Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 29 Issue 5
Oct 2018
Turn off MathJax
Article Contents
Hans-Peter Schertl, Joana Polednia, Rolf D. Neuser, Arne P. Willner. Natural End Member Samples of Pyrope and Grossular: A Cathodoluminescence-Microscopy and -Spectra Case Study. Journal of Earth Science, 2018, 29(5): 989-1004. doi: 10.1007/s12583-018-0842-0
Citation: Hans-Peter Schertl, Joana Polednia, Rolf D. Neuser, Arne P. Willner. Natural End Member Samples of Pyrope and Grossular: A Cathodoluminescence-Microscopy and -Spectra Case Study. Journal of Earth Science, 2018, 29(5): 989-1004. doi: 10.1007/s12583-018-0842-0

Natural End Member Samples of Pyrope and Grossular: A Cathodoluminescence-Microscopy and -Spectra Case Study

doi: 10.1007/s12583-018-0842-0
More Information
  • Corresponding author: Hans-Peter Schertl
  • Received Date: 20 Dec 2017
  • Accepted Date: 25 Feb 2018
  • Publish Date: 01 Oct 2018
  • Garnet is one of the most significant minerals in metamorphic rocks, that provides key information on prograde, peak-metamorphic and retrograde parts of the pressure-temperature (PT) path. Such results require a detailed knowledge of its different growth domains. For iron-poor compositions, the cathodoluminescence (CL) microscopy is an important and often overlooked method and allows to identify the internal structures of all garnet grains in one thin section within only a few seconds. The advantage of the CL-microscope is to deliver low magnification images in true color, not only of garnet but also, for instance, of other rock forming silicates, carbonates, sulfates, etc., of metamorphic, but also of sedimentary and magmatic origin, using polished thin sections. Internal structures of grossular from Mexico and pyrope from the Italian Alps were characterized and visualized by CL-microscopy. The different growth domains were additionally studied using CL-spectra and electron microprobe (EMP) analysis. Grossular shows a patchy zonation in its core while in mantle and rim zones oscillatory zoning is observed. It contains zones of anomalous birefringence, zones of orange and bluish luminescence and zones lacking luminescence. Different but low amounts of the activator elements Mn2+ and Eu2+ are responsible for the orange and bluish luminescent domains. Pyrope is also characterized by oscillatory growth zones, shows a dull luminescent core with a change of crystal morphology during growth, and displays an increase of brightness from core towards rim-the outermost rim, however, is lacking luminescence. The different luminescent zones are characterized by different amounts of Dy3+, Tb3+, Sm3+ and Sm2+ as activator elements. Because of slow diffusion rates of activators such as the REEs Sm, Dy and Tb, it can be still possible to visualize possible prograde and/or peak pressure stage growth domains of garnet, even if later high temperature events may have homogenized the major element profiles. Such domains may help to identify respective assemblages of mineral inclusions, and hence these results can represent an integral part of a detailed PT path. Thus the CL-information can be used as an important pathfinder prior to supplementary investigations, as for instance EMP, ion probe, mineral or fluid inclusion studies.

