Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 29 Issue 4
Jul 2018
Turn off MathJax
Article Contents
Yunfei Huang, Jinnan Tong, Margaret L Fraiser. A Griesbachian (Early Triassic) Mollusc Fauna from the Sidazhai Section, Southwest China, with Paleoecological Insights on the Proliferation of Genus Claraia (Bivalvia). Journal of Earth Science, 2018, 29(4): 794-805. doi: 10.1007/s12583-017-0966-7
Citation: Yunfei Huang, Jinnan Tong, Margaret L Fraiser. A Griesbachian (Early Triassic) Mollusc Fauna from the Sidazhai Section, Southwest China, with Paleoecological Insights on the Proliferation of Genus Claraia (Bivalvia). Journal of Earth Science, 2018, 29(4): 794-805. doi: 10.1007/s12583-017-0966-7

A Griesbachian (Early Triassic) Mollusc Fauna from the Sidazhai Section, Southwest China, with Paleoecological Insights on the Proliferation of Genus Claraia (Bivalvia)

doi: 10.1007/s12583-017-0966-7
More Information
  • Corresponding author: Yunfei Huang
  • Received Date: 03 Aug 2017
  • Accepted Date: 16 Dec 2017
  • Publish Date: 01 Aug 2018
  • After the end-Permian mass extinction, genus Claraia (Bivalvia) was the most abundant and most noticeable fossil during the survival and recovery stage. However, the reasons for the proliferation of Claraia are still debated. This paper describes a new Griesbachian (Early Triassic) mollusc fauna from deep-water settings in South China in the aftermath of end-Permian mass extinction. This fauna yielded five bivalve species in two genera (Claraia griesbachi, C. wangi, C. stachei, C. radialis, and Promyalina putiatinensis) and two ammonoid species (Ophiceras sp. and Ussuridiscus sp.) and could be assigned to the Claraia wangi-C. griesbachi assemblage zone, indicating a Middle-Late Griesbachian Age. The bivalves were dominated by Claraia griesbachi and were featured by articulated Claraia fossils. As Claraia was epibyssate, it was an excellent autochthonous fauna. While the shallow and deep marine water became dysoxic to anoxic globally, as indicated by recent studies of the early Early Triassic, we suggest the genus Claraia could tolerate dysoxic and/or anoxic conditions and its proliferation could be attributed to its physiological features which were adapted to the stressed environment. The wide dis-tribution of Claraia was probably related to its planktonic larval stage. Where the larva of Claraia could have been transported by ocean flow and increased its potential for long-distance dispersal. In addition, Claraia was a significant disaster and opportunistic taxon during the Early Triassic based on observations in South China.

     

  • loading
  • Algeo, T. J., Chen, Z.-Q., Fraiser, M. L., et al., 2011. Terrestrial-Marine Teleconnections in the Collapse and Rebuilding of Early Triassic Marine Ecosystems. Palaeogeography, Palaeoclimatology, Palaeoecology, 308(1/2):1-11. https://doi.org/10.1016/j.palaeo.2011.01.011
    Algeo, T. J., Twitchett, R. J., 2010. Anomalous Early Triassic Sediment Fluxes due to Elevated Weathering Rates and Their Biological Consequences. Geology, 38(11):1023-1026. https://doi.org/10.1130/g31203.1
    Alroy, J., Aberhan, M., Bottjer, D. J., et al., 2008. Phanerozoic Trends in the Global Diversity of Marine Invertebrates. Science, 321(5885):97-100. https://doi.org/10.1126/science.1156963
