Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 28 Issue 6
Nov 2017
Turn off MathJax
Article Contents
Xiangxin Kong, Zaixing Jiang, Chao Han, Lijing Zheng, Yiming Zhang, Ruifeng Zhang, Jianzhang Tian. Genesis and Implications of the Composition and Sedimentary Structure of Fine-Grained Carbonate Rocks in the Shulu Sag. Journal of Earth Science, 2017, 28(6): 1047-1063. doi: 10.1007/s12583-016-0927-x
Citation: Xiangxin Kong, Zaixing Jiang, Chao Han, Lijing Zheng, Yiming Zhang, Ruifeng Zhang, Jianzhang Tian. Genesis and Implications of the Composition and Sedimentary Structure of Fine-Grained Carbonate Rocks in the Shulu Sag. Journal of Earth Science, 2017, 28(6): 1047-1063. doi: 10.1007/s12583-016-0927-x

Genesis and Implications of the Composition and Sedimentary Structure of Fine-Grained Carbonate Rocks in the Shulu Sag

doi: 10.1007/s12583-016-0927-x
More Information
  • Corresponding author: Zaixing Jiang, jiangzx@cugb.edu.cn
  • Received Date: 10 Mar 2016
  • Accepted Date: 17 Nov 2016
  • Publish Date: 01 Dec 2017
  • Fine-grained carbonate rocks, which extensively occur in the Eocene strata in the Shulu sag, Bohai Bay Basin, North China, represent an unconventional, fine-grained carbonate reservoir. However, previous studies have ignored the complexity of the lithofacies components and their formation mechanisms. Fine-grained carbonate rocks are typical reservoirs in which hydrocarbons form and gather. A better understanding of the nature of these rocks is extremely important for evaluating the quality of unconventional, fine-grained carbonate reservoirs. Various lithofacies components were discriminated in this study with a combination of petrographic observations and carbon isotope analyses. These fine-grained carbonate rocks comprise terrigenous, biogenic and diagenetic materials. Terrigenous input and biologically induced precipitation are the main sources of the materials in the lake. Five lithofacies were identified based on the observations of sedimentary features (core and thin section) and mineralogical data: (1) varve-like laminated calcilutite, (2) graded laminated calcilutite, (3) interlaminated calcisiltite-calcilutite, (4) massive calcilutite, and (5) massive calcisiltite-calcarenite. Their origins were recorded by various lithofacies components, which are controlled by the interactions of physical, chemical and biological processes. This study indicated that the lithology of the bedrocks was the key factor controlling carbonate accumulation. The tectonics and climate can influence the weathering and types of lithofacies. Primary productivity controlled the precipitation of the endogenic calcite. These factors jointly determined the abundant fine-grained carbonate rocks that have accumulated in the Shulu sag.

     

  • loading
  • Anadón, P., Utrilla, R., Vázquez, A., 2000. Use of Charophyte Carbonates as Proxy Indicators of Subtle Hydrological and Chemical Changes in Marl Lakes: Example from the Miocene Bicorb Basin, Eastern Spain. Sedimentary Geology, 133(3/4): 325-347. https://doi.org/10.1016/s0037-0738(00)00047-6
    Anderson, R. Y., 1986. The Varve Microcosm: Propagator of Cyclic Bedding. Paleoceanography, 1(4): 373-382. https://doi.org/10.1029/pa001i004p00373
    Anderson, R. Y., Dean, W. E., 1988. Lacustrine Varve Formation through Time. Palaeogeography, Palaeoclimatology, Palaeoecology, 62(1-4): 215-235. https://doi.org/10.1016/0031-0182(88)90055-7
