Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 28 Issue 5
Oct 2017
Turn off MathJax
Article Contents
Victoria H. DiStefano, Michael C. Cheshire, Joanna McFarlane, Lindsay M. Kolbus, Richard E. Hale, Edmund Perfect, Hassina Z. Bilheux, Louis J. Santodonato, Daniel S. Hussey, David L. Jacobson, Jacob M. LaManna, Philip R. Bingham, Vitaliy Starchenko, Lawrence M. Anovitz. Spontaneous Imbibition of Water and Determination of Effective Contact Angles in the Eagle Ford Shale Formation using Neutron Imaging. Journal of Earth Science, 2017, 28(5): 874-887. doi: 10.1007/s12583-017-0801-1
Citation: Victoria H. DiStefano, Michael C. Cheshire, Joanna McFarlane, Lindsay M. Kolbus, Richard E. Hale, Edmund Perfect, Hassina Z. Bilheux, Louis J. Santodonato, Daniel S. Hussey, David L. Jacobson, Jacob M. LaManna, Philip R. Bingham, Vitaliy Starchenko, Lawrence M. Anovitz. Spontaneous Imbibition of Water and Determination of Effective Contact Angles in the Eagle Ford Shale Formation using Neutron Imaging. Journal of Earth Science, 2017, 28(5): 874-887. doi: 10.1007/s12583-017-0801-1

Spontaneous Imbibition of Water and Determination of Effective Contact Angles in the Eagle Ford Shale Formation using Neutron Imaging

doi: 10.1007/s12583-017-0801-1
More Information
  • Corresponding author: Victoria H. DiStefano. distefanovh@ornl.gov
  • Received Date: 15 Jun 2017
  • Accepted Date: 30 Jul 2017
  • Publish Date: 01 Oct 2017
  • Understanding of fundamental processes and prediction of optimal parameters during the horizontal drilling and hydraulic fracturing process results in economically effective improvement of oil and natural gas extraction. Although modern analytical and computational models can capture fracture growth, there is a lack of experimental data on spontaneous imbibition and wettability in oil and gas reservoirs for the validation of further model development. In this work, we used neutron imaging to measure the spontaneous imbibition of water into fractures of Eagle Ford shale with known geometries and fracture orientations. An analytical solution for a set of nonlinear second-order differential equations was applied to the measured imbibition data to determine effective contact angles. The analytical solution fit the measured imbibition data reasonably well and determined effective contact angles that were slightly higher than static contact angles due to effects of in-situ changes in velocity, surface roughness, and heterogeneity of mineral surfaces on the fracture surface. Additionally, small fracture widths may have retarded imbibition and affected model fits, which suggests that average fracture widths are not satisfactory for modeling imbibition in natural systems.

     

  • loading
  • Abdallah, W., Buckley, J., Carnegie, A., et al., 2007. Fundamentals of Wettability. Schlumberger Oilfield Review, 19(2): 44-61 https://es.scribd.com/presentation/175102990/Fundamentals-of-Wettability
    Andrew, M., Bijeljic, B., Blunt, M. J., 2014. Pore-Scale Contact Angle Measurements at Reservoir Conditions Using X-Ray Microtomography. Advances in Water Resources, 68: 24-31. https://doi.org/10.1016/j.advwatres.2014.02.014
    Anovitz, L. M., Cole, D. R., Sheets, J. M., et al., 2015. Effects of Maturation on Multiscale (Nanometer to Millimeter) Porosity in the Eagle Ford Shale. Interpretation, 3(3): SU59-SU70. https://doi.org/10.1190/int-2014-0280.1 doi: 10.1190/INT-2014-0280.1
    Benavente, D., Lock, P., Angeles Garcia Del Cura, M., et al., 2002. Predicting the Capillary Imbibition of Porous Rocks from Microstructure. Transport in Porous Media, 49(1): 59-76 doi: 10.1023/A:1016047122877
