Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 26 Issue 6
Nov 2015
Turn off MathJax
Article Contents
Haiyang Wang, Chao Li, Chaoyong Hu, Shucheng Xie. Spurious thermoluminescence characteristics of the Ediacaran Doushantuo Formation (ca. 635–551 Ma) and its implications for marine dissolved organic carbon reservoir. Journal of Earth Science, 2015, 26(6): 883-892. doi: 10.1007/s12583-015-0650-3
Citation: Haiyang Wang, Chao Li, Chaoyong Hu, Shucheng Xie. Spurious thermoluminescence characteristics of the Ediacaran Doushantuo Formation (ca. 635–551 Ma) and its implications for marine dissolved organic carbon reservoir. Journal of Earth Science, 2015, 26(6): 883-892. doi: 10.1007/s12583-015-0650-3

Spurious thermoluminescence characteristics of the Ediacaran Doushantuo Formation (ca. 635–551 Ma) and its implications for marine dissolved organic carbon reservoir

doi: 10.1007/s12583-015-0650-3
More Information
  • Corresponding author: Chao Li, chaoli@cug.edu.cn
  • Received Date: 17 Mar 2015
  • Accepted Date: 12 Jun 2015
  • Publish Date: 01 Dec 2015
  • The Ediacaran Doushantuo Formation (ca. 635–551 Ma) deposited immediately after the last Neoproterozoic glaciations and recorded the most prominent negative excursions of carbonate carbon isotopic composition (δ13Ccarb). These excursions have been interpreted as a result of widespread remineralization of a large dissolved organic carbon (DOC) reservoir in the Ediacaran deep oceans. However, there is no direct evidence so far found in rocks for the proposed DOC reservoir, which devalues such an interpretation. Here, we conducted a detailed study on the glow-curves characteristics and signal origins of spurious thermoluminescence (TL) of the Doushantuo Formation at Jiulongwan in Yangtze Gorges area, South China, through sequential tests under CO2, N2 and air. Spurious TL intensities for test samples before and after removing soluble organic matter via accelerated solvent extraction (ASE) are nearly identical. Further, significant positive correlation between the spurious TL intensity and total inorganic carbon (TIC) content (R2=0.7) indicate that the Doushantuo spurious TL with the characteristic peak at 393.5 ℃ from the sequential test is chemiluminescence (CL) which is derived from the oxidation of a type of non-volatile organic matter strongly associated with carbonate mineral lattice (termed as "X-OM"). A most likely explanation is that the X-OM is a type of dissolved organic matter which co-precipitated with carbonate minerals into sediments in the Ediacaran Doushantuo Ocean. Furthermore, a significant exponential negative correlation (R2=0.55) is observed between the CL data and the isotopic difference between carbonate and coexisting bulk organic matter (i.e., Δ13Ccarb-org, a proxy for remineralization degree of DOC reservoir in proposed DOC hypothesis), suggesting that the X-OM was derived from the oxidation of the DOC reservoir in the Ediacaran Ocean. We thus propose that the X-OM and its CL detected in our study may have recorded the evolution of the possible DOC reservoir in the Ediacaran Doushantuo Ocean. If this is correct, the stratigraphic variations of the CL intensity in the Doushantuo Formation at Jiulongwan support the pulsed oxidation of the DOC reservoir in the Ediacaran Ocean. Our findings indicate that the CL derived from the oxidation of non-volatile organic matter which is strongly associated with carbonate mineral lattices in rocks may provide a feasible approach for probing the evolution of DOC reservoir in the ancient oceans, thus likely provide direct geological evidence for the development of oceanic DOC reservoir in geological times.

     