    Aplin, A. C., Macquaker, J. H. S., 2011. Mudstone Diversity: Origin and Implications for Source, Seal, and Reservoir Properties in Petroleum Systems. AAPG Bulletin, 95(12): 2031-2059. https://doi.org/10.1306/03281110162
    Beck, C., 2009. "Late Quaternary Lacustrine Paleo-Seismic Archives in North-Western Alps: Examples of Earthquake-Origin Assessment of Sedimentary Disturbances". Earth-Science Reviews, 96(4): 327-344. https://doi.org/10.1016/j.earscirev.2009.07.005
    Behrens, E. W., 1984. Unifite Muds in Intraslope Basins, Northwest Gulf of Mexico. Geo-Marine Letters, 4(3/4): 227-233. https://doi.org/10.1007/bf02281711
    Bright, J., Kaufman, D. S., Forester, R. M., et al., 2006. A Continuous 250 000 yr Record of Oxygen and Carbon Isotopes in Ostracode and Bulk-Sediment Carbonate from Bear Lake, Utah-Idaho. Quaternary Science Reviews, 25(17/18): 2258-2270. https://doi.org/10.1016/j.quascirev.2005.12.011
    Bustillo, M. A., Alonso-Zarza, A. M., 2007. Overlapping of Pedogenesis and Meteoric Diagenesis in Distal Alluvial and Shallow Lacustrine Deposits in the Madrid Miocene Basin, Spain. Sedimentary Geology, 198(3/4): 255-271. https://doi.org/10.1016/j.sedgeo.2006.12.006
    Casado, A. I., Alonso-Zarza, A. M., la Iglesia, Á., 2014. Morphology and Origin of Dolomite in Paleosols and Lacustrine Sequences. Examples from the Miocene of the Madrid Basin. Sedimentary Geology, 312(10): 50-62. https://doi.org/10.1016/j.sedgeo.2014.07.005
    Chafetz, H. S., 2013. Porosity in Bacterially Induced Carbonates: Focus on Micropores. AAPG Bulletin, 97(11): 2103-2111. https://doi.org/10.1306/04231312173
    Chang, C. Y., 1991. Geological Characteristics and Distribution Patterns of Hydrocarbon Deposits in the Bohai Bay Basin, East China. Marine and Petroleum Geology, 8(1): 98-106. https://doi.org/10.1016/0264-8172(91)90048-6
    Chang, T. S., Chun, S. S., 2012. Micro-Characteristics of Sustained, Fine-Grained Lacustrine Turbidites in the Cretaceous Hwangsan Tuff, SW Korea. Geosciences Journal, 16(4): 409-420. https://doi.org/10.1007/s12303-012-0042-3
    Charles, M. J., Simmons, M. S., 1986. Methods for the Determination of Carbon in Soils and Sediments: A Review. The Analyst, 111(4): 385. https://doi.org/10.1039/an9861100385
    Cita, M., 2008. Deep-Sea Homogenites: Sedimentary Expression of a Prehistoric Megatsunami in the Eastern Mediterranean. In: Shiki, T., Tsuji, Y., Minoura, K., eds., Tsunamiites—Features and Implications. Elsevier, Amsterdam. 185-202 https://www.elsevier.com/books/tsunamiites-features-and-implications/shiki/978-0-444-51552-0
    Cobbold, P. R., Zanella, A., Rodrigues, N., et al., 2013. Bedding-Parallel Fibrous Veins (Beef and Cone-in-Cone): Worldwide Occurrence and Possible Significance in Terms of Fluid Overpressure, Hydrocarbon Generation and Mineralization. Marine and Petroleum Geology, 43(4): 1-20. https://doi.org/10.1016/j.marpetgeo.2013.01.010
    Day-Stirrat, R. J., Dutton, S. P., Milliken, K. L., et al., 2010. Fabric Anisotropy Induced by Primary Depositional Variations in the Silt: Clay Ratio in Two Fine-Grained Slope Fan Complexes: Texas Gulf Coast and Northern North Sea. Sedimentary Geology, 226(1/2/3/4): 42-53. https://doi.org/10.1016/j.sedgeo.2010.02.007
    Dean, W. E., 1981. Carbonate Minerals and Organic Matter in Sediments of Modern North Temperate Hard-Water Lakes. In: Ethridge, F. G., Flores, R. M., eds., Recent and Ancient Non-Marine Depositional Environments: Models for Exploration. SEPM Special Publication, 31: 213-231 https://pubs.geoscienceworld.org/books/book/1086/chapter/10547651/Carbonate-Minerals-and-Organic-Matter-in-Sediments
