Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 29 Issue 4
Jul 2018
Turn off MathJax
Article Contents
Shan Chang, Qinglai Feng, Lei Zhang. New Siliceous Microfossils from the Terreneuvian Yanjiahe Formation, South China:The Possible Earliest Radiolarian Fossil Record. Journal of Earth Science, 2018, 29(4): 912-919. doi: 10.1007/s12583-017-0960-0
Citation: Shan Chang, Qinglai Feng, Lei Zhang. New Siliceous Microfossils from the Terreneuvian Yanjiahe Formation, South China:The Possible Earliest Radiolarian Fossil Record. Journal of Earth Science, 2018, 29(4): 912-919. doi: 10.1007/s12583-017-0960-0

New Siliceous Microfossils from the Terreneuvian Yanjiahe Formation, South China:The Possible Earliest Radiolarian Fossil Record

doi: 10.1007/s12583-017-0960-0
More Information
  • Corresponding author: Qinglai Feng
  • Received Date: 22 Jun 2017
  • Accepted Date: 07 Sep 2017
  • Publish Date: 01 Aug 2018
  • Radiolarians form an important part of the planktonic realm in the ocean of Early Paleozoic, but their origin and evolutionary processes has long been enigmatic. The ancestral representatives of radiolarians have been considered to belong to the order Archaeospicularia, whose unquestionable fossil records were dated back to the Middle Cambrian. Here we report? Blastulospongia and unnamed spherical radiolarians in the Terreneuvian from the Yanjiahe Formation in Hubei Province, South China. Blastulospongia is an enigmatic siliceous microfossil genus, with affinities proposed amongst the radiolarian, sphinctozoan-grade sponges and uncertain protists. As for the newly discovered unnamed radiolarians, morphologically they possess latticed shell, spherical shape and are all small in size. Our discoveries support the idea that spherical radiolarians is an ancient representative, whose origin and diversification was probably much earlier than generally accepted. The hypothesis that the oldest radiolarians belong to the order Archaeospicularia needs to be re-examined.

     

  • loading
  • Anderson, O. R., 1983. Radiolaria. Springer, New York. 271
    Bengtson, S., 1986. Siliceous Microfossils from the Upper Cambrian of Queensland. Alcheringa:An Australasian Journal of Palaeontology, 10(3):195-216. https://doi.org/10.1080/03115518608619155
    Braun, A., Chen, J. Y., Waloszek, D., et al., 2007a. First Early Cambrian Radiolaria. In: Vickers-Rich, P., Komarower, P., eds., The Rise and Fall of the Ediacaran Biota. Geological Society, London, Special Pub-lications, 286(1): 143-149. https://doi.org/10.1144/SP286.10
    Braun, A., Chen, J. Y., Waloszek, D., et al., 2007b. Siliceous Microfossils and Biosiliceous Sedimentation in the Lowermost Cambrian of China. In: Vickers-Rich, P., Komarower, P., eds., The Rise and Fall of the Ediacaran Biota. Geological Society, London, Special Publications, 286(1): 423-424. https://doi.org/10.1144/SP286.32
    Canfield, D. E., Poulton, S. W., Narbonne, G. M., 2007. Late-Neoproterozoic Deep-Ocean Oxygenation and the Rise of Animal Life. Science, 315(5808):92-95. https://doi.org/10.1126/science.1135013
    Cao, W. C., Feng, Q. L., Feng, F. B., et al., 2014. Radiolarian Kalimnas-phaera from the Cambrian Shuijingtuo Formation in South China. Marine Micropaleontology, 110(2):3-7. https://doi.org/10.1016/j.marmicro.2013.06.005
    Chang, S., Feng, Q. L., Clausen, S., et al., 2017. Sponge Spicules from the Lower Cambrian in the Yanjiahe Formation, South China:The Earliest Biomineralizing Sponge Record. Palaeogeography, Palaeoclimatology, Palaeoecology, 474:36-44. https://doi.org/10.1016/j.palaeo.2016.06.032
    Chen, P., 1984. Discovery of Lower Cambrian Small Shelly Fossils from Jijiapo, Yichang, West Hubei and Its Significance. Professional Papers of Stratigraphy and Palaeontology, 2:49-65 (in Chinese)