    Bai, R. Y., Dai, X., Song, H. J., 2017. Conodont and Ammonoid Biostratigraphies around the Permian-Triassic Boundary from the Jianzishan of South China. Journal of Earth Science, 28(4):595-613. https://doi.org/10.1007/s12583-017-0754-4
    Bittner, A., 1900. Ueber Pseudomonotis Telleri und Verwandte Arten der Unteren Trias. Jahrbuch der k. k. Geologischen Reichsanstalt, 50:559-592 (in German)
    Bond, D. P. G., Wignall, P. B., 2010. Pyrite Framboid Study of Marine Permian-Triassic Boundary Sections:A Complex Anoxic Event and Its Relationship to Contemporaneous Mass Extinction. Geological Society of America Bulletin, 122(7/8):1265-1279. https://doi.org/10.1130/b30042.1
    Brühwiler, T., Brayard, A., Bucher, H., et al., 2008. Griesbachian and Dienerian (Early Triassic) Ammonoid Faunas from Northwestern Guangxi and Southern Guizhou (South China). Palaeontology, 51(5):1151-1180. https://doi.org/10.1111/j.1475-4983.2008.00796.x
    Cao, C. Q., Love, G. D., Hays, L. E., et al., 2009. Biogeochemical Evidence for Euxinic Oceans and Ecological Disturbance Presaging the End-Permian Mass Extinction Event. Earth and Planetary Science Letters, 281(3/4):188-201. https://doi.org/10.1016/j.epsl.2009.02.012
    Chen, J. H., 2004. Macroevolution of Bivalvia after the End-Permian Mass Extinction in South China. In: Rong, J. Y., Fang, Z. J., eds., Mass Extinction and Recovery: Evidences from the Palaeozoic and Triassic of South China. University of Science and Technology of China Press, Hefei. 647-700 (in Chinese)
    Chen, Z.-Q., Benton, M. J., 2012. The Timing and Pattern of Biotic Recovery Following the End-Permian Mass Extinction. Nature Geoscience, 5(6):375-383. https://doi.org/10.1038/ngeo1475
    Chen, Z.-Q., Shi, G. R., Gao, Y. Q., et al., 2009. A Late Changhsingian (Latest Permian) Deep-Water Brachiopod Fauna from Guizhou, South China. Alcheringa:An Australasian Journal of Palaeontology, 33(2):163-183. https://doi.org/10.1080/03115510902844210
    Chen, Z.-Q., Shi, G. R., Yang, F. Q., et al., 2006. An Ecologically Mixed Brachiopod Fauna from Changhsingian Deep-Water Basin of South China:Consequence of End-Permian Global Warming. Lethaia, 39(1):79-90. https://doi.org/10.1080/00241160600581764
    Chen, Z.-Q., Tong, J. N., Liao, Z. T., et al., 2010. Structural Changes of Marine Communities over the Permian-Triassic Transition:Ecologically Assessing the End-Permian Mass Extinction and Its Aftermath. Global and Planetary Change, 73(1/2):123-140. https://doi.org/10.1016/j.gloplacha.2010.03.011
    Chen, Z.-Q., Yang, H., Luo, M., et al., 2015. Complete Biotic and Sedi-mentary Records of the Permian-Triassic Transition from Meishan Section, South China:Ecologically Assessing Mass Extinction and Its Aftermath. Earth-Science Reviews, 149:67-107. https://doi.org/10.13039/501100002338
    Erwin, D. H., 1993. The Great Paleozoic Crisis: Life and Death in the Permian. Columbia University Press, New York. 327
    Fang, Z. J., 1993. On "Claraia" (Bivalvia) of Late Permian. Acta Palaeon-tologica Sinica, 32(6):653-661 (in Chinese) http://en.cnki.com.cn/Article_en/CJFDTOTAL-GSWX199306000.htm
    Fang, Z. J., 2010. Generic Demarcation of Permo-Triassic Claraia-Like Species and Their Biogeographic Significance. Alcheringa:An Aus-tralasian Journal of Palaeontology, 34(2):161-178. https://doi.org/10.1080/03115510903546137
    Feng, Z. Z., Bao, Z. D., Li, S., 1997. Lithofacies Paleogeography of Middle and Lower Triassic of South China. Petroleum Industry Press, Beijing. 222 (in Chinese)