    Dean, W., Rosenbaum, J., Skipp, G., et al., 2006. Unusual Holocene and Late Pleistocene Carbonate Sedimentation in Bear Lake, Utah and Idaho, USA. Sedimentary Geology, 185(1/2): 93-112. https://doi.org/10.1016/j.sedgeo.2005.11.016
    Dittrich, M., Kurz, P., Wehrli, B., 2004. The Role of Autotrophic Picocyanobacteria in Calcite Precipitation in an Oligotrophic Lake. Geomicrobiology Journal, 21(1): 45-53. https://doi.org/10.1080/01490450490253455
    Dittrich, M., Müller, B., Mavrocordatos, D., et al., 2003. Induced Calcite Precipitation by Cyanobacterium Synechococcus. Acta Hydrochimica et Hydrobiologica, 31(2): 162-169. https://doi.org/10.1002/aheh.200300486
    Flügel, E., 2004. Microfacies of Carbonate Rocks: Analysis, Interpretation and Application. Springer, New York. 314-321 http://file.scirp.org/Html/13-1210458_69842.htm
    Fourmont, A., Macaire, J. J., Bréhéret, J. G., 2009. Contrasted Late Glacial and Holocene Hydrology of Sarliève Paleolake (France) from Sediment Geometry and Detrital Versus Biochemical Composition. Journal of Paleolimnology, 41(3): 471-490. https://doi.org/10.1007/s10933-008-9238-y
    Francus, P., von Suchodoletz, H., Dietze, M., et al., 2013. Varved Sediments of Lake Yoa (Ounianga Kebir, Chad) Reveal Progressive Drying of the Sahara during the Last 6 100 Years. Sedimentology, 60(4): 911-934. https://doi.org/10.1111/j.1365-3091.2012.01370.x
    Freytet, P., Verrecchia, E. P., 2002. Lacustrine and Palustrine Carbonate Petrography: An Overview. Journal of Paleolimnology, 27(2): 221-237 doi: 10.1023/A:1014263722766
    Garcés, B. L. V., Gierlowski-Kordesch, E. H., 1994. Lacustrine Carbonate Deposition in Middle Pennsylvanian Cyclothems? The Upper Freeport Formation, Appalachian Basin, USA. Journal of Paleolimnology, 11(1): 109-132. https://doi.org/10.1007/bf00683273
    Gierlowski-Kordesch, E. H., 1998. Carbonate Deposition in an Ephemeral Siliciclastic Alluvial System: Jurassic Shuttle Meadow Formation, Newark Supergroup, Hartford Basin, USA. Palaeogeography, Palaeoclimatology, Palaeoecology, 140(1/2/3/4): 161-184. https://doi.org/10.1016/s0031-0182(98)00039-x
    Gierlowski-Kordesch, E. H., 2010. Lacustrine Carbonates. Developments in Sedimentology, 61(1): 1-101 doi: 10.1002/9781444303919.ch3/summary
    Glenn, C., Kelts, K., 1991. Sedimentary Rhythms in Lake Deposits. In: Einsele, G., Ricken, W., Seilacher, A., eds., Cycles and Events in Stratigraphy. Springer, Berlin. 188-221
    Griffiths, S. J., Street-Perrott, F. A., Holmes, J. A., et al., 2002. Chemical and Isotopic Composition of Modern Water Bodies in the Lake Kopais Basin, Central Greece: Analogues for the Interpretation of the Lacustrine Sedimentary Sequence. Sedimentary Geology, 148(1/2): 79-103. https://doi.org/10.1016/s0037-0738(01)00211-1
    Han, C., Tian, J, Z., Zhao, R., et al., 2015. Reservoir Space Types and Its Genesis in Tight Calcilutite Rudstone Reservoir of the Lower Part of Member 3 of Shahejie Formation, Shulu Sag. Acta Petrolei Sinica, 36(B11): 31-39 (in Chinese with English Abstract) http://www.syxb-cps.com.cn/EN/Y2015/V36/Is1/31
    Hargrave, J. E., Hicks, M. K., Scholz, C. A., 2014. Lacustrine Carbonates from Lake Turkana, Kenya: A Depositional Model of Carbonates in an Extensional Basin. Journal of Sedimentary Research, 84(3): 224-237. https://doi.org/10.2110/jsr.2014.22
