Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 27 Issue 3
Jun 2016
Turn off MathJax
Article Contents
Tianyu Zhao, Xin Qian, Qinglai Feng. Geochemistry, zircon U-Pb age and Hf isotopic constraints on the petrogenesis of the Silurian rhyolites in the Loei fold belt and their tectonic implications. Journal of Earth Science, 2016, 27(3): 391-402. doi: 10.1007/s12583-016-0671-y
Citation: Tianyu Zhao, Xin Qian, Qinglai Feng. Geochemistry, zircon U-Pb age and Hf isotopic constraints on the petrogenesis of the Silurian rhyolites in the Loei fold belt and their tectonic implications. Journal of Earth Science, 2016, 27(3): 391-402. doi: 10.1007/s12583-016-0671-y

Geochemistry, zircon U-Pb age and Hf isotopic constraints on the petrogenesis of the Silurian rhyolites in the Loei fold belt and their tectonic implications

doi: 10.1007/s12583-016-0671-y
More Information
  • Corresponding author: Qinglai Feng, qinglaifeng@cug.edu.cn
  • Received Date: 11 Jun 2015
  • Accepted Date: 12 Dec 2016
  • Publish Date: 10 Jun 2016
  • Zircon U-Pb dating, Lu-Hf isotopic and geochemical data for the Silurian rhyolites from the Loei fold belt are presented to constrain their petrogenesis and tectonic settings. The rhyolites give a weighted mean 206Pb/238U age of 423.7±2.7 Ma, and are characterized by high SiO2, Al2O3, K2O and low MnO, MgO and P2O5. All samples are enriched in LILEs (e.g., Ba, K, Pb) and LREEs and depleted in HFSEs (e.g., Nb, Ta, Ti) with obvious negative Eu-anomalies (dEu=0.56-0.63). The calc-alkaline rhyolites are typical arc-related rocks. The Loei rhyolites have high A/CNK ratios (1.19-1.34) and positive εHf(t) (4.03-5.38), which can be interpreted as partial melting of juvenile crustal materials followed by multistage melting and differentiation, similar to highly fractional I-type rocks. Combined with regional geological surveys, the Loei rhyolites should be formed in a volcanic arc environment and may be in contact with the Truong Son fold belt during the Early Paleozoic. Moreover, the Simao Block might be in contiguity with the Indochina Block during Silurian.

     

  • loading
  • Barr, S. M., Macdonald, A. S., Ounchanum P., et al., 2006. Age, Tectonic Setting and Regional Implications of the Chiang Khong Volcanic Suite, Northern Thailand. Journal of the Geological Society, 163(6): 1037-1046. doi: 10.1144/0016-76492005-118
    Boonsoong, A., Panjasawatwong, Y., Metparsopsan, K., 2011. Petrochemistry and Tectonic Setting of Mafic Volcanic Rocks in the Chon Daen-Wang Pong Area, Phetchabun, Thailand. Island Arc, 20(1): 107-124. doi: 10.1111/j.1440-1738.2010.00748.x
    Bunopas, S., Vella, P., 1983. Geological Society of Thailand and Geological Society of Malaysia. Tectonic and Geologic Evolution of Thailand Proceedings of the Workshop on Stratigraphic Correlation of Thailand and Malaysia, Haad Yai. 212-232
    Burrett, C., Zaw, K., Meffre S., et al., 2014. The Configuration of Greater Gondwana-Evidence from LA-ICPMS, U-Pb Geochronology of Detrital Zircons from the Palaeozoic and Mesozoic of Southeast Asia and China. Gondwana Research, 26(1SI): 31-51. doi: 10.1016/j.gr.2013.05.020
    Cawood, P. A., Wang, Y. J., Xu, Y. J., et al., 2013. Locating South China in Rodinia and Gondwana: A Fragment of Greater India Lithosphere? Geology, 41(8): 903-906. doi: 10.1130/G34395.1
    Chappell, B. W., 1999. Aluminium Saturation in I- and S-Type Granites and the Characterization of Fractionated Haplogranites. Lithos, 46(3): 535-551. doi: 10.1016/S0024-4937(98)00086-3