    Brittin, W. E., 1946. Liquid Rise in a Capillary Tube. Journal of Applied Physics, 17(1): 37-44. https://doi.org/10.1063/1.1707633
    Broseta, D., Tonnet, N., Shah, V., 2012. Are Rocks still Water-Wet in the Presence of Dense CO2 or H2S?.Geofluids, 12(4): 280-294. https://doi.org/10.1111/j.1468-8123.2012.00369.x doi: 10.1111/gfl.2012.12.issue-4
    Cai, J. C., Perfect, E., Cheng, C. L., et al., 2014. Generalized Modeling of Spontaneous Imbibition Based on Hagen-Poiseuille Flow in Tortuous Capillaries with Variably Shaped Apertures. Langmuir, 30(18): 5142-5151. https://doi.org/10.1021/la5007204
    Cai, J. C., Yu, B. M., 2011. A Discussion of the Effect of Tortuosity on the Capillary Imbibition in Porous Media. Transport in Porous Media, 89(2): 251-263. https://doi.org/10.1007/s11242-011-9767-0
    Cai, J. C., Yu, B. M., Mei, M. F., et al., 2010a. Capillary Rise in a Single Tortuous Capillary. Chinese Physics Letters, 27(5): 054701. https://doi.org/10.1088/0256-307x/27/5/054701 doi: 10.1088/0256-307X/27/5/054701
    Cai, J. C., Yu, B. M., Zou, M. Q., et al., 2010b. Fractal Characterization of Spontaneous Co-Current Imbibition in Porous Media. Energy & Fuels, 24(3): 1860-1867. https://doi.org/10.1021/ef901413p doi: 10.1021/ef901413p?src=recsys
    Chen, C., Wan, J. M., Li, W. Z., et al., 2015. Water Contact Angles on Quartz Surfaces under Supercritical CO2 Sequestration Conditions: Experimental and Molecular Dynamics Simulation Studies. International Journal of Greenhouse Gas Control, 42: 655-665. https://doi.org/10.13039/501100001809 doi: 10.1016/j.ijggc.2015.09.019
    Cheng, C. L., Perfect, E., Donnelly, B., et al., 2015. Rapid Imbibition of Water in Fractures within Unsaturated Sedimentary Rock. Advances in Water Resources, 77: 82-89. https://doi.org/10.13039/100006151 doi: 10.1016/j.advwatres.2015.01.010
    Cheng, Y. M., 2012. Impact of Water Dynamics in Fractures on the Performance of Hydraulically Fractured Wells in Gas-Shale Reservoirs. Journal of Canadian Petroleum Technology, 51(2): 143-151. https://doi.org/10.2118/127863-pa doi: 10.2118/127863-PA
    Dreyer, M., Delgado, A., Path, H. J., 1994. Capillary Rise of Liquid between Parallel Plates under Microgravity. Journal of Colloid and Interface Science, 163(1): 158-168. https://doi.org/10.1006/jcis.1994.1092
    Dubiel, R. F., Pitman, J. K., Pearson, O. N., et al., 2012. Assessment of Undiscovered Oil and Gas Resources in Conventional and Continuous Petroleum Systems in the Upper Cretaceous Eagle Ford Group, US Gulf Coast region. Vol. No. 2012-3003. US Geological Survey, 2011, Reston, VA https://pubs.er.usgs.gov/usgspubs/publication/fs20123003
    Ergene, S. M. , 2014. Lithologic heterogeneity of the Eagle Ford Formation, South Texas: [Dissertation]. The University of Texas at Austin, Austin, Texas
    Fischer, C., Gaupp, R., 2005. Change of Black Shale Organic Material Surface Area during Oxidative Weathering: Implications for Rock-Water Surface Evolution. Geochimica et Cosmochimica Acta, 69(5): 1213-1224. https://doi.org/10.1016/j.gca.2004.09.021
    Gao, L. C., McCarthy, T. J., 2007. How Wenzel and Cassie were Wrong. Langmuir, 23(7): 3762-3765. https://doi.org/10.1021/la062634a
    Gao, Z. Y., Hu, Q. H., 2016. Wettability of Mississippian Barnett Shale Samples at Different Depths: Investigations from Directional Spontaneous Imbibition. AAPG Bulletin, 100(1): 101-114. https://doi.org/10.1306/09141514095
    Hamraoui, A., Nylander, T., 2002. Analytical Approach for the Lucas-Washburn Equation. Journal of Colloid and Interface Science, 250(2): 415-421. https://doi.org/10.1006/jcis.2002.8288