    Hilfinger, M. F. IV, Mullins, H. T., Burnett, A., et al., 2001. A 2 500 year Sediment Record from Fayetteville Green Lake, New York: Evidence for Anthropogenic Impacts and Historic Isotope Shift. Journal of Paleolimnology, 26(3): 293-305. https://doi.org/ 10.1023/A:1017560300681
    Hodell, D. A., Schelske, C. L., Fahnenstiel, G. L., et al., 1998. Biologically Induced Calcite and Its Isotopic Composition in Lake Ontario. Limnology and Oceanography, 43(2): 187-199. https://doi.org/10.4319/lo.1998.43.2.0187
    Huang, C. Y., Zhang, J. C., Wang, H., et al., 2015. Lacustrine Shale Deposition and Variable Tectonic Accommodation in the Rift Basins of the Bohai Bay Basin in Eastern China. Journal of Earth Science, 26(5): 700-711. https://doi.org/10.1007/s12583-015-0602-3
    Jarvie, D. M., 2012a. Shale Resource Systems for Oil and Gas: Part 1—Shale-Gas Resource Systems. In: Breyer, J. A., ed., Shale Reservoirs—Giant Resources for the 21st Century. AAPG Memoir, 97: 69-87. https://doi.org/10.1306/13321446M973489
    Jarvie, D. M., 2012b. Shale Resource Systems for Oil and Gas: Part 2—Shale-Oil Resource Systems. In: Breyer, J. A., ed., Shale Reservoirs-Giant Resources for the 21st Century. AAPG Memoir, 97: 89-119 http://archives.datapages.com/data/specpubs/memoir97/CHAPTER01P1/CHAPTER01P1.HTM
    Jiang, Z. X., Chen, D. Z., Qiu, L. W., et al., 2007. Source-Controlled Carbonates in a Small Eocene Half-Graben Lake Basin (Shulu Sag) in Central Hebei Province, North China. Sedimentology, 54(2): 265-292. https://doi.org/10.1111/j.1365-3091.2006.00834.x
    Jiang, Z. X., Li, Q., 2013. Reservoir Characteristics and Evaluation Methods of Tight Lacustrine Carbonates: Example from Shulu Sag in Bohai Bay, China. Unconventional Resources Technology Conference, Denver, USA http://archives.datapages.com/data/urtec/2013/urtec-1619327-jiang.htm?q=%2BtextStrip%3Aorganic+textStrip%3Apetrological+textStrip%3Aorganic+textStrip%3Ageochemical+textStrip%3Amethods+textStrip%3Acommonly+textStrip%3Aapplied+textStrip%3Apetroleum+textStrip%3Aexploration+textStrip%3Adevelopment
    Jiang, Z. X., Liang, C., Wu, J., et al., 2013. Several Issues in Sedimentological Studies on Hydrocarbon-Bearing Fine-Grained Sedimentary Rocks. Acta Petrolei Sinica, 34(6): 1031-1039 (in Chinese with English Abstract) http://d.wanfangdata.com.cn/Periodical/syxb201306001
    Jiang, Z. X., Zhang, W., Liang, C., et al., 2014. Characteristics and Evaluation Elements of Shale Oil Reservoir. Acta Petrolei Sinica, 35(1): 184-196 (in Chinese with English Abstract) http://www.en.cnki.com.cn/Article_en/CJFDTOTAL-SYXB201401027.htm
    Jin, Z., Zhou, Y., Zhang, X., 2002. Lacustrine Carbonate Sedimentary Facies of the Shahejie Formation of Paleogene in Huanghua Depression. Journal of Paleolimnology, 4(3): 11-18 (in Chinese with English Abstract) doi: 10.1007%2Fs13146-016-0301-x.pdf
    Jones, B. F., Bowser, C. J., 1978. The Mineralogy and Related Chemistry of Lake Sediments. In: Baccini, P., ed., Lakes: Chemistry, Geology, Physics. Springer, New York. 179-235 doi: 10.1061/(ASCE)0733-9372(1987)113:1(124)
    Kelts, K., Hsü, K., 1978. Freshwater Carbonate Sedimentation. In: Baccini, P., ed., Lakes: Chemistry, Geology, Physics. Springer, New York. 295-323
    Kelts, K., Talbot, M., 1990. Lacustrine Carbonates as Geochemical Archives of Environmental Change and Biotic/Abiotic Interactions. In: Tilzer, M. M., Serruya, C., eds. Large Lakes: Ecological Structure and Function. Springer, Berlin. 288-315. https://doi.org/10.1007/978-3-642-84077-7_15