    Foster, W. J., Danise, S., Twitchett, R. J., 2017. A Silicified Early Triassic Marine Assemblage from Svalbard. Journal of Systematic Palaeontology, 15(10):851-877. https://doi.org/10.1080/14772019.2016.1245680
    Fraiser, M. L., Bottjer, D. J., 2004. The Non-Actualistic Early Triassic Gastropod Fauna:A Case Study of the Lower Triassic Sinbad Limestone Member. Palaios, 19(3):259-275. https://doi.org/10.1669/0883-1351(2004)019<0259:tnetgf>2.0.co;2 doi: 10.1669/0883-1351(2004)019<0259:tnetgf>2.0.co;2
    Fraiser, M. L., Bottjer, D. J., 2007. When Bivalves Took over the World. Paleobiology, 33(3):397-413. https://doi.org/10.1666/05072.1
    Fraiser, M. L., Bottjer, D. J., 2009. Opportunistic Behaviour of Invertebrate Marine Tracemakers during the Early Triassic Aftermath of the End-Permian Mass Extinction. Australian Journal of Earth Sciences, 56(6):841-857. https://doi.org/10.1080/08120090903002656
    Gao, Y. Q., Yang, F. Q., Peng, Y. Q., 2001. Late Permian Deep Water Stratigraphy in Shaiwa of Ziyun, Guizhou. Journal of Stratigraphy, 25(2):116-119 (in Chinese) http://en.cnki.com.cn/Article_en/CJFDTOTAL-DCXZ200102007.htm
    Gao, Y. Q., Yang, F. Q., Peng, Y. Q., 2004. Significance of Claraia from the Late Permian of South Guizhou, China. Alcheringa:An Australasian Journal of Palaeontology, 28(2):469-476. https://doi.org/10.1080/03115510408619295
    Grasby, S. E., Beauchamp, B., Embry, A., et al., 2013. Recurrent Early Triassic Ocean Anoxia. Geology, 41(2):175-178. https://doi.org/10.1130/g33599.1
    Grice, K., Cao, C. Q., Love, G. D., et al., 2005. Photic Zone Euxinia during the Permian-Triassic Superanoxic Event. Science, 307(5710):706-709. https://doi.org/10.1126/science.1104323
    Hallam, A., Wignall, P. B., 1997. Mass Extinctions and Their Aftermath. Oxford University Press, New York. 320
    Harries, P. J., Kauffman, E. G., Hansen, T. A., 1996. Models for Biotic Survival Following Mass Extinction. Geological Society, London, Special Publications, 102(1):41-60. https://doi.org/10.1144/gsl.sp.1996.001.01.03
    Hautmann, M., Bagherpour, B., Brosse, M., et al., 2015. Competition in Slow Motion:The Unusual Case of Benthic Marine Communities in the Wake of the End-Permian Mass Extinction. Palaeontology, 58(5):871-901. https://doi.org/10.1111/pala.12186
    Hautmann, M., Bucher, H., Brühwiler, T., et al., 2011. An Unusually Diverse Mollusc Fauna from the Earliest Triassic of South China and Its Implications for Benthic Recovery after the End-Permian Biotic Crisis. Geobios, 44(1):71-85. https://doi.org/10.1016/j.geobios.2010.07.004
    Hautmann, M., Smith, A. B., McGowan, A. J., et al., 2013. Bivalves from the Olenekian (Early Triassic) of South-Western Utah:Systematics and Evolutionary Significance. Journal of Systematic Palaeontology, 11(3):263-293. https://doi.org/10.1080/14772019.2011.637516
    He, L., Wang, Y. B., Woods, A., et al., 2012. Calcareous Tubeworms as Disaster Forms after the End-Permian Mass Extinction in South China. Palaios, 27(11):878-886. https://doi.org/10.2110/palo.2012.p12-022r
    He, W. H., Feng, Q. L., Weldon, E. A., et al., 2007. A Late Permian to Early Triassic Bivalve Fauna from the Dongpan Section, Southern Guangxi, South China. Journal of Paleontology, 81(5):1009-1019. https://doi.org/10.1666/pleo05-158.1