     

  • loading
  • Ague, J. J., Axler, J. A., 2016. Interface Coupled Dissolution-Reprecipitation in Garnet from Subducted Granulites and Ultrahigh-Pressure Rocks Revealed by Phosphorous, Sodium, and Titanium Zonation. American Mineralogist, 101(7):1696-1699. https://doi.org/10.2138/am-2016-5707
    Allan, M. M., Yardley, B. W. D., 2007. Tracking Meteoric Infiltration into a Magmatic-Hydrothermal System:A Cathodoluminescence, Oxygen Isotope and Trace Element Study of Quartz from Mt. Leyshon, Australia. Chemical Geology, 240(3/4):343-360. https://doi.org/10.1016/j.chemgeo.2007.03.004
    Barwood, H., 2007. Digital Near-Infrared (NIR) Cathodoluminescence (CL) Imaging and Image Processing. American Mineralogist, 92(2/3):261-266. https://doi.org/10.2138/am.2007.2186
    Baxter, E. F., Scherer, E. E., 2013. Garnet Geochronology:Timekeeper of Tectonometamorphic Processes. Elements, 9(6):433-438. https://doi.org/10.2113/gselements.9.6.433
    Berman, R. G., 1988. Internally-Consistent Thermodynamic Data for Minerals in the System Na2O-K2O-CaO-MgO-FeO-Fe2O3-Al2O3-SiO2-TiO2-H2O-CO2. Journal of Petrology, 29(2):445-522. https://doi.org/10.1093/petrology/29.2.445
    Bishop, F. C., Smith, J. V., Dawson, J. B., 1976. Na, P, Ti and Coordination of Si in Garnet from Peridotite and Eclogite Xenoliths. Nature, 260(5553):696-697. https://doi.org/10.1038/260696a0
    Blanc, P., Baumer, A., Cesbron, F., et al.., 2000. Systematic Cathodoluminescence Spectral Analysis of Synthetic Doped Minerals: Anhydrite, Apatite, Calcite, Fluorite, Scheelite and Zircon. In: Pagel, M., Barbin, V., Blanc, P., et al., eds., Cathodoluminescence in Geosciences. Springer, Berlin, Heidelberg, New York. 127-160
    Burton, K. W., Kohn, M. J., Cohen, A. S., et al., 1995. The Relative Diffusion of Pb, Nd, Sr and O in Garnet. Earth and Planetary Science Letters, 133(1/2):199-211. https://doi.org/10.1016/0012-821x(95)00067-m
    Caddick, M. J., Kohn, M. J., 2013. Garnet:Witness to the Evolution of Destructive Plate Boundaries. Elements, 9(6):427-432. https://doi.org/10.2113/gselements.9.6.427
    Carlson, W. D., 2006. Rates of Fe, Mg, Mn, and Ca Diffusion in Garnet. American Mineralogist, 91(1):1-11. https://doi.org/10.2138/am.2006.2043
    Carlson, W. D., 2017. Multicomponent Diffusion in Aluminosilicate Garnet:Coupling Effects due to Charge Compensation. International Geology Review, 28:1-15. https://doi.org/10.1080/00206814.2016.1189855
    Catlos, E. J., Baker, C. B., Sorensen, S. S., et al., 2011. Linking Microcracks and Mineral Zoning of Detachment-Exhumed Granites to Their Tectonomagmatic History:Evidence from the Salihli and Turgutlu Plutons in Western Turkey (Menderes Massif). Journal of Structural Geology, 33(5):951-969. https://doi.org/10.1016/j.jsg.2011.02.005
    Chakraborty, S., Ganguly, J., 1991. Compositional Zoning and Cation Diffusion in Garnets. In: Ganguly, J., ed., Diffusion, Atomic Ordering, and Mass Transport. Selected Topics in Geochemistry. Advances in Physical Chemistry Volume 8. Springer, New York. 566
    Cherniak, D. J., 1998. Rare Earth Element and Gallium Diffusion in Yttrium Aluminum Garnet. Physics and Chemistry of Minerals, 26(2):156-163. https://doi.org/10.1007/s002690050172
    Chernoff, C. B., Carlson, W. D., 1999. Trace Element Zoning as a Record of Chemical Disequilibrium during Garnet Growth. Geology, 27(6):555-558. https://doi.org/10.1130/0091-7613(1999)027<0555:tezaar>2.3.co;2 doi: 10.1130/0091-7613(1999)027<0555:tezaar>2.3.co;2
