Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 30 Issue 4
Aug 2019
Turn off MathJax
Article Contents
Xiuhua Zheng, Chenyang Duan, Bairu Xia, Yong Jiang, Jian Wen. Hydrogeochemical Modeling of the Shallow Thermal Water Evolution in Yangbajing Geothermal Field, Tibet. Journal of Earth Science, 2019, 30(4): 870-878. doi: 10.1007/s12583-016-0918-7
Citation: Xiuhua Zheng, Chenyang Duan, Bairu Xia, Yong Jiang, Jian Wen. Hydrogeochemical Modeling of the Shallow Thermal Water Evolution in Yangbajing Geothermal Field, Tibet. Journal of Earth Science, 2019, 30(4): 870-878. doi: 10.1007/s12583-016-0918-7

Hydrogeochemical Modeling of the Shallow Thermal Water Evolution in Yangbajing Geothermal Field, Tibet

doi: 10.1007/s12583-016-0918-7
Funds:

the China Geological Survey 121201112006

the National Natural Science Foundation of China 41572361

More Information
  • Corresponding author: Chenyang Duan
  • Received Date: 10 May 2016
  • Accepted Date: 27 Dec 2016
  • Publish Date: 01 Aug 2019
  • The exploitation of thermal water and the mix of cold water changed the properties of geofluid in shallow reservoir, which altered the concentration of the chemical constitutes and continuously built new water-rock reaction. This paper deduced reservoir pressure and temperature variation tendency from 2004 to 2013, analyzed the change of some components in the shallow reservoir water, and finally obtained the evolution of the shallow geothermal water with hydrogeochemical model. The results show the reservoir pressure decreased significantly compared with the slight decline of reservoir temperature, and much cold groundwater infiltrated into the shallow reservoir, which affected the solubility of SiO2 and led to precipitation, the increased CO2 in shallow reservoir promoted the dissolution of aluminosilicate. Calcite and kaolinite precipitation zone has extended to the north in the field, which influenced the porosity of the reservoir rock.

     