    He, W. H., Shi, G. R., Zhang, Y., et al., 2014. Changhsingian (Latest Permian) Deep-Water Brachiopod Fauna from South China. Journal of Systematic Palaeontology, 12(8):907-960. https://doi.org/10.1080/14772019.2013.846945
    He, W. H., Zhang, K. X., Chen, Z.-Q., et al., 2015. A New Genus Liaous of Early Anisian Stage (Middle Triassic) Brachiopods from Southwestern China:Systematics, Reassessment of Classification of the Spirif-erinioidea, Community Paleoecology, and Paleoenvironmental Impli-cations. Journal of Paleontology, 89(6):966-979. https://doi.org/10.1017/jpa.2016.6
    Hofmann, R., Hautmann, M., Brayard, A., et al., 2014. Recovery of Benthic Marine Communities from the End-Permian Mass Extinction at the Low Latitudes of Eastern Panthalassa. Palaeontology, 57(3):547-589. https://doi.org/10.1111/pala.12076
    Hofmann, R., Hautmann, M., Bucher, H., 2013. A New Paleoecological Look at the Dinwoody Formation (Lower Triassic, Western USA):Intrinsic Versus Extrinsic Controls on Ecosystem Recovery after the End-Permian Mass Extinction. Journal of Paleontology, 87(5):854-880. https://doi.org/10.1666/12-153
    Hofmann, R., Hautmann, M., Bucher, H., 2015. Recovery Dynamics of Benthic Marine Communities from the Lower Triassic Werfen Formation, Northern Italy. Lethaia, 48(4):474-496. https://doi.org/10.1111/let.12121
    Hofmann, R., Hautmann, M., Bucher, H., 2017. Diversity Partitioning in Permian and Early Triassic Benthic Ecosystems of the Western USA:A Comparison. Historical Biology, 29(7):918-930. https://doi.org/10.1080/08912963.2016.1263626
    Huang, Y. F., Tong, J. N., Fraiser, M. L., et al., 2014. Extinction Patterns among Bivalves in South China during the Permian-Triassic Crisis. Palaeogeography, Palaeoclimatology, Palaeoecology, 399:78-88. https://doi.org/10.1016/j.palaeo.2014.01.030
    Huang, Y. F., Zhang, C. M., Zhu, R., et al., 2017. Palaeoclimatology, Provenance and Tectonic Setting during Late Permian to Middle Triassic in Mahu Sag, Junggar Basin, China. Earth Science, 42(10):1736-1739. https://doi.org/10.3799/dqkx.2017.559 (in Chinese with English Ab-stract)
    Huang, Y. G., Chen, Z.-Q., Wignall, P. B., et al., 2017. Latest Permian to Middle Triassic Redox Condition Variations in Ramp Settings, South China:Pyrite Framboid Evidence. Geological Society of America Bul-letin, 129(1/2):229-243. https://doi.org/10.1130/b31458.1
    Ichikawa, K., 1958. Zur Taxionomie und Phylogenie der Triadischen Pteriidae (Lamellibranch.), mit Besonderer Berucksichtigung der Gattungen Claraia, Eumorphotis, Oxytoma und Monotis. Palaeontographica Abt. A., 111(5/6):131-212 (in German)
    Joachimski, M. M., Lai, X., Shen, S., et al., 2012. Climate Warming in the Latest Permian and the Permian-Triassic Mass Extinction. Geology, 40(3):195-198. https://doi.org/10.1130/g32707.1
    Kaiho, K., Oba, M., Fukuda, Y., et al., 2012. Changes in Depth-Transect Redox Conditions Spanning the End-Permian Mass Extinction and Their Impact on the Marine Extinction:Evidence from Biomarkers and Sulfur Isotopes. Global and Planetary Change, 94/95:20-32. https://doi.org/10.1016/j.gloplacha.2012.05.024
    Kauffman, E. G., Harries, P. J., 1996. The Importance of Crisis Progenitors in Recovery from Mass Extinction. Geological Society, London, Special Publications, 102(1):15-39. https://doi.org/10.1144/gsl.sp.1996.001.01.02