    Chopin, C., 1984. Coesite and Pure Pyrope in High-Grade Blueschists of the Western Alps:A First Record and some Consequences. Contributions to Mineralogy and Petrology, 86(2):107-118 doi: 10.1007/BF00381838
    Chopin, C., Beyssac, O., Bernard, S., et al., 2008. Aragonite-Grossular Intergrowths in Eclogite-Facies Marble, Alpine Corsica. European Journal of Mineralogy, 20(5):857-865. https://doi.org/10.1127/0935-1221/2008/0020-1892
    Compagnoni, R., Hirajima, T., 2001. Superzoned Garnets in the Coesite-Bearing Brossasco-Isasca Unit, Dora-Maira Massif, Western Alps, and the Origin of the Whiteschists. Lithos, 57(4):219-236. https://doi.org/10.1016/s0024-4937(01)00041-x
    Compagnoni, R., Messiga, B., Castelli, D. 1994. High Pressure Metamorphism in the Western Alps. Guide-Book to the Field Excursion of the 16th Meeting of the IMA, September 10-15, 2004, Pisa. 148
    Connolly, J. A. D., 1990. Multivariable Phase Diagrams:An Algorithm Based on Generalized Thermodynamics. American Journal of Science, 290(6):666-718. https://doi.org/10.2475/ajs.290.6.666
    de Capitani, C., Brown, T. H., 1987. The Computation of Chemical Equilibrium in Complex Systems Containing Non-Ideal Solutions. Geochimica et Cosmochimica Acta, 51(10):2639-2652. https://doi.org/10.1016/0016-7037(87)90145-1
    Dudley, R. J., 1976. The Use of Cathodoluminescence in the Identification of Soil Minerals. Journal of Soil Science, 27(4):487-494. https://doi.org/10.1111/j.1365-2389.1976.tb02018.x
    Ferrando, S., Frezzotti, M. L., Petrelli, M., et al., 2009. Metasomatism of Continental Crust during Subduction:The UHP Whiteschists from the Southern Dora-Maira Massif (Italian Western Alps). Journal of Metamorphic Geology, 27(9):739-756. https://doi.org/10.1111/j.1525-1314.2009.00837.x
    Ferry, J. M., Spear, F. S., 1978. Experimental Calibration of the Partitioning of Fe and Mg between Biotite and Garnet. Contributions to Mineralogy and Petrology, 66(2):113-117. https://doi.org/10.1007/bf00372150
    Gaft, M., Reisfeld, R., Panczer, G., 2005. Modern Luminescence Spectroscopy of Minerals and Materials. Springer, Berlin, New York. 356
    Ganguly, J., 2010. Cation Diffusion Kinetics in Aluminosilicate Garnets and Geological Applications. Reviews in Mineralogy and Geochemistry, 72(1):559-601. https://doi.org/10.2138/rmg.2010.72.12
    Ganguly, J., Tirone, M., Hervig, R. L., 1998. Diffusion Kinetics of Samarium and Neodymium in Garnet, and a Method for Determining Cooling Rates of Rocks. Science, 281(5378):805-807. https://doi.org/10.1126/science.281.5378.805
    Gorobets, B. S., Rogojine, A. A., 2002. Luminescent Spectra of Minerals: Reference-Book. RPC VIMS. 302
    Götze, J., 2002. Potential of Cathodoluminescence (CL) Microscopy and Spectroscopy for the Analysis of Minerals and Materials. Analytical and Bioanalytical Chemistry, 374(4):703-708. https://doi.org/10.1007/s00216-002-1461-1
    Götze, J., Schertl, H. P., Neuser, R. D., et al., 2013. Optical Microscope-Cathodoluminescence (OM-CL) Imaging as a Powerful Tool to Reveal Internal Textures of Minerals. Mineralogy and Petrology, 107(3):373-392. https://doi.org/10.1007/s00710-012-0256-0
    Gross, J., Burchard, M., Schertl, H. P., et al., 2008. Common High-Pressure Metamorphic History of Eclogite Lenses and Surrounding Metasediments:A Case Study of Calc-Silicate Reaction Zones (Erzgebirge, Germany). European Journal of Mineralogy, 20(5):757-775. https://doi.org/10.1127/0935-1221/2008/0020-1861
    Habermann, D., Götze, J., Neuser, R. D., et al., 2000. Quantitative high Resolution Spectral Analysis of Mn2+ in Sedimentary Calcite. In: Pagel, M., Barbin, V., Blanc, P., et al., eds., Cathodoluminescence in Geosciences, Springer, Berlin Heidelberg, New York. 331-358