    Cloud, P. E., 1968. Pre-Metazoan Evolution and the Origins of the Metazoa. In: Drake, E. T., ed., Evolution and Environment. Yale University Press, New Haven. 72
    Conway Morris, S., Chen, M. G., 1990. Blastulospongia Polytreta N. Sp., an Enigmatic Organism from the Lower Cambrian of Hubei, China. Journal of Paleontology, 64(1):26-30. https://doi.org/10.1017/s0022336000042207
    Danelian, T., Moreira, D., 2004. Palaeontological and Molecular Arguments for the Origin of Silica-Secreting Marine Organisms. Comptes Rendus Palevol, 3(3):229-236. https://doi.org/10.1016/j.crpv.2004.01.005
    De Wever, P., Dumitrica, P., Caulet, J. P., et al., 2001. Radiolarians in the Sedimentary Record. Gordon and Breach Science Publishers, London. 525
    Decelle, J., Suzuki, N., Mahé, F., et al., 2012. Molecular Phylogeny and Morphological Evolution of the Acantharia (Radiolaria). Protist, 163(3):435-450. https://doi.org/10.1016/j.protis.2011.10.002
    Ding, R. X., Zou, H. P., Min, K., et al., 2017. Detrital Zircon U-Pb Geochronology of Sinian-Cambrian Strata in the Eastern Guangxi Area, China. Journal of Earth Science, 28(2):295-304. https://doi.org/10.1007/s12583-017-0723-y
    Elicki, O., 1998. First Report of Halkieria and Enigmatic Globular Fossils from the Central European Marianian (Lower Cambrian, Görlitz Syn-cline, Germany). Rev. Espa. Gonzalo Vidal., (1):51-64
    Guo, J. F., Li, Y., Li, G. X., 2014. Small Shelly Fossils from the Early Cambrian Yanjiahe Formation, Yichang, Hubei, China. Gondwana Research, 25(3):999-1007. https://doi.org/10.1016/j.gr.2013.03.007
    He, T., Ling, H., Chen, Y., et al., 2013. Geochemical Character and For-mation of Cherts from the Ediacaran Piyuancun Formation of Lantian Section in Xiuning, Southern Anhui. Geological Journal of China Universities, 19(4):620-633. https://doi.org/10.16108/j.issn1006-7493.2013.04.016 (in Chinese with English Abstract)
    Hu, R., Li, S., Wang, W., et al., 2016. Source Characteristics of Tillite the Nantuo Formation in Three Gorges, Northern Yangtze Block:Evidence from Zricon Ages and Geochemical Composition. Earth Science, 41(10):1630-1654. https://doi.org/10.3799/dqkx.2016.121 (in Chinese with English Abstract)
    Ishitani, Y., Ishikawa, S. A., Inagaki, Y., et al., 2011. Multigene Phyloge-netic Analyses Including Diverse Radiolarian Species Support the "Retaria" Hypothesis-The Sister Relationship of Radiolaria and Foraminifera. Marine Micropaleontology, 81(1/2):32-42. https://doi.org/10.1016/j.marmicro.2011.06.007
    Jin, C. S., Li, C., Algeo, T. J., et al., 2016. Evidence for Marine Redox Control on Spatial Colonization of Early Animals during Cambrian Age 3 (c. 521-514 Ma) in South China. Geological Magazine, 154(6):1360-1370. https://doi.org/10.1017/S0016756816001138
    Khomentovsky, V. V., Karlova, G. A., 1993. Biostratigraphy of the Vendian-Cambrian Beds and the Lower Cambrian Boundary in Siberia. Geological Magazine, 130(1):29-45. https://doi.org/10.1017/S0016756800000960
    Klok, C. J., Hubb, A. J., Harrison, J. F., 2009. Single and Multigenerational Responses of Body Mass to Atmospheric Oxygen Concentrations In-Drosophila Melanogaster:Evidence for Roles of Plasticity and Evolu-tion. Journal of Evolutionary Biology, 22(12):2496-2504. https://doi.org/10.1111/j.1420-9101.2009.01866.x
    Kouchinsky, A., Bengtson, S., Clausen, S., et al., 2013. An Early Cambrian Fauna of Skeletal Fossils from the Emyaksin Formation, Northern Si-beria. Acta Palaeontologica Polonica, 60(2):421-512. https://doi.org/10.4202/app.2012