    Komatsu, T., Huyen, D. T., Chen, J. H., 2008. Lower Triassic Bivalve Assemblages after the End-Permian Mass Extinction in South China and North Vietnam. Paleontological Research, 12(2):119-128. https://doi.org/10.2517/1342-8144(2008)12[119:ltbaat]2.0.co;2
    Kotlyar, G. V., Zakharov, Y. D., Polubotko, I. V., 2004. Late Changhsingian Fauna of the Northwestern Caucasus Mountains, Russia. Journal of Paleontology, 78(3):513-527. https://doi.org/10.1666/0022-3360(2004)078<0513:lcfotn>2.0.co;2 doi: 10.1666/0022-3360(2004)078<0513:lcfotn>2.0.co;2
    Kulikov, M. V., Tkachuk, G. A., 1979. Find of Claraia (Bivalvia) in the Upper Permian of the Northern Caucasus. Doklady Akademii Nauk SSSR, 245:905-908 (in Russian)
    Lehrmann, D. J., Wan, Y., Wei, J. Y., et al., 2001. Lower Triassic Peritidal Cyclic Limestone:An Example of Anachronistic Carbonate Facies from the Great Bank of Guizhou, Nanpanjiang Basin, Guizhou Province, South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 173(3/4):103-123. https://doi.org/10.1016/s0031-0182(01)00302-9
    Levinton, J. S., 1970. The Paleoecological Significance of Opportunistic Species. Lethaia, 3(1):69-78. https://doi.org/10.1111/j.1502-3931.1970.tb01264.x
    Li, G. S., Wang, Y. B., Shi, G. R., et al., 2016. Fluctuations of Redox Conditions across the Permian-Triassic Boundary-New Evidence from the GSSP Section in Meishan of South China. Palaeogeography, Pal-aeoclimatology, Palaeoecology, 448:48-58. https://doi.org/10.1016/j.palaeo.2015.09.050
    Liao, W., Wang, Y. B., Kershaw, S., et al., 2010. Shallow-Marine Dysoxia across the Permian-Triassic Boundary:Evidence from Pyrite Framboids in the Microbialite in South China. Sedimentary Geology, 232(1/2):77-83. https://doi.org/10.1016/j.sedgeo.2010.09.019
    Lobanova, O. V., 1979. On Attribution of Pseudomonotis Permiana (Bivalvia) from Novaya Zemlya to Genus Claraia. Paleontological Journal, 4:128
    McRoberts, C. A., 2010. Biochronology of Triassic Bivalves. Geological Society, London, Special Publications, 334(1):201-219. https://doi.org/10.1144/sp334.9
    Nakazawa, K., 1977. On Claraia of Kashmir and Iran. Journal of the Pal-aeontological Society of India, 20:191-204 http://ci.nii.ac.jp/naid/10019474713
    Nakazawa, K., 1981. Permian and Triassic Bivalves of Kashmir. Palaeon-tologica Indica, 46:89-122 http://ci.nii.ac.jp/naid/10020538771
    Newell, N. D., Boyd, D. W., 1995. Pectinoid Bivalves of the Permian-Triassic Crisis. Bulletin of the American Museum of Natural History, 227:1-95 http://ci.nii.ac.jp/naid/10018757341
    Pan, Y. H., Sha, J. G., Yao, X. G., 2012. Taphonomy of Early Cretaceous Freshwater Bivalve Concentrations from the Sihetun Area, Western Liaoning, NE China. Cretaceous Research, 34:94-106. https://doi.org/10.1016/j.cretres.2011.10.007
    Pennec, M. L., Paugam, A., Pennec, G. L., 2003. The Pelagic Life of the Pectinid Pecten Maximus-A Review. ICES Journal of Marine Science, 60(2):211-223. https://doi.org/10.1016/S1054-3139(02)00270-9
    Petsios, E., Bottjer, D. J., 2016. Quantitative Analysis of the Ecological Dominance of Benthic Disaster Taxa in the Aftermath of the End-Permian Mass Extinction. Paleobiology, 42(3):380-393. https://doi.org/10.1017/pab.2015.47
    Posenato, R., 2008. Patterns of Bivalve Biodiversity from Early to Middle Triassic in the Southern Alps (Italy):Regional vs. Global Events. Pal-aeogeography, Palaeoclimatology, Palaeoecology, 261(1/2):145-159. https://doi.org/10.1016/j.palaeo.2008.01.006