    Habermann, D., Meijer, J., Neuser, R. D., et al., 1999. Micro-PIXE and Quantitative Cathodoluminescence Spectroscopy:Combined High Resolution Trace Element Analyses in Minerals. Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms, 150(1/2/3/4):470-477. https://doi.org/10.1016/s0168-583x(98)00926-4
    Habermann, D., Neuser, R. D., Richter, D. K., 1996. REE-Activated Cathodoluminescence of Calcite and Dolomite:High-Resolution Spectrometric Analysis of CL Emission (HRS-CL). Sedimentary Geology, 101(1/2):1-7. https://doi.org/10.1016/0037-0738(95)00086-0
    Harlow, G. E., 1994. Jadeitites, Albitites and Related Rocks from the Motagua Fault Zone, Guatemala. Journal of Metamorphic Geology, 12(1):49-68. https://doi.org/10.1111/j.1525-1314.1994.tb00003.x
    Harlow, G. E., Sorensen, S. S., 2005. Jade (Nephrite and Jadeitite) and Serpentinite:Metasomatic Connections. International Geology Review, 47(2):113-146. https://doi.org/10.2747/0020-6814.47.2.113
    Henmi, K., Kusachi, I., Numano, T., 1971. Contact Minerals from Kushiro, Hiroshima Prefecture. Journal of the Mineralogical Society of Japan, 10(3):160-169. https://doi.org/10.2465/gkk1952.10.160
    Holland, T. J. B., Powell, R., 1985. An Internally Consistent Thermodynamic Dataset with Uncertainties and Correlations:2. Data and Results. Journal of Metamorphic Geology, 3(4):343-370. https://doi.org/10.1111/j.1525-1314.1985.tb00325.x
    Holland, T. J. B., Powell, R., 1990. An Enlarged and Updated Internally Consistent Thermodynamic Dataset with Uncertainties and Correlations:The System K2O-Na2O-CaO-MgO-MnO-FeO-Fe2O3-Al2O3-TiO2-SiO2-C-H2-O2. Journal of Metamorphic Geology, 8(1):89-124. https://doi.org/10.1111/j.1525-1314.1990.tb00458.x
    Houzar, S., Leichmann, J., 2003. Application of Cathodoluminescence to the Study of Metamorphic Textures in Marbles from the Eastern Part of the Bohemian Massif. Bulletin of Geosciences, 78:241-250 http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_8b39679ec005bd9bc058a54555ce57b1
    Kempe, U., Plötze, M., Brachmann, A., et al., 2002. Stabilisation of Divalent Rare Earth Elements in Natural Fluorite. Mineralogy and Petrology, 76:213-234 doi: 10.1007/s007100200042
    Kohn, M. J., 2004. Oscillatory-and Sector-Zoned Garnets Record Cyclic (?) Rapid Thrusting in Central Nepal. Geochemistry, Geophysics, Geosystems, 5(12):Q12014. https://doi.org/10.1029/2004gc000737
    Lasaga, A. C., Richardson, S. M., Holland, H. D., 1977. The Mathematics of Cation Diffusion and Exchange between Silicate Minerals during Retrograde Metamorphism. In: Saxena, S. K., Bhattacharji, S. D., eds., Energetics of Geodynamic Process. Springer, New York. 353-388
    Leach, T. M., Rodgers, K. A., 1978. Metasomatism in the Wairere Serpentinite, King Country, New Zealand. Mineralogical Magazine, 42(321):45-62. https://doi.org/10.1180/minmag.1978.042.321.06
    Li, X. P., Duan, W. Y., Zhao, L. Q., et al., 2017. Rodingites from the Xigaze Ophiolite, Southern Tibet-New Insights into the Processes of Rodingitization. European Journal of Mineralogy, 29(5):821-837. https://doi.org/10.1127/ejm/2017/0029-2633
    Liu, P. L., Massonne, H. J., Jin, Z. M., et al., 2017. Diopside, Apatite, and Rutile in an Ultrahigh Pressure Impure Marble from the Dabie Shan, Eastern China:A Record of Eclogite-Facies Metasomatism during Exhumation. Chemical Geology, 466:123-139. https://doi.org/10.1016/j.chemgeo.2017.06.001