    Charoenprawat, A., Wongwanich, T., Tantiwanit, W., et al., 1976. Geological Map of Thailand 1 : 250 000 Sheet Changwat Loei. Department of Mineral Resources, Bangkok
    Chonglakmani, C., Helmcke, D., 2001. Geodynamic Evolution of Loei and Phetchabun Regions—Does the Discovery of Detrital Chromian Spinels from the Nam Duk Formation (Permian, North-Central Thailand) Provide New Constraint? Gondwana Research, 4(3): 437-442. doi: 10.1016/S1342-937X(05)70343-9
    Condie, K. C., 1989. Geochemical Changes in Baslts and Andesites across the ArcheanProterozoic Boundary: Identification and Significance. Lithos, 23(1/2): 1-18. doi: 10.1016/0024-4937(89)90020-0
    Dong, M. L., Dong, G. C., Mo, X. X., et al., 2013. Geochemistry, Zircon U-Pb Geochronology and Hf Isotopes of Granites in the Baoshan Block, Western Yunnan: Implications for Early Paleozoic Evolution along the Gondwana Margin. Lithos, 179: 36-47. doi: 10.1016/j.lithos.2013.05.011
    Feng, Q. L., Chonglakmani, C., Helmcke, D., et al., 2005. Correlation of Triassic Stratigraphy between the Simao and Lampang-Phrae Basins: Implications for the Tectonopaleogeography of Southeast Asia. Journal of Asian Earth Sciences, 24(6): 777-785. doi: 10.1016/j.jseaes.2004.11.008
    Gong, S. L., Chen, N. S., Geng, H. Y., et al., 2014. Zircon Hf Isotopes and Geochemistry of the Early Paleoproterozoic High-Sr Low-Y Quartz-Diorite in the Quanji Massif, NW China: Crustal Growth and Tectonic Implications. Journal of Earth Science, 25(1): 74-86. doi: 10.1007/s12583-014-0401-2
    Harris, N. B. W., Pearce, J. A., Tindle, A. G., 1986. Geochemical Characteristics of Collision-Zone Magmatism. Geological Society, London, Special Publications, 19(1): 67-81. doi: 10.1144/GSL.SP.1986.019.01.04
    Hoskin, P. W., Schaltegger, U., 2003. The Composition of Zircon and Igneous and Metamorphic Petrogenesis. Reviews in Mineralogy and Geochemistry, 53(1): 27-62. doi: 10.2113/0530027
    Hu, Z. C., Liu, Y. S., Gao, S., et al., 2012. Improved In Situ Hf Isotope Ratio Analysis of Zircon Using Newly Designed X Skimmer Cone and Jet Sample Cone in Combination with the Addition of Nitrogen by Laser Ablation Multiple Collector ICP-MS. Journal of Analytical Atomic Spectrometry, 27(9): 1391-1399. doi: 10.1039/C2JA30078H
    Hutchison, C. S., 1989. Geological Evolution of South-East Asia. Clarendon Press, Oxford
    Intasopa, S., Dunn, T., 1994. Petrology and Sr-Nd Isotopic Systems of the Basalts and Rhyolites, Loei, Thailand. Journal of Southeast Asian Earth Sciences, 9(1): 167-180. doi: 10.1016/0743-9547(94)90073-6
    Irvine, T., Baragar, W., 1971. A Guide to the Chemical Classification of the Common Volcanic Rocks. Canadian Journal of Earth Sciences, 8(5): 523-548. doi: 10.1139/e71-055
    Ji, W. Q., Wu, F. Y., Chung, S. L., et al., 2009. Zircon U-Pb Geochronology and Hf Isotopic Constraints on Petrogenesis of the Gangdese Batholith, Southern Tibet. Chemical Geology, 262(3/4): 229-245. doi: 10.1016/j.chemgeo.2009.01.020
    Jungyusuk, N., Khositanont, S, 1992. Volcanic Rocks and Associated Mineralization in Thailand. In: Piencharoen, C., ed., Proceedings of the National Conference on Geologic Resources of Thailand: Potential for Future Development, Department of Mineral Resources, Bangkok. 528-532
    Kamvong, T., Zaw, K., Meffre, S., et al., 2014. Adakites in the Truong Son and Loei Fold Belts, Thailand and Laos: Genesis and Implications for Geodynamics and Metallogeny. Gondwana Research, 26(1): 165-184. doi: 10.1016/j.gr.2013.06.011