    Raup, D. M., 1979. Size of the Permo-Triassic Bottleneck and Its Evolu-tionary Implications. Science, 206(4415):217-218. https://doi.org/10.1126/science.206.4415.217
    Riccardi, A. L., Arthur, M. A., Kump, L. R., 2006. Sulfur Isotopic Evidence for Chemocline Upward Excursions during the End-Permian Mass Ex-tinction. Geochimica et Cosmochimica Acta, 70(23):5740-5752. https://doi.org/10.1016/j.gca.2006.08.005
    Robert, R., Gerard, A., 1999. Bivalve Hatchery Technology:The Current Situation for the Pacific Oyster Crassostrea Gigas and the Scallop Pecten Maximus Scallop in France. Aquatic Living Resources, 12(2):121-130. https://doi.org/10.1016/s0990-7440(99)80021-7
    Rodland, D. L., Bottjer, D. J., 2001. Biotic Recovery from the End-Permian Mass Extinction:Behavior of the Inarticulate Brachiopod Lingula as a Disaster Taxon. Palaios, 16(1):95. https://doi.org/10.2307/3515554
    Schatz, W., 2005. Palaeoecology of the Triassic Black Shale Bivalve Daonella-New Insights into an Old Controversy. Palaeogeography, Palaeoclimatology, Palaeoecology, 216(3/4):189-201. https://doi.org/10.1016/j.palaeo.2004.11.002
    Schubert, J. K., Bottjer, D. J., 1992. Early Triassic Stromatolites as Post-Mass Extinction Disaster Forms. Geology, 20(10):883. https://doi.org/10.1130/0091-7613(1992)020<0883:etsapm>2.3.co;2 doi: 10.1130/0091-7613(1992)020<0883:etsapm>2.3.co;2
    Schubert, J. K., Bottjer, D. J., 1995. Aftermath of the Permian-Triassic Mass Extinction Event:Paleoecology of Lower Triassic Carbonates in the Western USA. Palaeogeography, Palaeoclimatology, Palaeoecology, 116(1/2):1-39. https://doi.org/10.1016/0031-0182(94)00093-n
    Seilacher, A., 1990. Aberrations in Bivalve Evolution Related to Photo-and Chemosymbiosis. Historical Biology, 3(4):289-311. https://doi.org/10.1080/08912969009386528
    Sepkoski, J. J., Bambach, R. K., Raup, D. M., et al., 1981. Phanerozoic Marine Diversity and the Fossil Record. Nature, 293(5832):435-437. https://doi.org/10.1038/293435a0
    Shen, W. J., Lin, Y. T., Xu, L., et al., 2007. Pyrite Framboids in the Permian-Triassic Boundary Section at Meishan, China:Evidence for Dysoxic Deposition. Palaeogeography, Palaeoclimatology, Palaeoe-cology, 253(3/4):323-331. https://doi.org/10.1016/j.palaeo.2007.06.005
    Shen, Y. N., Farquhar, J., Zhang, H., et al., 2011. Multiple S-Isotopic Evidence for Episodic Shoaling of Anoxic Water during Late Permian Mass Extinction. Nature Communications, 2(1):210. https://doi.org/10.1038/ncomms1217
    Shigeta, Y., Zakharov, Y. D., Maeda, H., et al., 2009. The Lower Triassic System in the Abrek Bay Area, South Primorye, Russia. National Mu-seum of Nature and Science, Tokyo. 218
    Song, H. J., Tong, J. N., 2016. Mass Extinction and Survival during the Permian-Triassic Crisis. Earth Science, 41(6):901-918. https://doi.org/10.3799/dqkx.2016.077 (in Chinese with English Ab-stract)
    Song, H. J., Tong, J. N., Wignall, P. B., et al., 2016. Early Triassic Disaster and Opportunistic Foraminifers in South China. Geological Magazine, 153(2):298-315. https://doi.org/10.1017/s0016756815000497
    Song, H. J., Wignall, P. B., Chu, D. L., et al., 2014. Anoxia/High Temperature Double Whammy during the Permian-Triassic Marine Crisis and Its Aftermath. Scientific Reports, 4(4):4132. https://doi.org/10.1038/srep04132