    Locock, A. J., 2008. An Excel Spreadsheet to Recast Analyses of Garnet into End-Member Components, and a Synopsis of the Crystal Chemistry of Natural Silicate Garnets. Computers & Geosciences, 34(12):1769-1780. https://doi.org/10.1016/j.cageo.2007.12.013
    Marfunin, A. S., 1979. Spectroscopy, Luminescence and Radiation Centres in Minerals. Springer, Berlin, Heidelberg, New York. 352
    McAloon, B. P., Hofmeister, A. M., 1993. Single-Crystal Absorption and Reflection Infrared Spectroscopy of Birefringent Grossular-Andradite Garnets. American Mineralogist, 78:957-967 http://www.minsocam.org/ammin/AM78/AM78_957.pdf
    Mitchell, R. H., Xiong, J., Mariano, A. N., et al., 1997. Rare-Earth Element-Activated Cathodoluminescence in Apatite. Canadian Mineralogist, 35:979-998 https://www.researchgate.net/publication/286760891_Rare-earth-element-activated_cathodoluminescence_in_apatite
    Moore, R. O., Gurney, J. J., 1985. Pyroxene Solid Solution in Garnets Included in Diamond. Nature, 318(6046):553-555. https://doi.org/10.1038/318553a0
    Neuser, R. D., Reinecke, T., Schertl, H.-P., 1995. Low Temperature Cathodoluminescence of Selected Minerals from High Pressure Metamorphic Rocks. Bochumer Geologische und Geotechnische Arbeiten, 44:119-123 https://www.researchgate.net/publication/234062354_Low_temperature_cathodoluminescence_of_selected_minerals_from_high_pressure_rocks
    Pagel, M., Barbin, V., Blanc, P., et al., 2000. Cathodoluminescence in Geosciences. Springer, Berlin. 514
    Park, C., Choi, W., Kim, H., et al., 2017. Oscillatory Zoning in Skarn Garnet:Implications for Tungsten Ore Exploration. Ore Geology Reviews, 89:1006-1018. https://doi.org/10.1016/j.oregeorev.2017.08.003
    Parsons, I., Steele, D. A., Lee, M. R., et al., 2008. Titanium as a Cathodoluminescence Activator in Alkali Feldspars. American Mineralogist, 93(5/6):875-879. https://doi.org/10.2138/am.2008.2711
    Perchuk, A. L., Burchard, M., Schertl, H. P., et al., 2009. Diffusion of Divalent Cations in Garnet:Multi-Couple Experiments. Contributions to Mineralogy and Petrology, 157(5):573-592. https://doi.org/10.1007/s00410-008-0353-6
    Råheim, A., Green, D. H., 1974. Experimental Determination of the Temperature and Pressure Dependence of the Fe-Mg Partition Coefficient for Coexisting Garnet and Clinopyroxene. Contributions to Mineralogy and Petrology, 48(3):179-203. https://doi.org/10.1007/bf00383355
    Reinecke, T., 1998. Prograde High-to Ultrahigh-Pressure Metamorphism and Exhumation of Oceanic Sediments at Lago Di Cignana, Zermatt-Saas Zone, Western Alps. Lithos, 42(3/4):147-189. https://doi.org/10.1016/s0024-4937(97)00041-8
    Richter, D. K., Götte, T., Götze, J., et al., 2003. Progress in Application of Cathodoluminescence (CL) in Sedimentary Petrology. Mineralogy and Petrology, 79(3/4):127-166. https://doi.org/10.1007/s00710-003-0237-4
    Richter, D. K., Heinrich, F., Geske, A., et al., 2014. First Description of Phanerozoic Radiaxial Fibrous Dolomite. Sedimentary Geology, 304:1-10. https://doi.org/10.1016/j.sedgeo.2014.02.002
    Rollinson, H., 2003. Metamorphic History Suggested by Garnet-Growth Chronologies in the Isua Greenstone Belt, West Greenland. Precambrian Research, 126(3/4):181-196. https://doi.org/10.1016/s0301-9268(03)00094-9
    Satish-Kumar, M., Mori, H., Kusachi, I., et al., 2006. Cathodoluminescence Microscopy of High-Temperature Skarn Minerals from Fuka Contact Aureole, Okayama, Japan. Geoscience Reports, Shizuoka University, 33:21-28 https://www.researchgate.net/publication/39968252_Cathodoluminescence_microscopy_of_high-temperature_skarn_minerals_from_Fuka_contact_aureole_Okayama_Japan