    Kong, X. X., Jiang, Z. X., Han, C., et al., 2016. Laminations Characteristics and Reservoir Significance of Fine-Grained Carbonate in the Lower 3rd Member of Shahejie Formation of Shulu Sag. Petroleum Geology and Recovery Efficiency, 23(4): 19-26 (in Chinese with English Abstract) https://www.researchgate.net/publication/216432227_Sequence_stratigraphic_significance_of_sedimentary_cycles_and_trace_fossils_in_the_Middle_Jurassic_rocks_of_Kuar_Bet_area_Patcham_Island_Kachchh_Western_India
    Lambert, A., Hsü, K. J., 1979a. Non-Annual Cycles of Varve-Like Sedimentation in Walensee, Switzerland. Sedimentology, 26(3): 453-461. https://doi.org/10.1111/j.1365-3091.1979.tb00920.x
    Lambert, A., Hsü, K., 1979b. Varve-Like Sediments of the Walensee. In: Schluchter, C., ed., Moraines and Varves. Balkema, Rotterdam. 295-302 https://www.sciencedirect.com/science/article/pii/S0031018298000273
    Lazar, O. R., Bohacs, K. M., Macquaker, J. H. S., et al., 2015. Capturing Key Attributes of Fine-Grained Sedimentary Rocks in Outcrops, Cores, and Thin Sections: Nomenclature and Description Guidelines. Journal of Sedimentary Research, 85(3): 230-246. https://doi.org/10.2110/jsr.2015.11
    Lee, C., McKenzie, J. A., Sturm, Z. M., 1987. Carbon Isotope Fractionation and Changes in the Flux and Composition of Particulate Matter Resulting from Biological Activity during a Sediment Trap Experiment in Lake Greifen, Switzerland. Limnology and Oceanography, 32(1): 83-96. https://doi.org/10.4319/lo.1987.32.1.0083
    Leng, M. J., Marshall, J. D., 2004. Palaeoclimate Interpretation of Stable Isotope Data from Lake Sediment Archives. Quaternary Science Reviews, 23(7/8): 811-831. https://doi.org/10.1016/j.quascirev.2003.06.012
    Lincoln, F., Pratson, J. I., 2000. Abstract: Debris Flows Versus Turbidity Currents: A Modeling Comparison of Their Dynamics and Deposits. AAPG Bulletin, 84(2000): 57-72. https://doi.org/10.1306/a9672b86-1738-11d7-8645000102c1865d
    Loucks, R. G., Reed, R. M., Ruppel, S. C., et al., 2009. Morphology, Genesis, and Distribution of Nanometer-Scale Pores in Siliceous Mudstones of the Mississippian Barnett Shale. Journal of Sedimentary Research, 79(12): 848-861. https://doi.org/10.2110/jsr.2009.092
    Loucks, R. G., Reed, R. M., Ruppel, S. C., et al., 2012. Spectrum of Pore Types and Networks in Mudrocks and a Descriptive Classification for Matrix-Related Mudrock Pores. AAPG Bulletin, 96(6): 1071-1098. https://doi.org/10.1306/08171111061
    Lu, J. M., Ruppel, S. C., Rowe, H. D., 2015. Organic Matter Pores and Oil Generation in the Tuscaloosa Marine Shale. AAPG Bulletin, 99(2): 333-357. https://doi.org/10.1306/08201414055
    Macquaker, J. H. S., Taylor, K. G., Gawthorpe, R. L., 2007. High-Resolution Facies Analyses of Mudstones: Implications for Paleoenvironmental and Sequence Stratigraphic Interpretations of Offshore Ancient Mud-Dominated Successions. Journal of Sedimentary Research, 77(4): 324-339. https://doi.org/10.2110/jsr.2007.029
    Mcpherson, J. G., Shanmugam, G., Moiola, R. J., 1987. Fan-Deltas and Braid Deltas: Varieties of Coarse-Grained Deltas. Geological Society of America Bulletin, 99(3): 331. https://doi.org/10.1130/0016-7606(1987)99<331:fabdvo>2.0.co;2 doi: 10.1130/0016-7606(1987)99<331:fabdvo>2.0.co;2
    Milliken, K. L., Rudnicki, M., Awwiller, D. N., et al., 2013. Organic Matter-Hosted Pore System, Marcellus Formation (Devonian), Pennsylvania. AAPG Bulletin, 97(2): 177-200. https://doi.org/10.1306/07231212048
