediments: The Role of Magnetic Measurements. In: Richards, K. S., Arnett, R. R., Ellis, S. K., eds., Geomorphology and Soils. George Allen and Wnwin, London. 441
    Fahrenfeld, N., Cozzarelli, I. M., Bailey, Z., et al., 2014. Insights into Biodegradation through Depth-Resolved Microbial Community Functional and Structural Profiling of a Crude-Oil Contaminant Plume. Microbial Ecology, 68(3): 453-462. doi: 10.1007/s00248-014-0421-6
    Fredrickson, J. K., Zachara, J. M., Kennedy, D. W., et al., 1998. Biogenic Iron Mineralization Accompanying the Dissimilatory Reduction of Hydrous Ferric Oxide by a Groundwater Bacterium. Geochimica et Cosmochimica Acta, 62(19-20): 3239-3257. doi: 10.1016/s0016-7037(98)00243-9
    Lesmes, D. P., Frye, K. M., 2001. Influence of Pore Fluid Chemistry on the Complex Conductivity and Induced Polarization Responses of Berea Sandstone. Journal of Geophysical Research, 106(B3): 4079-4090. doi: 10.1029/2000jb900392
    Lovley, D. R., Baedecker, M. J., Lonergan, D. J., et al., 1989. Oxidation of Aromatic Contaminants Coupled to Microbial Iron Reduction. Nature, 339(6222): 297-300. doi: 10.1038/339297a0
    Mewafy, F. M., Atekwana, E. A., Werkema, D. D., et al., 2011. Magnetic Susceptibility as a Proxy for Investigating Microbially Mediated Iron Reduction. Geophysical Research Letters, 38(21): L21402. doi: 10.1029/2011gl049271
    Mewafy, F. M., Werkema, D. D., Atekwana, E. A., et al., 2013. Evidence that Bio-Metallic Mineral Precipitation Enhances the Complex Conductivity Response at a Hydrocarbon Contaminated Site. Journal of Applied Geophysics, 98: 113-123. doi: 10.1016/j.jappgeo.2013.08.011
    Mullins, C. E., 1977. Magnetic Susceptibility of the Soil and its Significance in Soil Science—A Review. Journal of Soil Science, 28(2): 223-246. doi: 10.1111/j.1365-2389.1977.tb02232.x
    National Research Council (NRC), 2000. Natural Attenuation for Groundwater Remediation. National Academy Press, Washington, D.C.
    Ntarlagiannis, D., Williams, K. H., Slater, L., et al., 2005. Low-Frequency Electrical Response to Microbial Induced Sulfide Precipitation. Journal of Geophysical Research, 110: G02009. doi: 10.1029/2005jg000024
    Orozco, A. F., Williams, K. H., Long, P. E., et al., 2011. Using Complex Resistivity Imaging to Infer Biogeochemical Processes Associated with Bioremediation of an Uranium-Contaminated Aquifer. Journal of Geophysical Research, 116: G03001. doi: 10.1029/2010jg001591
    Pelton, W. H., Ward, S. H., Hallof, P. G., et al., 1978. Mineral Discrimination and Removal of Inductive Coupling with Multifrequency IP. Geophysics, 43(3): 588-609. doi: 10.1190/1.1440839
    Pérez-Guzmán, L., Bogner, K. R., Lower, B. H., 2012. Earth's Ferrous Wheel. Nature Education Knowledge, 3(10): 32
    Revil, A., Glover, P. W. J., 1998. Nature of Surface Electrical Conductivity in Natural Sands, Sandstones, and Clays. Geophysical Research Letters, 25(5): 691-694. doi: 10.1029/98gl00296
    Revil, A., Karaoulis, M., Johnson, T., et al., 2012. Review: Some Low-Frequency Electrical Methods for Subsurface Characterization and Monitoring in Hydrogeology. Hydrogeology Journal, 20(4): 617-658. doi: 10.1007/s10040-011-0819-x
    Rijal, M. L., Appel, E., Petrovský, E., et al., 2010. Change of Magnetic Properties due to Fluctuations of Hydrocarbon Contaminated Groundwater in Unconsolidated Sediments. Environmental Pollution, 158(5): 1756-1762. doi: 10.1016/j.envpol.2009.11.012
    Sauck, W. A., 2000. A Model for the Resistivity Structure of LNAPL Plumes and Their Environs in Sandy Sediments. Journal of Applied Geophysics, 44(2-3): 151-165. doi: 10.1016/s0926-9851(99)00021-x
    Schön, J. H., 1996. Physical Properties of Rocks: Fundamentals and Principles of Petrophysics. Handbook of Geophysical Exploration: Seismic Exploration. Pergamon, New York. 18: 583
    Vinegar, H. J., Waxman, M. H., 1984. Induced Polarization of Shaly Sands. Geophysics, 49(8): 1267-1287. doi: 10.1190/1.1441755
    Werkema, D., 2003. Investigating the Geoelectrical Response of Hydrocarbon Contamination Undergoing Biodegradation. Geophysical Research Letters, 30(12): 1647-1651. doi: 10.1029/2003gl017346
    Williams, K. H., Kemna, A., Wilkins, M. J., et al., 2009. Geophysical Monitoring of Coupled Microbial and Geochemical Processes during Stimulated Subsurface Bioremediation. Environmental Science & Technology, 43(17): 6717-6723. doi: 10.1021/es900855j
    Williams, K. H., Ntarlagiannis, D., Slater, L. D., et al., 2005. Geophysical Imaging of Stimulated Microbial Biomineralization. Environmental Science & Technology, 39(19): 7592-7600. doi: 10.1021/es0504035
    Wu, Y. X., Slater, L. D., Korte, N., 2005. Effect of Precipitation on Low Frequency Electrical Properties of Zerovalent Iron Columns. Environmental Science & Technology, 39(23): 9197-9204. doi: 10.1021/es051052x
    Wu, Y. X., Versteeg, R., Slater, L., et al., 2009. Calcite Precipitation Dominates the Electrical Signatures of Zero Valent Iron Columns under Simulated Field Conditions. Journal of Contaminant Hydrology, 106(3-4): 131-143. doi: 10.1016/j.jconhyd.2009.02.003
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)

    Article Metrics

    Article views(527) PDF downloads(156) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return