    Kelemen, P. B., Hanghøj, K., Greene, A. R., 2003. One View of the Geochemistry of Subduction-Related Magmatic Arcs, with an Emphasis on Primitive Andesite and Lower Crust. Treatise on Geochemistry, 3: 593-659. doi: 10.1016/B0-08-043751-6/03035-8
    Khositanont, S., Panjasawatwong, Y., Ounchanum, P., et al., 2008. Petrochemistry and Zircon Age Determination of Loei-Phetchabun Volcanic Rocks. Proceedings of the International Symposia on Geoscience Resources and Environments of Asian Terranes (GREAT 2008), Bangkok. 272-280
    Kinny, P. D., Maas, R., 2003. Lu-Hf and Sm-Nd Isotope Systems in Zircon. Reviews in Mineralogy and Geochemistry, 53(1): 327-341. doi: 10.2113/0530327
    Lan, C. Y., Chung, S. L., Van Long, T., et al., 2003. Geochemical and Sr-Nd Isotopic Constraints from the Kontum Massif, Central Vietnam on the Crustal Evolution of the Indochina Block. Precambrian Research, 122(1): 7-27. doi: 10.1016/S0301-9268(02)00205-X
    Le Bas, M. J., Le Maitre, R. W., Streckeisen, A., et al., 1986. A Chemical Classification of Volcanic Rocks Based on the Total Alkali-Silica Diagram. Journal of Petrology, 27(3): 745-750. doi: 10.1093/petrology/27.3.745
    Lehmann, B., Zhao, X. F., Zhou, M. F., et al., 2013. Mid-Silurian Back-Arc Spreading at the Northeastern Margin of Gondwana: The Dapingzhang Dacite-Hosted Massive Sulfide Deposit, Lancangjiang Zone, Southwestern Yunnan, China. Gondwana Research, 24(2): 648-663. doi: 10.1016/j.gr.2012.12.018
    Li, X. H., Li, Z. X., Li, W. X., et al., 2007. U-Pb Zircon, Geochemical and Sr-Nd-Hf Isotopic Constraints on Age and Origin of Jurassic I- and A-Type Granites from Central Guangdong, SE China: A Major Igneous Event in Response to Foundering of a Subducted Flat-Slab? Lithos, 96(1/2): 186-204. doi: 10.1016/j.lithos.2006.09.018
    Liu, H. C., Wang Y. J., Fan W. M., et al., 2014. Petrogenesis and Tectonic Implications of Late-Triassic High ɛNd(t)-ɛHf(t) Granites in the Ailaoshan Tectonic Zone (SW China). Science China: Earth Sciences, 57(9): 2181-2194. doi: 10.1007/s11430-014-4854-z
    Liu, Y. S., Gao, S., Hu, Z. C., et al., 2009. Continental and Oceanic Crust Recycling-Induced Melt-Peridotite Interactions in the Trans-North China Orogen: U-Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths. Journal of Petrology, 51(1/2): 537-571, doi: 10.1093/petrology/egp082
    Liu, Y. S., Hu, Z. C., Zong, K. Q., et al., 2010. Reappraisement and Refinement of Zircon U-Pb Isotope and Trace Element Analyses by LA-ICP-MS. Chinese Science Bulletin, 55(15): 1535-1546. doi: 10.1007/s11434-010-3052-4
    Liu, Y. S., Zong, K. Q., Kelemen, P. B., et al., 2008. Geochemistry and Magmatic History of Eclogites and Ultramafic Rocks from the Chinese Continental Scientific Drill Hole: Subduction and Ultrahigh-Pressure Metamorphism of Lower Crustal Cumulates. Chemical Geology, 247(1): 133-153. doi: 10.1016/j.chemgeo.2007.10.016
    Ludwig, K. R., 2003. User's Manual for Isoplot 3.00: A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center Special Publication, Berkeley. 1-74
    Maniar, P. D., Piccoli, P. M., 1989. Tectonic Discrimination of Granitoids. Geological Society of America Bulletin, 101(5): 635-643. doi:10.1130/0016-7606(1989)101<0635:TDOG> 2.3.CO;2
    Mao, X. C., Wang, L. Q., Li, B., et al., 2012. Discovery of the Late Silurian Volcanic Rocks in the Dazhonghe Area, Yunxian-Jinggu Volcanic Arcbelt, Western Yunnan, China and Its Geological Significance. Acta Petrologica Sinica, 28(5): 1517-1528 (in Chinese with English Abstract)