    Kouchinsky, A., Bengtson, S., Landing, E., et al., 2017. Terreneuvian Stratigraphy and Faunas from the Anabar Uplift, Siberia. Acta Palaeontologica Polonica, 62(2):311-440. https://doi.org/10.4202/app.00289.2016
    Li, C., Jin, C. S., Planavsky, N. J., et al., 2017. Coupled Oceanic Oxygenation and Metazoan Diversification during the Early-Middle Cambrian?. Geology, 45(8):743-746. https://doi.org/10.1130/G39208.1
    Li, R. W., Lu, J. L., Zhang, S. K., et al., 1999. Organic Carbon Isotopes of the Sinian and Early Cambrian Black Shales on Yangtze Platform, China. Science in China Series D:Earth Sciences, 42(6):595-603. https://doi.org/10.1007/bf02877787
    Lipps, J. H., 1992. Proterozoic and Cambrian Skeletonized Protists. In: Schopf, J. W., Klein, C., eds., The Proterozoic Biosphere: A Multidisciplinary Study. Cambridge University Press, Cambridge. 237-240
    Liu, K., Feng, Q. L., Shen, J., et al., 2017. Increased Productivity as a Primary Driver of Marine Anoxia in the Lower Cambrian. Palaeogeography, Palaeoclimatology, Palaeoecology, 491:1-9. https://doi.org/10.1016/j.palaeo.2017.11.007
    Maletz, J., 2011. Radiolarian Skeletal Structures and Biostratigraphy in the Early Palaeozoic (Cambrian-Ordovician). Palaeoworld, 20(2/3):116-133. https://doi.org/10.1016/j.palwor.2010.12.007
    Mason, R., Li, Y. J., Cao, K. N., et al., 2017. Ediacaran Macrofossils in Shunyang Valley, Sixi, Three Gorges District, Hubei Province, China. Journal of Earth Science, 28(4):614-621. https://doi.org/10.1007/s12583-017-0773-1
    Nazarov, B. B., 1973. Radiolarians from the Lowermost Horizons of the Batenev Mountain Ridge. In: Problems of Paleontology and Biostra-tigraphy of the Lower Cambrian of Siberia and the Far East. Novosibirsk, Nauka. 5-13 (in Russian)
    Nazarov, B. B., 1975. Lower and Middle Paleozoic Radiolarians of Ka-zakhstan (Methods of Investigation, Systematics and Stratigraphic Significance). In: Raaben, M. E., ed., Trudy Akademiya Nauk SSSR, Geologicheskii Institut. Izdatelstvo Nauka, Moscow. 1-203 (in Russian)
    Obut, O. T., Iwata, K., 2000. Lower Cambrian Radiolaria from the Gorny Altai (Southern West Siberia). News of Paleontology and Stratigraphy, 2/3:33-38 http://www.mendeley.com/research/lower-cambrian-radiolaria-gorny-altai-southern-west-siberia/
    Payne, J. L., Boyer, A. G., Brown, J. H., et al., 2009. Two-Phase Increase in the Maximum Size of Life over 3.5 Billion Years Reflects Biological Innovation and Environmental Opportunity. Proceedings of the Na-tional Academy of Sciences, 106(1):24-27. https://doi.org/10.1073/pnas.0806314106
    Peng, L., 1984. The Age and Tectonic Significance of Ophiolites of the Undorsum Group, Nei Mongol Autonomous Region. Science Bulletin, 29(7):936-939 http://www.cqvip.com/QK/86894X/198407/74888487495756524855484957.html
    Peng, S. C., Babcock, L. E., Cooper, R. A., 2012. The Cambrian Period. In: Gradstein, F. M., Ogg, J. G., Schmitz, M. D., et al., eds., The Geologic Time Scale 2012, Vol. 2. Elsevier BV, Amsterdam. 437-488. https://doi.org/10.1016/B978-0-444-59425-9.00019-6
    Pickett, J. W., Jell, P. A., 1983. Middle Cambrian Sphinctozoa (Porifera) from New South Wales. Memoirs of the Association of Australasian Paleontologists, 1:85-92
    Pouille, L., Obut, O., Danelian, T., et al., 2011. Lower Cambrian (Botomian) Polycystine Radiolaria from the Altai Mountains (Southern Siberia, Russia). Comptes Rendus Palevol, 10(8):627-633. https://doi.org/10.1016/j.crpv.2011.05.004
    Shu, D., Chen, L., 1989. Discovery of Early Cambrian Radiolarian and Its Significance. Science in China, 32(8):986-994 (in Chinese) http://kns.cnki.net/KCMS/detail/detail.aspx?filename=jbxg198908009&dbname=CJFD&dbcode=CJFQ