    Hamraoui, A., Thuresson, K., Nylander, T., et al., 2000. Can a Dynamic Contact Angle be Understood in Terms of a Friction Coefficient?. Journal of Colloid and Interface Science, 226(2): 199-204. https://doi.org/10.1006/jcis.2000.6830
    Handy, L., 1960. Determination of Effective Capillary Pressures for Porous Media from Imbibition Data. Pet. Trans. AIME, 219(7): 75-80 https://www.onepetro.org/general/SPE-1361-G
    Hardy, W. B., 1922. Historical Notes Upon Surface Energy and Forces of Short Range. Nature, 109(2734): 375-378. https://doi.org/10.1038/109375a0
    Hassanein, R., Meyer, H. O., Carminati, A., et al., 2006. Investigation of Water Imbibition in Porous Stone by Thermal Neutron Radiography. Journal of Physics D: Applied Physics, 39(19): 4284-4291. https://doi.org/10.1088/0022-3727/39/19/023
    International Organization for Standardization, 1997. Geometrical Product Specifications (GPS)—Surface Texture: Profile Method—Terms, Definitions and Surface Texture Parameters. International Organization for Standardization, Geneva, Switzerland
    Javaheri, A., Dehghanpour, H., Wood, J. M., 2017. Tight Rock Wettability and Its Relationship to Other Petrophysical Properties: A Montney Case Study. Journal of Earth Science, 28(2): 381-390. https://doi.org/10.1007/s12583-017-0725-9
    Joos, P., van Remoortere, P., Bracke, M., 1990. The Kinetics of Wetting in a Capillary. Journal of Colloid and Interface Science, 136(1): 189-197. https://doi.org/10.1016/0021-9797(90)90089-7
    Jurin, J., 1717. An Account of Some Experiments Shown before the Royal Society: With an Enquiry into the Cause of the Ascent and Suspension of Water in Capillary Tubes. Philosophical Transactions of the Royal Society of London, 30(351-363): 739-747. https://doi.org/10.1098/rstl.1717.0026
    Kang, M., Perfect, E., Cheng, C. L., et al., 2013. Diffusivity and Sorptivity of Berea Sandstone Determined Using Neutron Radiography. Vadose Zone Journal, 12(3). https://doi.org/10.2136/vzj2012.0135 https://www.soils.org/publications/vzj/abstracts/12/3/vzj2012.0135
    Li, K. W., 2007. Scaling of Spontaneous Imbibition Data with Wettability Included. Journal of Contaminant Hydrology, 89(3/4): 218-230. https://doi.org/10.1016/j.jconhyd.2006.09.009 http://www.ncbi.nlm.nih.gov/pubmed/17081652
    Lucas, R., 1918. Rate of Capillary Ascension of Liquids. Kolloid Z, 23(15): 15-22 doi: 10.1088/1757-899X/147/1/012041/pdf
    Mamontov, E., Vlcek, L., Wesolowski, D. J., et al., 2007. Dynamics and Structure of Hydration Water on Rutile and Cassiterite Nanopowders Studied by Quasielastic Neutron Scattering and Molecular Dynamics Simulations. The Journal of Physical Chemistry C, 111(11): 4328-4341. https://doi.org/10.1021/jp067242r
    Mamontov, E., Vlcek, L., Wesolowski, D. J., et al., 2009. Suppression of the Dynamic Transition in Surface Water at Low Hydration Levels: A Study of Water on Rutile. Physical Review E, 79(5): 051504. https://doi.org/10.1103/physreve.79.051504 doi: 10.1103/PhysRevE.79.051504
    Mamontov, E., Wesolowski, D. J., Vlcek, L., et al., 2008. Dynamics of Hydration Water on Rutile Studied by Backscattering Neutron Spectroscopy and Molecular Dynamics Simulation. The Journal of Physical Chemistry C, 112(32): 12334-12341. https://doi.org/10.1021/jp711965x
    Middleton, M., Li, K., de Beer, F., 2005. Spontaneous Imbibition Studies of Australian Reservoir Rocks with Neutron Radiography. Paper Presented at the SPE Western Regional Meeting, Society of Petroleum Engineers, Irvine, California https://www.onepetro.org/conference-paper/SPE-93634-MS