    Schandl, E. S., Mittwede, S. K., 2001. Evolution of the Acipayam (Denizli, Turkey) Rodingites. International Geology Review, 43(7):611-623. https://doi.org/10.1080/00206810109465036
    Scherer, E. E., Cameron, K. L., Blichert-Toft, J., 2000. Lu-Hf Garnet Geochronology:Closure Temperature Relative to the Sm-Nd System and the Effects of Trace Mineral Inclusions. Geochimica et Cosmochimica Acta, 64(19):3413-3432. https://doi.org/10.1016/s0016-7037(00)00440-3
    Schertl, H.-P., Maresch, W. V., Knippenberg, S., et al., 2018. Petrography, Mineralogy and Geochemistry of Jadeite-Rich Artefacts from the Playa Grande Excavation Site, Northern Hispaniola: Evaluation of Local Provenance from the Río San Juan Complex. In: Zhang, L. F., Zhang, Z. M., Schertl, H.-P., et al., eds., HP-UHP Metamorphism and the Tectonic Evolution of Orogenic Belts. Geological Society, London, Special Publications. https: //doi.org/10.1144/sp474.3
    Schertl, H.-P., Medenbach, O., Neuser, R. D., 2005. UHP-Metamorphic Rocks from Dora Maira, Western Alps:Cathodoluminescence of Silica and Twinning of Coesite. Russian Geology and Geophysics, 46:1327-1332 https://www.researchgate.net/publication/234058050_UHP-metamorphic_rocks_from_Dora_Maira_Western_Alps_Cathodoluminescence_of_silica_and_twinning_of_coesite
    Schertl, H.-P., Maresch, W. V., Stanek, K. P., et al., 2012. New Occurrences of Jadeitite, Jadeite Quartzite and Jadeite-Lawsonite Quartzite in the Dominican Republic, Hispaniola:Petrological and Geochronological Overview. European Journal of Mineralogy, 24(2):199-216. https://doi.org/10.1127/0935-1221/2012/0024-2201
    Schertl, H.-P., Neuser, R. D., Logvinova, A. M., et al., 2015. Cathodoluminescence Microscopy of the Kokchetav Ultrahigh-Pressure Calcsilicate Rocks:What can We Learn from Silicates, Carbon-Hosting Minerals, and Diamond?. Russian Geology and Geophysics, 56(1/2):100-112. https://doi.org/10.1016/j.rgg.2015.01.006
    Schertl, H.-P., Neuser, R. D., Sobolev, N. V., et al., 2004. UHP-Metamorphic Rocks from Dora Maira/Western Alps and Kokchetav/Kazakhstan:New Insights Using Cathodoluminescence Petrography. European Journal of Mineralogy, 16(1):49-57. https://doi.org/10.1127/0935-1221/2004/0016-0049
    Schertl, H.-P., Schreyer, W., 2008. Geochemistry of Coesite-Bearing "Pyrope Quartzite" and Related Rocks from the Dora-Maira Massif, Western Alps. European Journal of Mineralogy, 20(5):791-809. https://doi.org/10.1127/0935-1221/2008/0020-1862
    Schertl, H.-P., Schreyer, W., Chopin, C., 1991. The Pyrope-Coesite Rocks and Their Country Rocks at Parigi, Dora Maira Massif, Western Alps:Detailed Petrography, Mineral Chemistry and PT-Path. Contributions to Mineralogy and Petrology, 108(1/2):1-21. https://doi.org/10.1007/bf00307322
    Schertl, H.-P., Sobolev, N. V., 2013. The Kokchetav Massif, Kazakhstan:"Type Locality" of Diamond-Bearing UHP Metamorphic Rocks. Journal of Asian Earth Sciences, 63:5-38. https://doi.org/10.1016/j.jseaes.2012.10.032
    Schmidt, A., Mezger, K., O'Brien, P. J., 2011. The Time of Eclogite Formation in the Ultrahigh Pressure Rocks of the Sulu Terrane. Lithos, 125(1/2):743-756. https://doi.org/10.1016/j.lithos.2011.04.004
    Schumacher, R., Rötzler, K., Maresch, W. V., 1998. Subtle Oscillatory Zoning in Garnet from Regional Metamorphic Phyllites and Mica Schists, Western Erzgebirge, Germany. Canadian Mineralogist, 37:381-402 https://www.researchgate.net/publication/258333102_Subtle_oscillatory_zoning_in_garnet_from_regional_metamorphic_Phyllites_and_Mica_Schists_Western_Erzgebirge_Germany