    Song, H. J., Wignall, P. B., Tong, J. N., et al., 2012. Geochemical Evidence from Bio-Apatite for Multiple Oceanic Anoxic Events during Permian-Triassic Transition and the Link with End-Permian Extinction and Recovery. Earth and Planetary Science Letters, 353/354:12-21. https://doi.org/10.1016/j.epsl.2012.07.005
    Song, H. J., Wignall, P. B., Tong, J. N., et al., 2015. Integrated Sr Isotope Variations and Global Environmental Changes through the Late Permian to Early Late Triassic. Earth and Planetary Science Letters, 424:140-147. https://doi.org/10.1016/j.epsl.2015.05.035
    Song, H. Y., Tong, J. N., Algeo, T. J., et al., 2013. Large Vertical δ13CDIC Gradients in Early Triassic Seas of the South China Craton:Implications for Oceanographic Changes Related to Siberian Traps Volcanism. Global and Planetary Change, 105:7-20. https://doi.org/10.1016/j.gloplacha.2012.10.023
    Spath, L. F., 1930. The Eotriassic Invertebrate Fauna of East Greenland. Meddelelser om Gronland, 83(1):1-90
    Spath, L. F., 1935. Additions to the Eo-Triassic Invertebrate Fauna of East Greenland. Meddelelser om Gronland, 98(2):1-115
    Sun, Y., Joachimski, M. M., Wignall, P. B., et al., 2012. Lethally Hot Temperatures during the Early Triassic Greenhouse. Science, 338(6105):366-370. https://doi.org/10.1126/science.1224126
    Tian, L., Tong, J. N., Algeo, T. J., et al., 2014. Reconstruction of Early Triassic Ocean Redox Conditions Based on Framboidal Pyrite from the Nanpanjiang Basin, South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 412:68-79. https://doi.org/10.1016/j.palaeo.2014.07.018
    Tong, J. N., 1997. The Middle Triassic Environstratigraphy of Central-South Guizhou, SW China. China University of Geosciences Press, Wuhan. 128 (in Chinese)
    Tong, J. N., Xiong, X. Q., 2006. Marine Ecosystem Evolution at the Beginning of the Mesozoic in South China. In: Rong, J. Y., Fang, Z. J., Zhou, Z., et al., eds., Originations, Radiations and Biodiversity Changes-Evidences from the Chinese Fossil Record. Science Press, Beijing. 567-582, 911-912 (in Chinese)
    Tong, J. N., Yin, H. F., 2002. The Lower Triassic of South China. Journal of Asian Earth Sciences, 20(7):803-815. https://doi.org/10.1016/s1367-9120(01)00058-x
    Tong, J. N., Zhao, L. S., 2011. Lower Triassic and Induan-Olenekian Boundary in Chaohu, Anhui Province, South China. Acta Geologica Sinica (English Edition), 85(2):399-407. https://doi.org/10.1111/j.1755-6724.2011.00408.x
    Tozer, E. T., 1994. Canadian Triassic Ammonoid Faunas. Bulletin of the Geological Survey of Canada, 467:1-663 http://www.worldcat.org/title/canadian-triassic-ammonoid-faunas/oclc/31169456
    Uriarte, I., Rupp, G., Abarca, A., 2001. Production de Juveniles de Pectinidos Iberoamericanos Bajo Condiciones Controladas. In: Maeda-Martinez, A. N., ed., Los Moluscos Pectinidos de Iberoamerica: Ciencia y Acuicultura. Noriega Editores, Mexico. 147-172
    Waller, T. R., Stanley, G. D., 2005. Middle Triassic Pteriomorphian Bivalvia (Mollusca) from the New Pass Range, West-Central Nevada:Systematics, Biostratigraphy, Paleoecology, and Paleobiogeography. Journal of Paleontology, 79:1-58. https://doi.org/10.1666/0022-3360(2005)79[1:mtpbmf]2.0.co;2
    Wasmer, M., Hautmann, M., Hermann, E., et al., 2012. Olenekian (Early Triassic) Bivalves from the Salt Range and Surghar Range, Pakistan. Palaeontology, 55(5):1043-1073. https://doi.org/10.1111/j.1475-4983.2012.01176.x
