Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 28 Issue 4
Jul 2017
Turn off MathJax
Article Contents
Yu Song, Zhaojun Liu, Pingchang Sun, Qingtao Meng, Rong Liu. A Comparative Geochemistry Study of Several Oil Shale-Bearing Intervals in the Paleogene Huadian Formation, Huadian Basin, Northeast China. Journal of Earth Science, 2017, 28(4): 645-655. doi: 10.1007/s12583-016-0638-z
Citation: Yu Song, Zhaojun Liu, Pingchang Sun, Qingtao Meng, Rong Liu. A Comparative Geochemistry Study of Several Oil Shale-Bearing Intervals in the Paleogene Huadian Formation, Huadian Basin, Northeast China. Journal of Earth Science, 2017, 28(4): 645-655. doi: 10.1007/s12583-016-0638-z

A Comparative Geochemistry Study of Several Oil Shale-Bearing Intervals in the Paleogene Huadian Formation, Huadian Basin, Northeast China

doi: 10.1007/s12583-016-0638-z
More Information
  • The Huadian Basin is an oil shale-bearing basin located in northeastern China. Thirteen oil shale layers deposited in this basin, and the characteristics of oil shale are different among these oil shale layers. Based on the core observation and microscope identification, using the organic and inorganic data from borehole HD3 and outcrops, the formation conditions of different grade oil shale have been evaluated. Based on measuring oil yield (OY in short) of an oil shale to determine its grade, this paper classifies the oil shale as high grade (OY≥10%), medium grade (10% > OY≥5%) and low grade (5% > OY≥3.5%). The high grade oil shale is mainly in brown or dark brown, and the bulk density ranges from 1.59to 1.81 g/cm3. The results of X-ray diffraction indicate the content of carbonate minerals is 28.0%. The HI (hydrogen index)-Tmax, HI-OI (oxygen index) and S2-TOC (total organic carbon) diagrams indicate the kerogen types are Ⅰ and Ⅱ1. The high grade oil shale generally formed in the relatively arid paleoclimate, deposited in the brackish water, dysoxic environment, when the bioprodctivity is extremely high, and the information is mainly from the inorganic parameters diagrams of chemical index of alteration (CIA), Sr/Ba and V/(V+Ni). The medium grade oil shale mainly shows grey-black or black-brown color and the bulk density ranges from 1.87to 2.08 g/cm3. The average content of carbonate minerals is 16.4%, far less than high grade oil shale and the kerogen type is mainly Ⅱ1. The inorganic parameters diagrams reflect the medium grade oil shale generally formed in the less humid paleoclimate, deposited in the brackish water, dysoxic to anoxic environment, when the bioproductivity is medium. The color of low grade oil shale is major in grey-black or dark grey and the bulk density ranges from 2.00to 2.15 g/cm3. The average content of carbonate minerals is sharply decreased and the kerogen type is mainly Ⅱ1. The inorganic parameters diagrams indicate the low grade oil shale generally formed in the relatively humid paleoclimate, deposited in the freshwater to brackish water, anoxic environment, when the bioproductivity is relatively low. Comprehensive study suggest the increasing precipitation caused by a relatively humid paleoclimate resulted in decreasing oxygen concentration and salinity in the bottom water, restrained the salinity stratification, and tended to form the low grade oil shale. The strong evaporation leading to relatively arid paleoclimate resulted in increasing oxygen concentration and salinity in the bottom water, and promoted the salinity stratification. The area with well preservation conditions caused by the relative high sedimentary rate and salinity stratification are favorable to high grade oil shale deposit. In summary, the bioproductivity and the paleoclimate are the main factors controlling the oil shale grade in the Huadian Basin, when the bioproductivity is relatively high and the paleoclimate is relatively arid, it is prone to form the high grade oil shale. However the low grade oil shale developed in the low bioproductivity and relatively humid paleoclimate.