    Milliken, K., 2014. A Compositional Classification for Grain Assemblages in Fine-Grained Sediments and Sedimentary Rocks. Journal of Sedimentary Research, 84(12): 1185-1199. https://doi.org/10.2110/jsr.2014.92
    Morellón, M., Valero-Garcés, B., Anselmetti, F., et al., 2009. Late Quaternary Deposition and Facies Model for Karstic Lake Estanya (North-Eastern Spain). Sedimentology, 56(5): 1505-1534. https://doi.org/10.1111/j.1365-3091.2008.01044.x
    Mulder, T., Syvitski, J. P. M., Migeon, S., et al., 2003. Marine Hyperpycnal Flows: Initiation, Behavior and Related Deposits: A Review. Marine and Petroleum Geology, 20(6/7/8): 861-882. https://doi.org/10.1016/j.marpetgeo.2003.01.003
    Mulder, T., Zaragosi, S., Razin, P., et al., 2009. A New Conceptual Model for the Deposition Process of Homogenite: Application to a Cretaceous Megaturbidite of the Western Pyrenees (Basque Region, SW France). Sedimentary Geology, 222(3/4): 263-273. https://doi.org/10.1016/j.sedgeo.2009.09.013
    Mullins, H. T., 1998. Environmental Change Controls of Lacustrine Carbonate, Cayuga Lake, New York. Geology, 26(5): 443. https://doi.org/10.1130/0091-7613(1998)026<0443:eccolc>2.3.co;2 doi: 10.1130/0091-7613(1998)026<0443:eccolc>2.3.co;2
    Myrow, P. M., Hiscott, R. N., 1991. Shallow-Water Gravity-Flow Deposits, Chapel Island Formation, Southeast Newfoundland, Canada. Sedimentology, 38(5): 935-959. https://doi.org/10.1111/j.1365-3091.1991.tb01880.x
    Osleger, D. A., Heyvaert, A. C., Stoner, J. S., et al., 2009. Lacustrine Turbidites as Indicators of Holocene Storminess and Climate: Lake Tahoe, California and Nevada. Journal of Paleolimnology, 42(1): 103-122. https://doi.org/10.1007/s10933-008-9265-8
    Pacton, M., Fiet, N., Gorin, G. E., 2007. Bacterial Activity and Preservation of Sedimentary Organic Matter: The Role of Exopolymeric Substances. Geomicrobiology Journal, 24(7/8): 571-581. https://doi.org/10.1080/01490450701672042
    Platt, N. H., 1989. Lacustrine Carbonates and Pedogenesis: Sedimentology and Origin of Palustrine Deposits from the Early Cretaceous Rupelo Formation, W Cameros Basin, N Spain. Sedimentology, 36(4): 665-684. https://doi.org/10.1111/j.1365-3091.1989.tb02092.x
    Platt, N., Wright, V. P., 1991. Lacustrine Carbonates: Facies Models, Facies Distributions and Hydrocarbon Aspects. In: Anadón, P., Cabrera, Li., Kelts, K., eds., Lacustrine Facies Analysis. John Wiley & Sons, New York. 57-74
    Pu, X. G., Zhou, L. H., Xiao, D. Q., et al., 2011. Lacustrine Carbonates in the Southwest Margin of the Qikou Sag, Huanghua Depression, Bohai Bay Basin. Petroleum Exploration and Development, 38(2): 136-144. https://doi.org/10.1016/s1876-3804(11)60022-0
    Qiu, L. W., Jiang, Z. X., Liang, H. B., 2010. Lime Mudstone—A Kind of Carbonate Rock of Terrigenous Mechanical Origin. Journal of China University of Petroleum, 34(6): 1-7 (in Chinese with English Abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-SYDX201006003.htm
    Ramos-Guerrero, E., Berrio, I., Fornós, J., et al., 2000. The Middle Miocene Son Verdera Lacustrine-Palustrine System (Santa Margalida Basin, Mallorca). AAPG Studies in Geology, 46: 441-448 http://www.sciencedirect.com/science/article/pii/S1367912006002446
    Ren, Y. Q., 1986. Depositional Environments of Shulu Depression-Viewed from the Point of Micropaleobotanic Florae. Acta Sedimentologica Sinica, 4(4): 101-108 (in Chinese with English Abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-CYXB199602002.htm