    Steiner, M., Li, G., Qian, Y., et al., 2007. Neoproterozoic to Early Cambrian Small Shelly Fossil Assemblages and a Revised Biostratigraphic Correlation of the Yangtze Platform (China). Palaeogeography, Pal-aeoclimatology, Palaeoecology, 254(2):67-99. https://doi.org/10.1016/j.palaeo.2007.03.046
    White, R. D., 1986. Cambrian Radiolaria from Utah. Journal of Paleontology, 60(3):778-780. https://doi.org/10.1017/s0022336000022307
    Won, M. Z., Below, R., 1999. Cambrian Radiolaria from the Georgina Basin, Queensland, Australia. Micropaleontology, 45(4):325-363. https://doi.org/10.2307/1486119
    Wrona, R., 2004. Cambrian Microfossils from Glacial Erratics of King George Island, Antarctica. Acta Palaeontologica Polonica, 49(1):13-56 http://yadda.icm.edu.pl/yadda/element/bwmeta1.element.agro-article-dc8472d1-5f99-48ce-9bc7-45d1f8807989
    Yang, B., Steiner, M., Li, G., et al., 2014. Terreneuvian Small Shelly Faunas of East Yunnan (South China) and Their Biostratigraphic Implications. Palaeogeography, Palaeoclimatology, Palaeoecology, 398:28-58. https://doi.org/10.1016/j.palaeo.2013.07.003
    Yin, H., Zeng, Y., Xia, W., 1994. Chert on the Southeast Continental Margin of the Yangtze Platform. Acta Geologica Sinica, 68(2):132-141 (in Chinese with English Abstract) http://www.cqvip.com/Main/Detail.aspx?id=1605605
    Yin, L. M., Wang, C. J., Zhao, Y. L., et al., 2016. Early-Middle Cambrian Palynomorph Microfossils and Related Geochemical Events in South China. Journal of Earth Science, 27(2):180-186. https://doi.org/10.1007/s12583-016-0689-1
    Zhang, L., Danelian, T., Feng, Q. L., et al., 2013. On the Lower Cambrian Biotic and Geochemical Record of the Hetang Formation (Yangtze Platform, South China):Evidence for Biogenic Silica and Possible Presence of Radiolaria. Journal of Micropalaeontology, 32(2):207-217. https://doi.org/10.1144/jmpaleo2013-003
    Zhang, M. Z., Peng, S. B., Zhang, L., et al., 2016. New Recognition of Carbonate Nodules Genesis in Sinian Doushantuo Formation in Zigui Area and Its Geological Implication. Earth Science, 41(12):1977-1994. https://doi.org/10.3799/dqkx.2016.138 (in Chinese with English Abstract)
    Zhang, X. G., Aldridge, R. J., 2007. Development and Diversification of Trunk Plates of the Lower Cambrian Lobopodians. Palaeontology, 50(2):401-415. https://doi.org/10.1111/j.1475-4983.2006.00634.x
    Zhang, X. L., Cui, L. H., 2016. Oxygen Requirements for the Cambrian Explosion. Journal of Earth Science, 27(2):187-195. https://doi.org/10.1007/s12583-016-0690-8
    Zhang, X. L., Shu, D. G., Han, J., et al., 2014. Triggers for the Cambrian Explosion:Hypotheses and Problems. Gondwana Research, 25(3):896-909. https://doi.org/10.1016/j.gr.2013.06.001
    Zhao, G., 1999. The Influence of Biogenic Procession on the Accumulation and Precipiation of Silica-An Example from South of Anhui and West of Zhejiang. Acta Sedimentologica Sinica, 17(1):30-37. https://doi.org/10.1427/j.cnki.cjxb.1999.01.005 (in Chinese with English Abstract)
    Zheng, N., Song, T., Li, Y., et al., 2012. The Discovery of the Lower Cambrian and Middle Ordovician Radiolaria in the South China Orogenic Belt. Geology in China, 39(1):260-265 (in Chinese with English Abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-DIZI201201027.htm
    Zhou, C. M., Jiang, S. Y., 2009. Palaeoceanographic Redox Environments for the Lower Cambrian Hetang Formation in South China:Evidence from Pyrite Framboids, Redox Sensitive Trace Elements, and Sponge Biota Occurrence. Palaeogeography, Palaeoclimatology, Palaeoecology, 271(3/4):279-286. https://doi.org/10.1016/j.palaeo.2008.10.024
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)

    Article Metrics

    Article views(690) PDF downloads(52) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return