    Metcalfe, I., 2013. Gondwana Dispersion and Asian Accretion: Tectonic and Palaeogeographic Evolution of Eastern Tethys. Journal of Asian Earth Sciences, 66: 1-33. doi: 10.1016/j.jseaes.2012.12.020
    Nagy, E. A., Maluski, H., Lepvrier, C., et al., 2001. Geodynamic Significance of the Kontum Massif in Central Vietnam: Composite 40Ar/39Ar and U-Pb Ages from Paleozoic to Triassic. The Journal of Geology, 109: 755-770. doi: 10.1086/323193
    Nakano, N., Osanai, Y., Owada, M., et al., 2013. Tectonic Evolution of High-Grade Metamorphic Terranes in Central Vietnam: Constraints from Large-Scale Monazite Geochronology. Journal of Asian Earth Sciences, 73: 520-539. doi: 10.1016/j.jseaes.2013.05.010
    Panjasawatwong, Y., Zaw, K., Chantaramee, S., et al., 2006. Geochemistry and Tectonic Setting of the Central Loei Volcanic Rocks, Pak Chom Area, Loei, Northeastern Thailand. Journal of Asian Earth Sciences, 26(1): 77-90. doi: 10.1016/j.jseaes.2004.09.008
    Pearce, J. A., Harris, N. B., Tindle, A. G., 1984. Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks. Journal of Petrology, 25(4): 956-983. doi: 10.1093/petrology/25.4.956
    Peter, G. L., Silver, L. T., 1983. Rare Earth Element Distributions among Minerals in a Granodiorite and Their Petrogenetic Implications. Geochimica et Cosmochimica Acta, 47(5): 925-939. doi: 10.1016/0016-7037(83)90158-8
    Qi, X. X., Santosh, M., Zhu, L. H., et al., 2014. Mid-Neoproterozoic Arc Margin of the Indochina Block, SW China: Geochronological and Petrogenetic Constraints and Implications for Gondwana Assembly. Precambrian Research, 245: 207-224. doi: 10.1016/j.precamres.2014.02.008
    Qian, X., Feng, Q. L., Chonglakmani, C., et al., 2013. Geochemical and Geochronological Constrains on the Chiang Khong Volcanic Rocks (Northwestern Thailand) and Its Tectonic Implications. Frontiers of Earth Science, 7(4): 508-521. doi: 10.1007/s11707-013-0399-2
    Qian, X., Feng, Q. L., Wang Y. J., et al., 2015. Arc-Like Volcanic Rocks in NW Laos: Geochronological and Geochemical Constraints and Their Tectonic Implications. Journal of Asian Earth Sciences, 98: 342-357. doi: 10.1016/j.jseaes.2014.11.035
    Roger, F., Leloup, P. H., Jolivet, M., et al., 2000. Long and Complex Thermal History of the Song Chay Metamorphic Dome (Northern Vietnam) by Multi-System Geochronology. Tectonophysics, 321(4): 449-466. doi: 10.1016/S0040-1951(00)00085-8
    Salam, A., Zaw, K., Meffre, S., et al., 2014. Geochemistry and Geochronology of the Chatree Epithermal Gold-Silver Deposit: Implications for the Tectonic Setting of the Loei Fold Belt, Central Thailand. Gondwana Research, 26(1): 198-217. doi: 10.1016/j.gr.2013.10.008
    Shi, M. F., Lin, F. C., Fan, W. Y., et al., 2015. Zircon U-Pb Ages and Geochemistry of Granitoids in the Truong Son Terrane, Vietnam: Tectonic and Metallogenic Implications. Journal of Asian Earth Sciences, 101: 101-120. doi: 10.1016/j.jseaes.2015.02.001
    Sisson, T. W., Ratajeski, K., Hankins, W. B., et al., 2005. Voluminous Granitic Magmas from Common Basaltic Sources. Contributions to Mineralogy and Petrology, 148(6): 635-661. doi: 10.1007/s00410-004-0632-9
    Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313-345. doi: 10.1144/GSL.SP.1989.042.01.19
    Sylvester, P. J., 1998. Post-Collisional Strongly Peraluminous Granites. Lithos, 45(1): 29-44. doi: 10.1016/S0024-4937(98)00024-3