    Romero-Viana, L., Julià, R., Camacho, A., et al., 2008. Climate Signal in Varve Thickness: Lake la Cruz (Spain), a Case Study. Journal of Paleolimnology, 40(2): 703-714. https://doi.org/10.1007/s10933-008-9194-6
    Schieber, J., Southard, J. B., Schimmelmann, A., 2010. Lenticular Shale Fabrics Resulting from Intermittent Erosion of Water-Rich Muds—Interpreting the Rock Record in the Light of Recent Flume Experiments. Journal of Sedimentary Research, 80(1): 119-128. https://doi.org/10.2110/jsr.2010.005
    Soreghan, M. J., 1998. Facies Distributions within an Ancient Asymmetric Lake Basin: The Apache Canyon Formation, Bisbee Basin, Arizona. In: Pitman, J. K., Carroll, A. R., eds., Modern and Ancient Lake Systems. Utah Geological Assocociation Guidebook 26. C & M Press, Denver. 163-190 https://www.sciencedirect.com/science/article/pii/S0895981101000463
    Stabel, H., 1985. Mechanisms Controlling the Sedimentation Sequence of Various Elements in Prealpine Lakes. In: Stumm, W., ed., Chemical Processes in Lakes. John Wiley and Sons, New York. 143-167 doi: 10.1023/A:1021264415323
    Stanley, D. J., 1981. Unifites: Structureless Muds of Gravity-Flow Origin in Mediterranean Basins. Geo-Marine Letters, 1(2): 77-83. https://doi.org/10.1007/bf02463322
    Stow, D. A. V., Bowen, A. J., 1978. Origin of Lamination in Deep Sea, Fine-Grained Sediments. Nature, 274(5669): 324-328. https://doi.org/10.1038/274324a0
    Stow, D. A. V., Shanmugam, G., 1980. Sequence of Structures in Fine-Grained Turbidites: Comparison of Recent Deep-Sea and Ancient Flysch Sediments. Sedimentary Geology, 25(1/2): 23-42. https://doi.org/10.1016/0037-0738(80)90052-4
    Sturm, M., Matter, A., 1978. Turbidites and Varves in Lake Brienz (Switzerland): Deposition of Clastic Detritus by Density Currents. In: Matte, A., Tucker, M. E., Modern and Ancient Lake Sediments. International Association of Sedimentologists Special Publication, 2: 147-168. https://doi.org/ 10.1002/9781444303698.ch8
    Sumner, E. J., Talling, P. J., Amy, L. A., 2009. Deposits of Flows Transitional between Turbidity Current and Debris Flow. Geology, 37(11): 991-994. https://doi.org/10.1130/g30059a.1
    Talling, P. J., Masson, D. G., Sumner, E. J., et al., 2012. Subaqueous Sediment Density Flows: Depositional Processes and Deposit Types. Sedimentology, 59(7): 1937-2003. https://doi.org/10.1111/j.1365-3091.2012.01353.x
    Taylor, K. G., Macquaker, J. H. S., 2000. Early Diagenetic Pyrite Morphology in a Mudstone-Dominated Succession: The Lower Jurassic Cleveland Ironstone Formation, Eastern England. Sedimentary Geology, 131(1/2): 77-86. https://doi.org/10.1016/s0037-0738(00)00002-6
    Teranes, J. L., McKenzie, J. A., Bernasconi, S. M., et al., 1999. A Study of Oxygen Isotopic Fractionation during Bio-Induced Calcite Precipitation in Eutrophic Baldeggersee, Switzerland. Geochimica et Cosmochimica Acta, 63(13/14): 1981-1989. https://doi.org/10.1016/s0016-7037(99)00049-6
    Tripsanas, E. K., Bryant, W. R., Phaneuf, B. A., 2004. Depositional Processes of Uniform Mud Deposits (Unifites), Hedberg Basin, Northwest Gulf of Mexico: New Perspectives. AAPG Bulletin, 88(6): 825-840. https://doi.org/10.1306/01260403104
    Tucker, M. E., Wright, V. P., 1990. Carbonate Sedimentology. Wiley-Blackwell, London
    Valero-Garcés, B., Morellón, M., Moreno, A., et al., 2014. Lacustrine Carbonates of Iberian Karst Lakes: Sources, Processes and Depositional Environments. Sedimentary Geology, 299(2): 1-29. https://doi.org/10.1016/j.sedgeo.2013.10.007