     

  • loading
  • Arthur, M. A., Dean, W. E., Laarkamp, K., 1998. Organic Carbon Accumulation and Preservation in Surface Sediments on the Peru Margin. Chemical Geology, 152(3/4): 273-286. doi: 10.1016/s0009-2541(98)00120-x
    Arthur, M. A., Sageman, B. B., 1994. Marine Black Shales: Depositional Mechanisms and Environments of Ancient Deposits. Annual Review of Earth and Planetary Sciences, 22(1): 499-551. doi: 10.1146/annurev.ea.22.050194.002435
    Bai, Y. L., Ma, L., Wu, W. J., et al., 2009. Geological Characteristics and Resource Potential of Oil Shale in Ordos Basin. Geology in China, 36(5): 1123-1137 (in Chinese with English Abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-DIZI200905018.htm
    Canfield, D. E., 1989. Reactive Iron in Marine Sediments. Geochimica et Cosmochimica Acta, 53(3): 619-632. doi: 10.1016/0016-7037(89)90005-7
    Carroll, A. R., 1998. Upper Permian Lacustrine Organic Facies Evolution, Southern Junggar Basin, NW China. Organic Geochemistry, 28(11): 649-667. doi: 10.1016/s0146-6380(98)00040-0
    Carroll, A. R., Brass, S. C., 1992. Upper Permian Lacustrine Oil Shales, Southern Junggar Basin, Northwest China. AAPG Bulletin, 76(12): 1874-1902. doi: 10.1306/bdff8b0a-1718-11d7-8645000102c1865d
    Chen, J. Y., Li, S. F., Xiong, Y., et al., 1998. Multiple Petroleum Systems in Tertiary Extensional Basins, East China: A Case Study of the Gunan-Fulin Basin. Journal of Petroleum Geology, 21(1): 105-118. doi: 10.1111/j.1747-5457.1998.tb00648.x
    Damsté, J. S. S., de las Heras, F. X. C. D. L., van Bergen, P. F. V., et al., 1993. Characterization of Tertiary Catalan Lacustrine Oil Shales: Discovery of Extremely Organic Sulphur-Rich Type Ⅰ Kerogens. Geochimica et Cosmochimica Acta, 57(2): 389-415. doi: 10.1016/0016-7037(93)90439-4
    Demaison, G. J., Moore, G. T., 1980. Anoxic Environments and Oil Source Bed Genesis. Organic Geochemistry, 2(1): 9-31. doi: 10.1016/0146-6380(80)90017-0
    Dyni, J. R. , 1974. Stratigraphy and Nahcqlite Resources of the Saline Facies of the Green River Formation in Northwest Colorado. Rocky Mountain Association of Geologists, Guidebook. 111-118
    Dyni, J. R., 2003. Geology and Resources of Some World Oil-Shale Deposits. Oil Shale, 20(3): 193-252 https://www.researchgate.net/publication/279696456_Geology_and_Resources_of_Some_World_Oil-Shale_Deposits
    Espitali¨¦, J., Marquis, F., Barsony, I., 1984. Geochemical Logging. Analytical Pyrolysis, 184: 276-304. doi: 10.1016/b978-0-408-01417-5.50013-5
    Gibling, M. R., Tantis, C., 1985. Oil Shale Sedimentology and Geochemistry in Cenozoic Mae Sot Basin, Thailand. AAPG Bulletin, 69(5): 767-780. doi: 10.1306/ad462808-16f7-11d7-8645000102c1865d
    Haskin, L. A., Haskin, M. A., Frey, F. A., et al., 1968. Relative and Absolute Terrestrial Abundances of the Rare Earths. Origin and Distribution of the Elements, 5: 889-912. doi: 10.1016/b978-0-08-012835-1.50074-x
    Hatch, J. R., Leventhal, J. S., 1992. Relationship between Inferred Redox Potential of the Depositional Environment and Geochemistry of the Upper Pennsylvanian (Missourian) Stark Shale Member of the Dennis Limestone, Wabaunsee County, Kansas, U.S.A.. Chemical Geology, 99(1-3): 65-82. doi: 10.1016/0009-2541(92)90031-y
    He, Y. G., 2004. Mining and Utilization of Chinese Fushun Oil Shale. Oil Shale, 21(3): 259-264 https://www.researchgate.net/publication/279566581_Mining_and_utilization_of_Chinese_Fushun_oil_shale
    Hunt, J. M. , 1995. Petroleum Geochemistry and Geology. W. H. Freeman and Company, San Francisco. 491-524
    Ingall, E. D., Bustin, R. M., Capellen, P. V., 1993. Influence of Water Column Anoxia on the Burial and Preservation of Carbon and Phosphorus in Marine Shales. Geochimica et Cosmochimica Acta, 57(2): 303-3l6 doi: 10.1016/0016-7037(93)90433-W