    Tao, J. H., Li, W. X., Li, X. H., et al., 2013. Petrogenesis of Early Yanshanian Highly Evolved Granites in the Longyuanba Area, Southern Jiangxi Province: Evidence from Zircon U-Pb Dating, Hf-O Isotope and Whole-Rock Geochemistry. Science China Earth Sciences, 56(6): 922-939. doi: 10.1007/s11430-013-4593-6
    Tran, H. T., Zaw, K., Halpin, J. A., et al., 2014. The Tam Ky-Phuoc Son Shear Zone in Central Vietnam: Tectonic and Metallogenic Implications. Gondwana Research, 26(1): 144-146. doi: 10.1016/j.gr.2013.04.008
    Udchachon, M., Thassanapak, H., Feng, Q. L., et al., 2011. Geochemical Constraints on the Depositional Environment of Upper Devonian Radiolarian Cherts from Loei, North-Eastern Thailand. Frontiers of Earth Science, 5(2): 178-190. doi: 10.1007/s11707-011-0153-6
    Vivatpinyo, J., Charusiri, P., Sutthirat, C., 2014. Volcanic Rocks from Q-Prospect, Chatree Gold Deposit, Phichit Province, North Central Thailand: Indicators of Ancient Subduction. Arabian Journal for Science and Engineering, 39(1): 325-338. doi: 10.1007/s13369-013-0839-z
    Wang, Q. F., Deng, J., Li, C., et al., 2014. The Boundary between the Simao and Yangtze Blocks and Their Locations in Gondwana and Rodinia: Constraints from Detrital and Inherited Zircons. Gondwana Research, 26(2): 438-448. doi: 10.1016/j.gr.2013.10.002
    Wang, Y., Zhang, Y., Fan, W., et al., 2014. Early Neoproterozoic Accretionary Assemblage in the Cathaysia Block: Geochronological, Lu-Hf Isotopic and Geochemical Evidence from Granitoid Gneisses. Precambrian Research, 249: 144-161 doi: 10.1016/j.precamres.2014.05.003
    Whalen, J. B., Currie, K. L., Chappell, B. W., 1987. A-Type Granites: Geochemical Characteristics, Discrimination and Petrogenesis. Contributions to Mineralogy and Petrology, 95(4): 407-419. doi: 10.1007/BF00402202
    Winchester, J. A., Floyd, P. A., 1977. Geochemical Discrimination of Different Magma Series and Their Differentiation Products Using Immobile Elements. Chemical Geology, 20: 325-343. doi: 10.1016/0009-2541(77)90057-2
    Wu, F. Y., Jahn, B., Wilde, S. A., et al., 2003a. Highly Fractionated I-Type Granites in NE China (I): Geochronology and Petrogenesis. Lithos, 66(3): 241-273. doi: 10.1016/S0024-4937(02)00222-0
    Wu, F. Y., Jahn, B., Wilde, S. A., et al., 2003b. Highly Fractionated I-Type Granites in NE China (II): Isotopic Geochemistry and Implications for Crustal Growth in the Phanerozoic. Lithos, 67(3/4): 191-204. doi: 10.1016/S0024-4937(03)00015-X
    Zhang, D. H., Wei, J. H., Fu, L. B., et al., 2013. Formation of the Jurassic Changboshan-Xieniqishan Highly Fractionated I-Type Granites, Northeastern China: Implication for the Partial Melting of Juvenile Crust Induced by Asthenospheric Mantle Upwelling. Geological Journal, 50(2): 122-138. doi: 10.1002/gj.2531
    Zhao, S., Xu, W. L., Wang, W., et al., 2014. Geochronology and Geochemistry of Middle-Late Ordovician Granites and Gabbros in the Erguna Region, NE China: Implications for the Tectonic Evolution of the Erguna Massif. Journal of Earth Science, 25(5): 841-853. doi: 10.1007/s12583-014-0476-9
    Zhu, D. C., Zhao, Z. D., Niu, Y. L., et al., 2012. Cambrian Bimodal Volcanism in the Lhasa Terrane, Southern Tibet: Record of an Early Paleozoic Andean-Type Magmatic Arc in the Australian Proto-Tethyan Margin. Chemical Geology, 328: 290-308. doi: 10.1016/j.chemgeo.2011.12.024
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(3)

    Article Metrics

    Article views(642) PDF downloads(103) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return