    Wang, D., Feng, X., 2002. Research on Carbon and Oxygen Geochemistry of Lower Paleozoic in North China. Acta Geologica Sinica—Chinese Edition, 76(3): 400-408 (in Chinese with English Abstract) https://www.researchgate.net/publication/291852017_Research_on_carbon_and_oxygen_geochemistry_of_Lower_Paleozoic_in_North_China
    Wang, G. L., Wang, T. G., Simoneit, B. R. T., et al., 2010. Sulfur Rich Petroleum Derived from Lacustrine Carbonate Source Rocks in Bohai Bay Basin, East China. Organic Geochemistry, 41(4): 340-354. https://doi.org/10.1016/j.orggeochem.2009.12.010
    Wilkin, R. T., Barnes, H. L., Brantley, S. L., 1996. The Size Distribution of Framboidal Pyrite in Modern Sediments: An Indicator of Redox Conditions. Geochimica et Cosmochimica Acta, 60(20): 3897-3912. https://doi.org/10.1016/0016-7037(96)00209-8
    Zha, X. P., Zhao, Y. Y., Zheng, Y. F., 2010. An Online Method Combining a Gasbench Ⅱ with Continuous Flow Isotope Ratio Mass Spectrometry to Determine the Content and Isotopic Compositions of Minor Amounts of Carbonate in Silicate Rocks. Rapid Communications in Mass Spectrometry, 24(15): 2217-2226. https://doi.org/10.1002/rcm.4632
    Zhang, J. G., Jiang, Z. X., Jiang, X. L., et al., 2016. Oil Generation Induces Sparry Calcite Formation in Lacustrine Mudrock, Eocene of East China. Marine and Petroleum Geology, 71(3): 344-359. https://doi.org/10.1016/j.marpetgeo.2016.01.007
    Zhang, W. C., Cui, Z. Q., Han, C. Y., et al., 2001. Basin Evolution during Palaeogene and Petroleum Potentials of Central Hebei (Jizhong) Depression. Journal of Paleolimnology, 3(1): 45-54 (in Chinese with English Abstract) http://www.doc88.com/p-5418681962521.html
    Zhang, X. W., Scholz, C. A., 2015. Turbidite Systems of Lacustrine Rift Basins: Examples from the Lake Kivu and Lake Albert Rifts, East Africa. Sedimentary Geology, 325(6): 177-191. https://doi.org/10.1016/j.sedgeo.2015.06.003
    Zhao, X. Z., Jiang, Z. X., Zhang, R. F., et al., 2015. Geological Characteristics and Exploration Practices of Special-Lithology Tight Oil Reservoirs in Continental Rift Basins: A Case Study of Tight Oil in Shahejie Formation, Shulu Sag. Acta Petrolei Sinica, 36(B11): 1-9 (in Chinese with English Abstract) http://d.wanfangdata.com.cn/Periodical_syxb2015z1001.aspx
    Zhao, X. Z., Li, Q., Jiang, Z. X., et al., 2014. Organic Geochemistry and Reservoir Characterization of the Organic Matter-Rich Calcilutite in the Shulu Sag, Bohai Bay Basin, North China. Marine and Petroleum Geology, 51(2): 239-255. https://doi.org/10.1016/j.marpetgeo.2013.12.014
    Zheng, L. J., Jiang, Z. X., Liu, H., et al., 2015. Core Evidence of Paleoseismic Events in Paleogene Deposits of the Shulu Sag in the Bohai Bay Basin, East China, and Their Petroleum Geologic Significance. Sedimentary Geology, 328: 33-54. https://doi.org/10.1016/j.sedgeo.2015.07.013
    Zolitschka, B., 2007. Varved Lake Sediments. In: Saraswat, R., Nigam, R., eds., Encyclopedia of Quaternary Science. Elsevier, Amsterdam. 3105-3114
    Zolitschka, B., Francus, P., Ojala, A. E. K., et al., 2015. Varves in Lake Sediments—A Review. Quaternary Science Reviews, 117(6): 1-41. https://doi.org/10.1016/j.quascirev.2015.03.019
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(2)

    Article Metrics

    Article views(928) PDF downloads(160) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return