    Shtukenberg, A. G., Punin, Y. O., Frank-Kamenetskaya, O. V., et al., 2001a. On the Origin of Anomalous Birefringence in Grandite Garnets. Mineralogical Magazine, 65(3):445-459. https://doi.org/10.1180/002646101300119538
    Shtukenberg, A. G., Punin, Y. O., Haegele, E., et al., 2001b. On the Origin of Inhomogeneity of Anomalous Birefringence in Mixed Crystals:An Example of Alums. Physics and Chemistry of Minerals, 28(9):665-674. https://doi.org/10.1007/s002690100185
    Sobolev, N. V. Jr., Lavrent'ev, J. G., 1971. Isomorphic Sodium Admixture in Garnets Formed at High Pressures. Contributions to Mineralogy and Petrology, 31(1):1-12. https://doi.org/10.1007/bf00373387
    Sobolev, N. V., Shatsky, V. S., 1990. Diamond Inclusions in Garnets from Metamorphic Rocks:A New Environment for Diamond Formation. Nature, 343(6260):742-746. https://doi.org/10.1038/343742a0
    Sobolev, N. V., Schertl, H. P., Neuser, R. D., et al., 2007. Relict Unusually Low Iron Pyrope-Grossular Garnets in UHPM Calc-Silicate Rocks of the Kokchetav Massif, Kazakhstan. International Geology Review, 49(8):717-731. https://doi.org/10.2747/0020-6814.49.8.717
    Sobolev, N. V., Schertl, H. P., Valley, J. W., et al., 2011. Oxygen Isotope Variations of Garnets and Clinopyroxenes in a Layered Diamondiferous Calcsilicate Rock from Kokchetav Massif, Kazakhstan:A Window into the Geochemical Nature of Deeply Subducted UHPM Rocks. Contributions to Mineralogy and Petrology, 162(5):1079-1092. https://doi.org/10.1007/s00410-011-0641-4
    Sobolev, N. V., Schertl, H.-P., Neuser, R. D., et al., 2017. Formation and Evolution of Hypabyssal Kimberlites from the Siberian Craton:Part 1-New Insights from Cathodoluminescence of the Carbonates. Journal of Asian Earth Sciences, 145:670-678. https://doi.org/10.1016/j.jseaes.2017.06.009
    Takahashi, N., Tsujimori, T., Kayama, M, et al., 2017. Cathodoluminescence Petrography of P-Type Jadeitites from the New Idria Serpentinite Body, California. Journal of Mineralogical and Petrological Sciences, 112(5):291-299. https://doi.org/10.2465/jmps.170403
    Teng, H. H., 2013. How Ions and Molecules Organize to Form Crystals. Elements, 9(3):189-194. https://doi.org/10.2113/gselements.9.3.189
    Tirone, M., Ganguly, J., Dohmen, R., et al., 2005. Rare Earth Diffusion Kinetics in Garnet:Experimental Studies and Applications. Geochimica et Cosmochimica Acta, 69(9):2385-2398. https://doi.org/10.1016/j.gca.2004.09.025
    Van Orman, J. A., Grove, T. L., Shimizu, N., et al., 2002. Rare Earth Element Diffusion in a Natural Pyrope Single Crystal at 2.8 GPa. Contributions to Mineralogy and Petrology, 142(4):416-424. https://doi.org/10.1007/s004100100304
    Whitney, D. L., Evans, B. W., 2010. Abbreviations for Names of Rock-Forming Minerals. American Mineralogist, 95(1):185-187. https://doi.org/10.2138/am.2010.3371
    Zhai, D.-G., Liu, J.-J., Zhang, H.-Y., et al., 2014. Origin of Oscillatory Zoned Garnets from the Xieertala Fe-Zn Skarn Deposit, Northern China:In situ LA-ICP-MS Evidence. Lithos, 190/191:279-291. https://doi.org/10.1016/j.lithos.2013.12.017
    Zorenko, Y., Gorbenko, V., Zorenko, T., et al., 2016. Luminescent and Scintillation Properties of YAG:Dy and YAG:Dy, Ce Single Crystalline Films. Radiation Measurements, 90:308-313. https://doi.org/10.1016/j.radmeas.2016.02.026
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(3)

    Article Metrics

    Article views(598) PDF downloads(24) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return