    Jia, J. L., Bechtel, A., Liu, Z. J., et al., 2013. Oil Shale Formation in the Upper Cretaceous Nenjiang Formation of the Songliao Basin (NE China): Implications from Organic and Inorganic Geochemical Analyses. International Journal of Coal Geology, 113: 11-26 doi: 10.1016/j.coal.2013.03.004
    Langford, F. F., Blanc-Valleron, M. M., 1990. Interpreting Rock-Eval Pyrolysis Data Using Graphs of Pyrolyzable Hydrocarbons vs. Total Organic Carbon. AAPG Bulletin, 74(6): 799-804 https://www.researchgate.net/publication/241928132_Interpreting_Rock-Eval_pyrolysis_data_using_graphs_of_pyrolizable_hydrocarbons_vs_total_organic_carbon
    Li, S. J., Xiao, K. H., Wo, Y. J., et al., 2008. REE Geochemical Characteristics and Their Geological Signification in Silurian, West of Hunan Province and North of Guizhou Province. Geoscience, 22(2): 273-280 (in Chinese with English Abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-XDDZ200802014.htm
    Lin, S. H., Yuan, X. J., Tao, S. Z., 2013. Geochemical Characteristics of the Source Rocks in Mesozoic Yanchang Formation, Central Ordos Basin. Journal of Earth Science, 24(5): 804-814 doi: 10.1007/s12583-013-0379-1
    Liu, R. , 2007. Research on Oil Shale Characteristics and Metallogenic Mechanism of Cenozoic Fault Basins in Eastern Northeast Region: [Dissertation]. Jilin University, Changchun (in Chinese with English Abstract)
    Liu, Z. J., Dong, Q. S., Ye, S. Q., et al., 2006. The Situation of Oil Shale Resources in China. Journal of Jilin University (Earth Science Edition), 36(6): 869-876 (in Chinese with English Abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-CCDZ200606000.htm
    Liu, Z. J., Liu, R., 2005. Oil Shale Resource State and Evaluating System. Earth Science Frontiers, 12(3): 315-323 (in Chinese with English Abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY200503044.htm
    Liu, Z. J., Yang, H. L., Dong, Q. S., et al., 2009a. Oil Shale in China. Petroleum Industry Press, Beijing. 38-116 (in Chinese with English Abstract)
    Liu, Z. J., Meng, Q. T., Liu, R., 2009b. Characteristics and Genetic Types of Continental Oil Shales in China. Journal of Palaeogeography, 11(1): 105-114 (in Chinese with English Abstract)
    Lu, J. C., Li, Y. H., Wei, X. Y., et al., 2006. Research on the Depositional Environment and Resources Potential of the Oil Shale in the Chang 7 Member, Triassic Yanchang Formation in the Ordos Basin. Journal of Jilin University (Earth Science Edition), 36(6): 928-932 (in Chinese with English Abstract) https://www.researchgate.net/publication/285605112_Research_on_the_depositional_environment_and_resources_potential_of_the_oil_shale_in_the_Chang_7_member_Triassic_Yanchang_Formation_in_the_Ordos_basin
    Meng, Q. T. , 2010. Research on Petrologic and Geoehemical Characteristies of Eocene Oil Shale and Its Enrichment Regularity, Huadian Basin: [Dissertation]. Jilin University, Changchun (in Chinese with English Abstract)
    Meng, Q. T., Liu, Z. J., Bruch, A. A., et al., 2012a. Palaeoclimatic Evolution during Eocene and Its Influence on Oil Shale Mineralisation, Fushun Basin, China. Journal of Asian Earth Sciences, 45: 95-105 doi: 10.1016/j.jseaes.2011.09.021
    Meng, Q. T., Liu, Z. J., Hu, F., et al., 2012b. Productivity of Eocene Ancient Lake and Enrichment Mechanism of Organic Matter in Huadian Basin. Journal of China University of Petroleum, 36(5): 38-44 (in Chinese with English Abstract) https://www.researchgate.net/publication/286961102_Productivity_of_Eocene_ancient_lake_and_enrichment_mechanism_of_organic_matter_in_Huadian_Basin
    Miknis, F. P., Szeverenyi, N. M., Maciel, G. E., 1982. Characterization of the Residual Carbon in Retorted Oil Shale by Solid-State 13C n.m.r.. Fuel, 61(4): 341-345 doi: 10.1016/0016-2361(82)90048-5