    Wignall, P. B., 1993. Distinguishing between Oxygen and Substrate Control in Fossil Benthic Assemblages. Journal of the Geological Society, 150(1):193-196. https://doi.org/10.1144/gsjgs.150.1.0193
    Wignall, P. B., 1994. Black Shales. Clarendon Press, Oxford. 127
    Wignall, P. B., Hallam, A., 1992. Anoxia as a Cause of the Permian/Triassic Mass Extinction:Facies Evidence from Northern Italy and the Western United States. Palaeogeography, Palaeoclimatology, Palaeoecology, 93(1/2):21-46. https://doi.org/10.1016/0031-0182(92)90182-5
    Wignall, P. B., Simms, M. J., 1990. Pseudoplankton. Palaeontology, 33(2):359-378 https://core.ac.uk/display/33932202
    Yamamoto, G., 1960. Mortalities of the Scallop during Its Life Cycle. Bulletin of the Marine Biological Station of Asamushi, 10:149-152 https://www.researchgate.net/post/What_factors_may_affect_the_sex_ratio_in_lab_mosquito_colony_Aedes_aegypti
    Yang, F. Q., Gao, Y. Q., 2000. Late Permian Deep-Water Strata and Bivalves of South Guzihou. Geoscience, 14(3):327-332 (in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xddz200003015
    Yang, F. Q., Peng, Y. Q., Gao, Y. Q., 2001. Study on the Late Permian Claraia in South China. Science in China Series D:Earth Sciences, 44(9):797-807. https://doi.org/10.1007/bf02907092
    Yang, T. L., He, W. H., Zhang, K. X., et al., 2015. Palaeoecological Insights into the Changhsingian-Induan (Latest Permian-Earliest Triassic) Bi-valve Fauna at Dongpan, Southern Guangxi, South China. Alcheringa:An Australasian Journal of Palaeontology, 40(1):98-117. https://doi.org/10.1080/03115518.2015.1092283
    Yin, H. F., 1981. Palaeogeographical and Stratigraphical Distribution of the Lower Triassic Claraia and Eumorphotis (Bivalvia). Acta Geologica Sinica, 55(3):161-169 (in Chinese) http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZXE198103000.htm
    Yin, H. F., 1983. Uppermost Permian (Changxingian) Pectinacea from South China. Rivista Italiana di Paleontologia e Stratigrafia, 88(3):337-386
    Yin, H. F., 1985. Bivalves near the Permian-Triassic Boundary in South China. Journal of Paleontology, 59(3):572-600 http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZLP198304000.htm
    Yin, H. F., Ding, M. H., Zhang, K. X., et al., 1995. Dongwuan-Indosinian (Late Permian-Middle Triassic) Ecostratigraphy of the Yangtze Region and Its Margins. Science Press, Beijing. 330 (in Chinese)
    Yin, H. F., Jiang, H. S., Xia, W. C., et al., 2014. The End-Permian Regression in South China and Its Implication on Mass Extinction. Earth-Science Reviews, 137:19-33. https://doi.org/10.1016/j.earscirev.2013.06.003
    Yin, H. F., Wu, S. B., Du, Y. S., et al., 1999. South China as a Part of Archipelagic Tethys during Pangea Time. Earth Science-Journal of China University of Geosciences, 24(1):1-12 (in Chinese with English Abstract)
    Zhang, Z. M., 1980. On the Ligament Area, Systematic Position and Evolutionary Relationship of Claraia. Acta Palaeontologica Sinica, 19(6):433-443 (in Chinese) http://en.cnki.com.cn/Article_en/CJFDTOTAL-GSWX198006001.htm
    Zuschin, M., Harzhauser, M., Mandic, O., 2005. Influence of Size-Sorting on Diversity Estimates from Tempestitic Shell Beds in the Middle Miocene of Austria. Palaios, 20(2):142-158. https://doi.org/10.2110/palo.2003.p03-87
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)

    Article Metrics

    Article views(1329) PDF downloads(109) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return