    Murphy, W. M., Oelkers, E. H., Lichtner, P. C., 1989. Surface Reaction Versus Diffusion Control of Mineral Dissolution and Growth Rates in Geochemical Processes. Chemical Geology, 78(3/4): 357-380. https://doi.org/10.1016/0009-2541(89)90069-7 http://www.sciencedirect.com/science/article/pii/0009254189900697
    Penny, G. S., Ripley, H. E., Conway, M. W., et al., 1984. The Control and Modelling of Fluid Leak-off during Hydraulic Fracturing. Annual Technical Meeting, Petroleum Society of Canada, Calgary, Alberta https://www.onepetro.org/conference-paper/PETSOC-84-35-28
    Perfect, E., Cheng, C. L., Kang, M., et al., 2014. Neutron Imaging of Hydrogen-Rich Fluids in Geomaterials and Engineered Porous Media: A Review. Earth-Science Reviews, 129: 120-135. https://doi.org/10.1016/j.earscirev.2013.11.012
    Pordel Shahri, M., Jamialahmadi, M., Shadizadeh, S. R., 2012. New Normalization Index for Spontaneous Imbibition. Journal of Petroleum Science and Engineering, 82/83: 130-139. https://doi.org/10.1016/j.petrol.2012.01.017
    Rietveld, H. M., 1969. A Profile Refinement Method for Nuclear and Magnetic Structures. Journal of Applied Crystallography, 2(2): 65-71. https://doi.org/10.1107/s0021889869006558 doi: 10.1107/S0021889869006558
    Rodríguez-Valverde, M. ., Tirado Miranda, M., 2010. Derivation of Jurin's Law Revisited. European Journal of Physics, 32(1): 49-54. https://doi.org/10.1088/0143-0807/32/1/005 http://eric.ed.gov/?id=EJ907127
    Schneider, C. A., Rasband, W. S., Eliceiri, K. W., 2012. NIH Image to ImageJ: 25 Years of Image Analysis. Nature Methods, 9(7): 671-675. https://doi.org/10.1038/nmeth.2089
    Standnes, D. C., 2010. Scaling Group for Spontaneous Imbibition Including Gravity. Energy & Fuels, 24(5): 2980-2984. https://doi.org/10.1021/ef901563p doi: 10.1021/ef901563p
    Swinehart, D. F., 1962. The Beer-Lambert Law. Journal of Chemical Education, 39(7): 333. https://doi.org/10.1021/ed039p333
    Tokunaga, T. K., Wan, J., 2013. Capillary Pressure and Mineral Wettability Influences on Reservoir CO2 Capacity. Reviews in Mineralogy and Geochemistry, 77(1): 481-503. https://doi.org/10.2138/rmg.2013.77.14
    U. S. Energy Information Administration (EIA), 2017. Drilling Productivity Report. For Key Tight Oil and Shale Gas Regions. [2017-9-8] (2017-4). https: //www. eia. gov/petroleum/drilling/archive/2017/04/#tabs-summary-2
    Wan, J. M., Kim, Y., Tokunaga, T. K., 2014. Contact Angle Measurement Ambiguity in Supercritical CO2-Water-Mineral Systems: Mica as an Example. International Journal of Greenhouse Gas Control, 31: 128-137. https://doi.org/10.13039/100000015 doi: 10.1016/j.ijggc.2014.09.029
    Washburn, E. W., 1921. The Dynamics of Capillary Flow. Physical Review, 17(3): 273-283. https://doi.org/10.1103/physrev.17.273 doi: 10.1103/PhysRev.17.273
    Wenzel, R. N., 1936. Resistance of Solid Surfaces to Wetting by Water. Industrial & Engineering Chemistry, 28(8): 988-994. https://doi.org/10.1021/ie50320a024 doi: 10.1021/ie50320a024
    Xiao, Y., Yang, F. Z., Pitchumani, R., 2006. A Generalized Analysis of Capillary Flows in Channels. Journal of Colloid and Interface Science, 298(2): 880-888. https://doi.org/10.1016/j.jcis.2006.01.005
    Yang, D. Y., Gu, Y., Tontiwachwuthikul, P., 2008. Wettability Determination of the Reservoir Brine—Reservoir Rock System with Dissolution of CO2 at High Pressures and Elevated Temperatures. Energy & Fuels, 22(1): 504-509. https://doi.org/10.1021/ef700383x doi: 10.1021/ef700383x
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(6)

    Article Metrics

    Article views(653) PDF downloads(131) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return