  • loading
  • Aitken, M. J., Fleming, S. J., Reid, J., et al., 1968. Elimination of Spurious Thermoluminescence. In: McDougall, D. J., ed., Thermoluminescence of Geological Materials. Academic Press, New York. 133–142
    Baietto, V., Villeneuve, G., Guibert, P., et al., 2000. EPR and TL Correlation in Some Powdered Greek White Marbles. Applied Radiation and Isotopes, 52(2): 229–235 doi: 10.1016/S0969-8043(99)00120-7
    Baker, A., Barnes, W. L., Smart, P. L., 1996. Speleothern Luminescence Intensity and Spectral Characteristics: Signal Calibration and a Record of Palaeovegetation Change. Chemical Geology, 130(1): 65–76 http://www.sciencedirect.com/science/article/pii/0009254196000034
    Baker, A., Genty, D., Smart, P. L., 1998. High-Resolution Records of Soil Humification and Paleoclimate Change from Variations in Speleothem Luminescence Excitation and Emission Wavelengths. Geology, 26(10): 903 doi: 10.1130/0091-7613(1998)026<0903:HRROSH>2.3.CO;2
    Bos, A. J. J., 2006. Theory of Thermoluminescence. Radiation Measurements, 41: S45–S56 doi: 10.1016/j.radmeas.2007.01.003
    Bristow, T. F., Kennedy, M. J., 2008. Carbon Isotope Excursions and the Oxidant Budget of the Ediacaran Atmosphere and Ocean. Geology, 36(11): 863 doi: 10.1130/G24968A.1
    Bruce, J., Galloway, R. B., Harper, K., et al., 1999. Bleaching and Phototransfer of Thermoluminescence in Limestone. Radiation Measurements, 30(4): 497–504 doi: 10.1016/S1350-4487(99)00208-5
    Chen, G. F., Hu, C. Y., Li, N., et al., 2013. Thermoluminescence in Response to the Mass Extinction Event in Penglaitan Section in Laibin, Guangxi. Science China Earth Sciences, 56(8): 1350–1356 doi: 10.1007/s11430-013-4600-y
    Christodoulides, C., Fremlin, J. H., 1971. Thermoluminescence of Biological Materials. Nature, 232: 257–258 doi: 10.1038/232257a0
    Condon, D., Zhu, M. Y., Bowring, S., et al., 2005. U-Pb Ages from the Neoproterozoic Doushantuo Formation, China. Science, 308(5718): 95–98 doi: 10.1126/science.1107765
    Debenham, N. C., 1983. Reliability of Thermoluminescence Dating of Stalagmitic Calcite. Nature, 304: 154–156 doi: 10.1038/304154a0
    Dupraz, C., Reid, R. P., Braissant, O., et al., 2009. Processes of Carbonate Precipitation in Modern Microbial Mats. Earth-Science Reviews, 96(3): 141–162 doi: 10.1016/j.earscirev.2008.10.005
    Engin, B., Güven, O., 1997. Thermoluminescence Dating of Denizli Travertines from the Southwestern Part of Turkey. Applied Radiation and Isotopes, 48(9): 1257–1264 doi: 10.1016/S0969-8043(97)00114-0
    Fattahi, M., Stokes, S., 2003. Dating Volcanic and Related Sediments by Luminescence Methods: A Review. Earth-Science Reviews, 62(3–4): 229–264 http://www.sciencedirect.com/science/article/pii/S0012825202001599
    Fike, D. A., Grotzinger, J. P., Pratt, L. M., et al., 2006. Oxidation of the Ediacaran Ocean. Nature, 444(7120): 744–747 doi: 10.1038/nature05345
    Grotzinger, J. P., Fike, D. A., Fischer, W. W., 2011. Enigmatic Origin of the Largest-Known Carbon Isotope Excursion in Earth's history. Nature Geoscience, 4(5): 285–292 doi: 10.1038/ngeo1138
    Gruber, D. F., Simjouw, J. P., Seitzinger, S. P., et al., 2006. Dynamics and Characterization of Refractory Dissolved Organic Matter Produced by a Pure Bacterial Culture in an Experimental Predator-Prey System. Applied and Environmental Microbiology, 72(6): 4184–4191 doi: 10.1128/AEM.02882-05
    Jiang, G. Q., Kaufman, A. J., Christie-Blick, N., et al., 2007. Carbon Isotope Variability across the Ediacaran Yangtze Platform in South China: Implications for a Large Surface-to-Deep Ocean δ13C Gradient. Earth and Planetary Science Letters, 261(1–2): 303–320 http://www.sciencedirect.com/science/article/pii/S0012821X07004414
    Jiang, G. Q., Shi, X. Y., Zhang, S. H., et al., 2011. Stratigraphy and Paleogeography of the Ediacaran Doushantuo Formation (ca. 635–551 Ma) in South China. Gondwana Research, 19(4): 831–849 doi: 10.1016/j.gr.2011.01.006
    Jiao, N. Z., Herndl, G. J., Hansell, D. A., et al., 2010. Microbial Production of Recalcitrant Dissolved Organic Matter: Long-Term Carbon Storage in the Global Ocean. Nature Reviews Microbiology, 8(8): 593–599 doi: 10.1038/nrmicro2386
    Johnston, D. T., Macdonald, F. A., Gill, B. C., et al., 2012. Uncovering the Neoproterozoic Carbon Cycle. Nature, 483(7389): 320–323 doi: 10.1038/nature10854
    Kulak, A. N., Iddon, P., Li, Y., et al., 2007. Continuous Structural Evolution of Calcium Carbonate Particles: A Unifying Model of Copolymer-Mediated Crystallization. Journal of the American Chemical Society, 129(12): 3729–3736 doi: 10.1021/ja067422e
