Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 27 Issue 2
Mar 2016
Turn off MathJax
Article Contents
Lianjun Feng, Qirui Zhang. The Pre-Sturtian Negative δ13C Excursion of the Dajiangbian Formation Deposited on the Western Margin of Cathaysia Block in South China. Journal of Earth Science, 2016, 27(2): 225-232. doi: 10.1007/s12583-016-0665-9
Citation: Lianjun Feng, Qirui Zhang. The Pre-Sturtian Negative δ13C Excursion of the Dajiangbian Formation Deposited on the Western Margin of Cathaysia Block in South China. Journal of Earth Science, 2016, 27(2): 225-232. doi: 10.1007/s12583-016-0665-9

The Pre-Sturtian Negative δ13C Excursion of the Dajiangbian Formation Deposited on the Western Margin of Cathaysia Block in South China

doi: 10.1007/s12583-016-0665-9
More Information
  • Corresponding author: Lianjun Feng, ljfeng@mail.iggcas.ac.cn
  • Received Date: 31 Mar 2015
  • Accepted Date: 02 Aug 2015
  • Publish Date: 01 Apr 2016
  • The Dajiangbian Formation in South China is a siliciclastic-dominated sedimentary succession with low-grade metamorphism deposited on the western margin of the Cathaysia Block, and is capped by a glaciogenic diamictite (the Sizhoushan Formation). The Sizhoushan glaciogenic strata can be attributed to the Jiangkou glacial (Sturtian glacial) episode as they share stratigraphic and lithological similarities with Jiangkou strata in South China. Some carbonate, chert and shale units throughout the upper part of the Dajiangbian Formation were sampled for carbonate carbon isotope (δ13Ccarb) and organic carbon isotope (δ13Corg) analyses. A range of geochemical indices including oxygen isotopes (δ18O) and Mn/Sr (Fe/Sr) ratios suggest that primary carbon isotope values were preserved in the upper Dajiangbian Formation. The upper Dajiangbian Formation shows δ13Ccarb of -0.1‰, upward decreasing towards to -5.4‰. We suggest that the negative δ13C excursion beneath the Sizhoushan diamictite is correlative with the Pre-Sturtian Islay δ13Ccarb anomaly and allows correlation with the global Neoproterozoic isotope stratigraphy. We find that carbonate and organic carbon isotope data of the upper Dajiangbian Formation are coupled, consistent with the δ13Ccarb13Corg pattern observed on multiple continents.

     