    Mort, H., Jacquat, O., Adatte, T., et al., 2007. The Cenomanian/ Turonian Anoxic Event at the Bonarelli Level in Italy and Spain: Enhanced Productivity and/or Better Preservation? Cretaceous Research, 28(4): 597-612 doi: 10.1016/j.cretres.2006.09.003
    Nali, M., Caccialanza, G., Ghiselli, C., et al., 2000. Tmax of Asphaltenes: A Parameter for Oil Maturity Assessment. Organic Geochemistry, 31(12): 1325-1332 doi: 10.1016/S0146-6380(00)00068-1
    Nesbitt, H. W., Young, G. M., 1984. Prediction of Some Weathering Trends of Plutonic and Volcanic Rocks Based on Thermodynamic and Kinetic Considerations. Geochimica et Cosmochimica Acta, 48(7): 1523-1534 doi: 10.1016/0016-7037(84)90408-3
    Sawyer, E. W., 1986. The Influence of Source Rock Type, Chemical Weathering and Sorting on the Geochemistry of Clastic Sediments from the Quetico Metasedimentary Belt, Superior Province, Canada. Chemical Geology, 55(1/2): 77-95 http://www.sciencedirect.com/science/article/pii/0009254186901294
    Sener, M., Senguler, I., Kok, M. V., 1995. Geological Considerations for the Economic Evaluation of Oil Shale Deposits in Turkey. Fuel, 74(7): 999-1003 doi: 10.1016/0016-2361(95)00045-7
    Sun, P. C., Liu, Z. J., Gratzer, R., et al., 2013a. Oil Yield and Bulk Geochemical Parameters in the Songliao and Huadian Basins (China): A Grade Classification Approach. Oil Shale, 30(3): 402-418 doi: 10.3176/oil.2013.3.03
    Sun, P. C., Sachsenhofer, R. F., Liu, Z. J., et al., 2013b. Organic Matter Accumulation in the Oil Shale-and Coal-bearing Huadian Basin (Eocene; NE China). International Journal of Coal Geology, 105: 1-15 doi: 10.1016/j.coal.2012.11.009
    Sun, X. M., Wang, S. Q., Wang, Y. D., et al., 2010. The Structural Feature and Evolutionary Series in the Northern Segment of Tancheng-Lujiang Fault Zone. Acta Petrologica Sinica, 26(1): 165-176 (in Chinese with English Abstract) https://www.researchgate.net/publication/279544397_The_structural_feature_and_evolutionary_series_in_the_northern_segment_of_Tancheng-Lujiang_fault_zone
    Wang, G. C., Carr, T. R., 2013. Organic-Rich Marcellus Shale Lithofacies Modeiling and Distribution Pattern Analysis in the Appalachian Basin. AAPG Bulletin, 97(12): 2173-2205 doi: 10.1306/05141312135
    Wang, D. F., 1986. The Paleocene Basalt in Fushun District and Their Tectonic Significance in Development of Tancheng-Lujiang Fault Belt. Acta Petrologica et Mineralogica, 5(3): 212-219 (in Chinese with English Abstract)
    Wang, K. H., Ji, C. H., Wang, X. P., 2004. The Geologic Features of the Dunmi Faulted Zone and Its Evolution. Jilin Geology, 23(4): 23-27 (in Chinese with English Abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-JLDZ200404003.htm
    Yin, X. Z. , 2008. Palaeolacustrine Productivity Study of Early Late Cretaceous in the Central Area of Songliao Basin: [Dissertation]. China University of Geosciences, Beijing (in Chinese with English Abstract)
    Zhang, M. M., Liu, Z. J., Xu, S. C., et al., 2013. Element Response to the Ancient Lake Information and Its Evolution History of Argillaceous Source Rocks in the Lucaogou Formation in Sangonghe Area of Southern Margin of Junggar Basin. Journal of Earth Science, 24(6): 987-996 doi: 10.1007/s12583-013-0392-4
    Zhu, G. Y., Jin, Q., Zhang, S. C., et al., 2005. Characteristics and Origin of Deep Lake Oil Shale of the Shahejie Formation of Paleogene in Dongying Sag, Jiyang Depression. Journal of Palaeogeography 7(1): 59-69 (in Chinese with English Abstract) https://www.researchgate.net/publication/285192594_Approach_to_Paleogene_overpressure_origin_in_Jiyang_depression
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(3)

    Article Metrics

    Article views(484) PDF downloads(127) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return