    Li, C., Love, G. D., Lyons, T. W., et al., 2010. A Stratified Redox Model for the Ediacaran Ocean. Science, 328(5974): 80–83 doi: 10.1126/science.1182369
    Li, H., Xin, H. L., Muller, D. A., et al., 2009. Visualizing the 3D Internal Structure of Calcite Single Crystals Grown in Agarose Hydrogels. Science, 326(5957): 1244–1247 doi: 10.1126/science.1178583
    Li, Z. X., Bogdanova, S. V., Collins, A. S., et al., 2008. Assembly, Configuration, and Break-up History of Rodinia: A Synthesis. Precambrian Research, 160(1–2): 179–210 http://www.sciencedirect.com/science/article/pii/S0301926807001635
    Li, Z. X., Li, X. H., Kinny, P. D., et al., 2003. Geochronology of Neoproterozoic Syn-Rift Magmatism in the Yangtze Craton, South China and Correlations with Other Continents: Evidence for a Mantle Superplume that Broke up Rodinia. Precambrian Research, 122(1): 85–109
    Lian, O. B., Roberts, R. G., 2006. Dating the Quaternary: Progress in Luminescence Dating of Sediments. Quaternary Science Reviews, 25(19–20): 2449–2468 http://www.sciencedirect.com/science/article/pii/S0277379106000400
    Liao, J., Hu, C. Y., Li, C. Z., et al., 2014. Spurious Thermoluminescence from Stalagmite: A New Paleoenvironmental Proxy. Earth Science—Journal of China University of Geosciences, 39(4): 443–450 (in Chinese with English Abstract) doi: 10.3799/dqkx.2014.042
    Lu, M., Zhu, M. Y., Zhang, J. M., et al., 2013. The DOUNCE Event at the Top of the Ediacaran Doushantuo Formation, South China: Broad Stratigraphic Occurrence and Non-Diagenetic Origin. Precambrian Research, 225: 86–109 doi: 10.1016/j.precamres.2011.10.018
    McFadden, K. A., Huang, J., Chu, X. L., et al., 2008. Pulsed Oxidation and Biological Evolution in the Ediacaran Doushantuo Formation. Proceedings of the National Academy of Sciences of the United States of America, 105(9): 3197–3202 doi: 10.1073/pnas.0708336105
    Ninagawa, K., Takahashi, N., Wada, T., et al., 1988. Thermoluminescence Measurements of a Calcite Shell for Dating. Quaternary Science Reviews, 7(3): 367–371 http://www.sciencedirect.com/science/article/pii/0277379188900315
    Roque, C., Guibert, P., Vartanian, E., et al., 2001. Thermoluminescence—Dating of Calcite: Study of Heated Limestone Fragments from Upper Paleolithic Layers at Combe Sauniere, Dordogne, France. Quaternary Science Reviews, 20(5): 935–938 http://www.sciencedirect.com/science/article/pii/S0277379100000494
    Rothman, D. H., Hayes, J. M., Summons, R. E., 2003. Dynamics of the Neoproterozoic Carbon Cycle. Proceedings of the National Academy of Sciences of the United States of America, 100(14): 8124–8129 doi: 10.1073/pnas.0832439100
    Shopov, Y., Stoykova, D., Tsankov, L., et al., 2000. Verification of the Causes of Glaciations and Sea Level Changes Using the Records of Calcite Speleothems. International Journal of Speleology, 29(1): 3 http://www.oalib.com/paper/2763067
    Swanson-Hysell, N. L., Rose, C. V., Calmet, C. C., et al., 2010. Cryogenian Glaciation and the Onset of Carbon-Isotope Decoupling. Science, 328(5978): 608–611 doi: 10.1126/science.1184508
    Wang, J., Li, Z. X., 2003. History of Neoproterozoic Rift Basins in South China: Implications for Rodinia Break-Up. Precambrian Research, 122(1): 141–158 http://www.sciencedirect.com/science/article/pii/S0301926802002097
    Wintle, A. G., 1975. Effects of Sample Preparation on the Thermoluminescence Characteristics of Calcite. Modern Geology, 5: 165–167 http://www.researchgate.net/publication/287105367_Effects_of_sample_preparation_on_the_thermoluminescence_characteristics_of_calcite
    Yuan, X. L., Xiao, S. H., Yin, L. M., et al., 2002. Doushantuo Fossils: Life on the Eve of Animal Radiation. China University of Science and Technology Press, Hefei. 1–71 (in Chinese)
    Zhu, M. Y., Lu, M., Zhang, J. M., et al., 2013. Carbon Isotope Chemostratigraphy and Sedimentary Facies Evolution of the Ediacaran Doushantuo Formation in Western Hubei, South China. Precambrian Research, 225: 7–28 doi: 10.1016/j.precamres.2011.07.019
    Zhu, M. Y., Zhang, J. M., Yang, A. H., 2007. Integrated Ediacaran (Sinian) Chronostratigraphy of South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 254(1–2): 7–61 http://www.sciencedirect.com/science/article/pii/S0031018207001733
    Zhu, M. Y., Zhang, J. M., Yang, A. H., et al., 2003. Sinian-Cambrian Stratigraphic Framework for Shallow-to Deep-Water Environments of the Yangtze Platform: An Integrated Approach. Progress in Natural Science, 13(12): 951–960 doi: 10.1080/10020070312331344710
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(3)

    Article Metrics

    Article views(1290) PDF downloads(317) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return