  • loading
  • Banner, J. L., Hanson, G. N., 1990. Calculation of Simultaneous Isotopic and Trace Element Variations during Water-Rock Interaction with Applications to Carbonate Diagenesis. Geochimica et Cosmochimica Acta, 54(11): 3123-3137 doi: 10.1016/0016-7037(90)90128-8
    Brand, U., Veizer, J., 1980. Chemical Diagenesis of a Multicomponent Carbonate System; 1, Trace Elements. Journal of Sedimentary Research, 50(4): 1219-1236 http://www.researchgate.net/publication/230891802_Chemical_diagenesis_of_a_multicomponent_carbonate_system_-_1_Trace_elements
    Brand, U., Veizer, J., 1981. Chemical Diagenesis of a Multicomponent Carbonate System; 2, Stable Isotopes. Journal of Sedimentary Research, 51(3): 987-997
    Calver, C. R., 1998. Isotope Stratigraphy of the Neoproterozoic Togari Group, Tasmania. Australian Journal of Earth Sciences, 45(6): 865-874 doi: 10.1080/08120099808728441
    Condon, D., Zhu, M. Y., Bowring, S., et al., 2005. U-Pb Ages from the Neoproterozoic Doushantuo Formation, China. Science, 308(5718): 95-98 doi: 10.1126/science.1107765
    Derry, L. A., Kaufman, A. J., Jacobsen, S. B., 1992. Sedimentary Cycling and Environmental Change in the Late Proterozoic: Evidence from Stable and Radiogenic Isotopes. Geochimica et Cosmochimica Acta, 56(3): 1317-1329 doi: 10.1016/0016-7037(92)90064-P
    Fairchild, I. J., Marshall, J. D., Bertrand-Sarfati, J., 1990. Stratigraphic Shifts in Carbon Isotopes from Proterozoic Stromatolitic Carbonates (Mauritania): Influences of Primary Mineralogy and Diagenesis. American Journal of Science, 290-A: 46-79 http://ci.nii.ac.jp/naid/80005513628
    Halverson, G. P., Shields-Zhou, G., 2011. Chapter 4 Chemostratigraphy and the Neoproterozoic Glaciations. Geological Society, London, Memoirs, 36(1): 51-66 doi: 10.1144/M36.4
    Hoffman, P. F., Halverson, G. P., Domack, E. W., et al., 2012. Cryogenian Glaciations on the Southern Tropical Paleomargin of Laurentia (NE Svalbard and East Greenland), and a Primary Origin for the Upper Russoya (Islay) Carbon Isotope Excursion. Precambrian Research, 206: 137-158 http://www.sciencedirect.com/science/article/pii/S030192681200071X
    Huang, J. Z., Tang, X. S., Zhang, C. C., et al., 1994. New Stratigraphic Division and Correlation of Sinian System in Southeastern Hunan. Hunan Geology, 13(3): 129-136 (in Chinese with English Abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-HNDZ403.000.htm
    Johnston, D. T., Macdonald, F. A., Gill, B. C., et al., 2012. Uncovering the Neoproterozoic Carbon Cycle. Nature, 483(7389): 320-U110 doi: 10.1038/nature10854
    Jones, D. S., Maloof, A. C., Hurtgen, M. T., et al., 2010. Regional and Global Chemostratigraphic Correlation of the Early Neoproterozoic Shaler Supergroup, Victoria Island, Northwestern Canada. Precambrian Research, 181(1-4): 43-63 doi: 10.1016/j.precamres.2010.05.012
    Kaufman, A. J., Jacobsen, S. B., Knoll, A. H., 1993. The Vendian Record of Sr and C Isotopic Variations in Seawater: Implications for Tectonics and Paleoclimate. Earth and Planetary Science Letters, 120(3-4): 409-430 doi: 10.1016/0012-821X(93)90254-7
    Kaufman, A. J., Knoll, A. H., 1995. Neoproterozoic Variations in the C-Isotopic Composition of Seawater: Stratigraphic and Biogeochemical Implications. Precambrian Research, 73(1-4): 27-49 doi: 10.1016/0301-9268(94)00070-8
    Knoll, A. H., Grotzinger, J. P., Kaufman, A. J., et al., 1995. Integrated Approaches to Terminal Proterozoic Stratigraphy: An Example from the Olenek Uplift, Northeastern Siberia. Precambrian Research, 73(1-4): 251-270 doi: 10.1016/0301-9268(94)00081-2
    Lan, Z. W., Li, X. H., Zhu, M. Y., et al., 2014. A Rapid and Synchronous Initiation of the Wide Spread Cryogenian Glaciations. Precambrian Research, 255: 401-411 doi: 10.1016/j.precamres.2014.10.015
    Li, W. X., Li, X. H., Li, Z. X., 2005. Neoproterozoic Bimodal Magmatism in the Cathaysia Block of South China and Its Tectonic Significance. Precambrian Research, 136(1): 51-66 doi: 10.1016/j.precamres.2004.09.008
    Li, Z. X., Zhang, L. h., Powell, C. M., 1995. South China in Rodinia: Part of the Missing Link between Australia-East Antarctica and Laurentia? Geology, 23(5): 407-410 doi: 10.1130/0091-7613(1995)023<0407:SCIRPO>2.3.CO;2
    Li, Z. X., Li, X. H., Zhou, H. W., et al., 2002. Grenvillian Continental Collision in South China: New SHRIMP U-Pb Zircon Results and Implications for the Configuration of Rodinia. Geology, 30(2): 163-166 doi: 10.1130/0091-7613(2002)030<0163:GCCISC>2.0.CO;2
    Lorens, R. B., 1981. Sr, Cd, Mn and Co Distribution Coefficients in Calcite as a Function of Calcite Precipitation Rate. Geochimica et Cosmochimica Acta, 45(4): 553-561 doi: 10.1016/0016-7037(81)90188-5