  • loading
  • Abu-Jaber, N., Ismail, M., 2014. Hydrogeochemical Modeling of the Shallow Groundwater in the Northern Jordan Valley. Environmental Geology, 44(4):391-399. https://doi.org/10.1007/s00254-003-0770-9
    Appelo, C. A. J., Parkhurst, D. L., Post, V. E. A., 2014. Equations for Calculating Hydrogeochemical Reactions of Minerals and Gases such as CO2 at High Pressures and Temperatures. Geochimica et Cosmochimica Acta, 125:49-67. https://doi.org/10.1016/j.gca.2013.10.003
    Árnason, B., 1977. Hot Groundwater Systems in Iceland Traced by Deuterium. Hydrology Research, 8(2):93-102. https://doi.org/10.2166/nh.1977.0008
    Arnórsson, S., Sigurdsson, S., Svavarsson, H., 1982. The Chemistry of Geothermal Waters in Iceland. I. Calculation of Aqueous Speciation from 0° to 370℃. Geochimica et Cosmochimica Acta, 46(9):1513-1532. https://doi.org/10.1016/0016-7037(82)90311-8
    Ben Brahim, F., Makni, J., Bouri, S., et al., 2014. Evaluation of Temperature and Mixing Process of Water in Deep and Shallow Aquifers in the Southwestern Tunisia:Case of Djerid Region. Arabian Journal for Science and Engineering, 39(7):5677-5689. https://doi.org/10.1007/s13369-014-1138-z
    Bi, E. P., 1998. Geochemical Modeling of the Mixing of Geothermal Water and Reinjection Water:A Case Study of Laugalnd Low-Temperature Geothermal Field in Iceland. Earth Science-Journal of China Univer-sity of Geosciences, 23(6):631-634 (in Chinese with English Abstract)
    Bozau, E., van Berk, W., 2013. Hydrogeochemical Modeling of Deep Formation Water Applied to Geothermal Energy Production. Procedia Earth and Planetary Science, 7:97-100. https://doi.org/10.1016/j.proeps.2013.03.006
    Chen, Z. Y., 1995. Advancements of Hydrogeochemical Modeling. Advance in Earth Sciences, 10(3):278-282 (in Chinese with English Abstract)
    Cidu, R., Bahaj, S., 2000. Geochemistry of Thermal Waters from Morocco. Geothermics, 29(3):407-430. https://doi.org/10.1016/s0375-6505(00)00007-9
    Criss, R. E., 2015. Use of Geochemical and Geophysical Techniques to Characterize and Prospect for Geothermal Resources and Hydrothermal Ore Deposits. Journal of Earth Science, 26(1):73-77. https://doi.org/10.1007/s12583-015-0510-6
    Cruz, J. V., França, Z., 2006. Hydrogeochemistry of Thermal and Mineral Water Springs of the Azores Archipelago (Portugal). Journal of Vol-canology and Geothermal Research, 151(4):382-398. https://doi.org/10.1016/j.jvolgeores.2005.09.001
    Dor, J., 2003. The Basic Characteristics of the Yangbajing Geothermal Field-A Typical High Temperature Geothermal System. Engineering Science, 5(1):42-47 (in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zggckx200301008
    Edmunds, W. M., Carrillo-Rivera, J. J., Cardona, A., 2002 Geochemical Evolution of Groundwater beneath Mexico City. Journal of Hydrology, 258(1-4):1-24. https://doi.org/10.1016/S0022-1694(01)00461-9
    El Mandour, A., El Yaouti, F., Fakir, Y., et al., 2008. Evolution of Groundwater Salinity in the Unconfined Aquifer of Bou-Areg, Northeastern Mediterranean Coast, Morocco. Environmental Geology, 54(3):491-503. https://doi.org/10.1007/s00254-007-0842-3
    Feng, Z. J., Zhao, Y. S., Zhou, A. C., et al., 2012. Development Program of Hot Dry Rock Geothermal Resource in the Yangbajing Basin of China. Renewable Energy, 39(1):490-495. https://doi.org/10.1016/j.renene.2011.09.005
    Fisher, R. S., Mullican, I. F., 1997. Hydrochemical Evolution of Sodium-Sulfate and Sodium-Chloride Groundwater beneath the Northern Chi-huahuan Desert, Trans-Pecos, Texas, USA. Hydrogeology Journal, 5(2):4-16. https://doi.org/10.1007/s100400050102
    Fournier, R. O., 1979. Geochemical and Hydrologic Considerations and the Use of Enthalpy-Chloride Diagrams in the Prediction of Underground Conditions in Hot-Spring Systems. Journal of Volcanology & Geo-thermal Research, 5(1):1-16. https://doi.org/10.1016/0377-0273(79)90029-5
    Fournier, R. O., Potter, R. W. Ⅱ, 1982. A Revised and Expanded Silica (Quartz) Geothermometer. Geothermal Resources Council Bulletin, 11:3-12
    Fournier, R. O., Truesdell, A. H., 1973. An Empirical Na-K-Ca Geother-mometer for Natural Waters. Geochimica et Cosmochimica Acta, 37(5):1255-1275. https://doi.org/10.1016/0016-7037(73)90060-4
    Fryar, A., Mullican, W., Macko, S., 2001. Groundwater Recharge and Chemical Evolution in the Southern High Plains of Texas, USA. Hydrogeology Journal, 9(6):522-542. https://doi.org/10.1007/s10040-001-0161-9
    Giggenbach, W. F., 1988. Geothermal Solute Equilibria. Derivation of Na-K-Mg-Ca Geoindicators. Geochimica et Cosmochimica Acta, 52(12):2749-2765. https://doi.org/10.1016/0016-7037(88)90143-3
    Giggenbach, W. F., 1991. Chemical Techniques in Geothermal Exploration. Applications of Geochemistry in Geothermal Reservoir Development, 11:9-114 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=S0016756802267114