    Macdonald, F. A., Schmitz, M. D., Crowley, J. L., et al., 2010. Calibrating the Cryogenian. Science, 327(5970): 1241-1243 doi: 10.1126/science.1183325
    Marais, D. J. D., Strauss, H., Summons, R. E., et al., 1992. Carbon Isotope Evidence for the Stepwise Oxidation of the Proterozoic Environment. Nature, 359(6396): 605-609 doi: 10.1038/359605a0
    McCay, G. A., Prave, A. R., Alsop, G. I., et al., 2006. Glacial Trinity: Neoproterozoic Earth History within the British-Irish Caledonides. Geology, 34(11): 909-912 doi: 10.1130/G22694A.1
    Prave, A. R., Fallick, A. E., Thomas, C. W., et al., 2009. A Composite C-Isotope Profile for the Neoproterozoic Dalradian Supergroup of Scotland and Ireland. Journal of the Geological Society, 166: 845-857 doi: 10.1144/0016-76492008-131
    Rooney, A. D., Macdonald, F. A., Strauss, J. V., et al., 2014. Re-Os Geochronology and Coupled Os-Sr Isotope Constraints on the Sturtian Snowball Earth. Proceedings of the National Academy of Sciences of the United States of America, 111(1): 51-56 doi: 10.1073/pnas.1317266110
    Schrag, D. P., Berner, R. A., Hoffman, P. F., et al., 2002. On the Initiation of a Snowball Earth. Geochemistry Geophysics Geosystems, 3 doi: 10.1029/2001GC000219
    Shu, L. S., Faure, M., Yu, J. H., et al., 2011. Geochronological and Geochemical Features of the Cathaysia Block (South China): New Evidence for the Neoproterozoic Breakup of Rodinia. Precambrian Research, 187(3-4): 263-276 doi: 10.1016/j.precamres.2011.03.003
    Strauss, J. V., Rooney, A. D., Macdonald, F. A., et al., 2014. 740 Ma Vase-Shaped Microfossils from Yukon, Canada: Implications for Neoproterozoic Chronology and Biostratigraphy. Geology, 42(8): 659-662 doi: 10.1130/G35736.1
    Swanson-Hysell, N. L., Rose, C. V., Calmet, C. C., et al., 2010. Cryogenian Glaciation and the Onset of Carbon-Isotope Decoupling. Science, 328(5978): 608-611 doi: 10.1126/science.1184508
    Swanson-Hysell, N. L., Maloof, A. C., Condon, D. J., et al., 2015. Stratigraphy and Geochronology of the Tambien Group, Ethiopia: Evidence for Globally Synchronous Carbon Isotope Change in the Neoproterozoic. Geology: in Press http://adsabs.harvard.edu/abs/2015Geo....43..323S
    Tang, X. S., Huang, J. Z., Zhang, C. C., 1994. The Precambrian on the Northern Margin of the South China Terrane (Hunan Part). Regional Geology of China, 4: 303-310 (in Chinese with English Abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZQYD404.004.htm
    Tziperman, E., Halevy, I., Johnston, D. T., et al., 2011. Biologically Induced Initiation of Neoproterozoic Snowball-Earth Events. Proceedings of the National Academy of Sciences of the United States of America, 108(37): 15091-15096 doi: 10.1073/pnas.1016361108
    Wang, J., Li, Z. X., 2003. History of Neoproterozoic Rift Basins in South China: Implications for Rodinia Break-Up. Precambrian Research, 122(1-4): 141-158 doi: 10.1016/S0301-9268(02)00209-7
    Wang, X. L., Zhou, J. C., Griffin, W. L., et al., 2007. Detrital Zircon Geochronology of Precambrian Basement Sequences in the Jiangnan Orogen: Dating the Assembly of the Yangtze and Cathaysia Blocks. Precambrian Research, 159(1-2): 117-131 doi: 10.1016/j.precamres.2007.06.005
    Wu, H., Jiang, X. S., Wang, J., et al., 2013. Ages and Provenance of the Neoproterozoic Dajiangbian Formation and Aiqiling Formation in Southeast Hunan Province: U-Pb Geochronological Evidence of Detrital Zircons. Geological Review, 59(5): 853-868 (in Chinese with English Abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZLP201305007.htm
    Zhang, Q. R., Chu, X. L., Feng, L. J., 2011. Neoproterozoic Glacial Records in the Yangtze Region, China. Geological Society, London, Memoirs, 36(1): 357-366 doi: 10.1144/M36.32
    Zhao, G. C., Cawood, P. A., 1999. Tectonothermal Evolution of the Mayuan Assemblage in the Cathaysia Block: Implications for Neoproterozoic Collision-Related Assembly of the South China Craton. American Journal of Science, 299(4): 309-339 doi: 10.2475/ajs.299.4.309
    Zhao, G. C., Cawood, P. A., 2012. Precambrian Geology of China. Precambrian Research, 222: 13-54 http://www.sciencedirect.com/science/article/pii/S030192681200232X
    Zhao, J. H., Zhou, M. F., Yan, D. P., et al., 2011. Reappraisal of the Ages of Neoproterozoic Strata in South China: No Connection with the Grenvillian Orogeny. Geology, 39(4): 299-302 doi: 10.1130/G31701.1
    Zhou, C. M., Tucker, R., Xiao, S. H., et al., 2004. New Constraints on the Ages of Neoproterozoic Glaciations in South China. Geology, 32(5): 437-440 doi: 10.1130/G20286.1
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)

    Article Metrics

    Article views(581) PDF downloads(227) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return