    Kaya, E., Zarrouk, S. J., O'Sullivan, M. J., 2011. Reinjection in Geothermal Fields:A Review of Worldwide Experience. Renewable and Sustainable Energy Reviews, 15(1):47-68. https://doi.org/10.1016/j.rser.2010.07.032
    Li, X. L., Sun, Z. X., Liu, J. H., 2010. Hydrogeochemistry. Third Edition. Atomic Press, Nanchang. 37, 153-156 (in Chinese)
    Liang, T. L., Zhang, D. Q., Tan, Q. Y., et al., 1990. Geothermal Exploration Report of Yangyi Geothermal Field. Geothermal Geological Team of Tibet, Lhasa. 208 (in Chinese)
    Liu, M. L., Guo, Q. H., Zhang, X. B., et al., 2015. Characteristic Solutes in Geothermal Water from the Rehai Hydrothermal System, Southwestern China. Journal of Earth Science, 26(1):140-148. https://doi.org/10.1007/s12583-015-0600-5
    Lord, D. L., Shah, S. N., Rein, R. G., et al., 1994. Study of Perforation Friction Pressure Employing a Large-Scale Fracturing Flow Simulator. SPE Annual Technical Conference and Exhibition, Society of Petroleum Engineers, Louisiana. 449-458. https://doi.org/10.2118/28508-MS
    Lu, G. P., Liu, R. F., 2015. Aqueous Chemistry of Typical Geothermal Springs with Deep Faults in Xinyi and Fengshun in Guangdong Province, China. Journal of Earth Science, 26(1):60-72. https://doi.org/10.1007/s12583-015-0498-y
    Opondo, K. M., 2008. The Fluid Characteristics of Three Exploration Wells Drilled at Olkaria-Domes Field, Kenya. In: Thirty Third Workshop Geothermal Reservoir Engineering, Stanford Geothermal Workshop, Stanford. 368-372
    Parkhurst, D. L., Appelo, C. A. J., 1999. User's Guide to PHREEQC (Version 2)-A Computer Program for Speciation, Batch-Reaction, One-Dimensional Transport, and Inverse Geochemical Calculations. United States Geological Survey, Denver
    Shen, J. N., 1998. Calculation of Well Head Temperature of Geothermal Water Well. Journal of Daqing Petroleum Institute, 22(4):83-86 (in Chinese with English Abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=J-STAGE_3974388
    Sun, H. L., Ma, F., Lin, W. J., et al., 2015. Geochemical Characteristics of High Temperature Geothermal Field and Geothermometer Application in Tibet. Geological Science and Technology Information, 34(3):171-177. https://doi.org/1000-7849(2015)03-0171-07 (in Chinese with English Abstract)
    Tempel, R. N., Sturmer, D. M., Schilling, J., 2011. Geochemical Modeling of the Near-Surface Hydrothermal System beneath the Southern Moat of Long Valley Caldera, California. Geothermics, 40(2):91-101. https://doi.org/10.1016/j.geothermics.2011.03.001
    Thomas, J. M., Welch, A. H., Preissler, A. M., 1989. Geochemical Evolution of Ground Water in Smith Creek Valley-A Hydrologically Closed Basin in Central Nevada, U.S.A. Applied Geochemistry, 4(5):493-510. https://doi.org/10.1016/0883-2927(89)90007-3
    Wei, M. H., Tian, T. S., Sun, Y. D, et al., 2012. A Study of the Scaling Trend of Thermal Groundwater in Kangding Kangaing County of Sichuan. Hydrogeology & Engineering Geology, 39(5):132-138. https://doi.org/1000-3665(2012)05-0132-07 (in Chinese with English Abstract)
    White, R. W., Powell, R., Phillips, G. N., 2003. A Mineral Equilibria Study of the Hydrothermal Alteration in Mafic Greenschist Facies Rocks at Kalgoorlie, Western Australia. Journal of Metamorphic Geology, 21(5):455-468. https://doi.org/10.1046/j.1525-1314.2003.00454.x
    Yao, J. M., Zhou, X., Zhou, H. Y., 2006. Hydrogeochemical Simulation for Ninghebei Ordovician Limestone Wellfield in Tianjin. Geoscience, 20(3):494-499. https://doi.org/1000 -8527(2006)03-0494-06 (in Chinese with English Abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xddz200603019
    Zhang, X. B., Hu, Q. H., 2018. Development of Geothermal Resources in China:A Review. Journal of Earth Science, 29(2):452-467. https://doi.org/10.1007/s12583-018-0838-9
    Zhang, X. G., 1998. Sulfur Mineralization of Modern Geothermal System in Yangbajing Basin of Tibet. Geology of Chemical Minerals, 20(1):1-10 (in Chinese with English Abstract)
    Zhao, P., Jin, J., Zhang, H. Z., et al., 1998. Chemical Composition of Thermal Water in the Yangbajing Geothermal Field, Tibet. Scientia Geologica Sinca, 33(1):61-67 (in Chinese with English Abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199800069865
    Zhao, P., Kennedy, M., Dor, J., et al., 2001. Noble Gases Constraints on the Origin and Evolution of Geothermal Fluids from the Yangbajing Geothermal Field, Tibet. Acta Petrologica Sinica, 17(3):497-503. https://doi.org/1000-0569/2001/017(03)-0497-03 (in Chinese with English Abstract)
    Zhou, H. Y., Zhou, X., Yao, J. H., 2007. Hydrogeochemical Modeling of the Conghua Hot Spring in Guangdong. Geoscience, 21(4):619-624. https://doi.org/1000-8527(2007)04-0619-05 (in Chinese with English Abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xddz200704005
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(6)

    Article Metrics

    Article views(333) PDF downloads(14) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return