Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 30 Issue 1
Jan 2019
Turn off MathJax
Article Contents
Sheqiang Miao, Yongsheng Zhou, Heping Li. Thermal Diffusivity of Lherzolite at High Pressures and High Temperatures Using Pulse Method. Journal of Earth Science, 2019, 30(1): 218-222. doi: 10.1007/s12583-018-0868-3
Citation: Sheqiang Miao, Yongsheng Zhou, Heping Li. Thermal Diffusivity of Lherzolite at High Pressures and High Temperatures Using Pulse Method. Journal of Earth Science, 2019, 30(1): 218-222. doi: 10.1007/s12583-018-0868-3

Thermal Diffusivity of Lherzolite at High Pressures and High Temperatures Using Pulse Method

doi: 10.1007/s12583-018-0868-3
More Information
  • Corresponding author: Sheqiang Miao
  • Received Date: 22 Sep 2016
  • Accepted Date: 24 Apr 2017
  • Publish Date: 01 Feb 2019
  • Lherzolite is one of the most important components of the subcontinental mantle lithosphere, and the study of its heat transfer properties aids in understanding the thermal structure of the continental mantle lithosphere. Currently, few studies have examined the heat transfer properties of lherzolite, and the experimental results remain controversial. This experiment utilized a pulse method to measure the thermal diffusivity of lherzolite at pressures ranging from 1.0 to 4.0 GPa and temperatures from 300 to 1 073 K on a cubic press apparatus. We obtained a thermal diffusivity for lherzolite of approximately 2.10 mm2s-1 at ambient condition. The experimental pressure derivative of the thermal conductivity of lherzolite decreased with temperature, reaching approximately 10% at high temperature, a value higher than the previously reported 4%, which indicates that the temperature gradient of the upper mantle lithosphere is smaller than previously thought. Therefore, concerning calculation of the lithosphere thickness using the thermal conductivity of the lherzolite, the previous calculation using pressure derivative of the thermal conductivity of 4% may cause an underestimation of the upper mantle lithosphere thickness by approximately 6% in a first approximation.

     

  • loading
  • Anderson, O.L., Isaak, D., Oda, H., 1992.High-Temperature Elastic Constant Data on Minerals Relevant to Geophysics.Reviews of Geophysics, 30(1):57-90. https://doi.org/10.1029/91rg02810
    Angel, R.J., 1994.Feldspars at High Pressure.In: Parsons, I., ed., Feldspars and Their Reactions.Springer, Netherlands.271-312
    Beck, A.E., Darbha, D.M., Schloessin, H.H., 1978.Lattice Conductivities of Single-Crystal and Polycrystalline Materials at Mantle Pressures and Temperatures.Physics of the Earth and Planetary Interiors, 17(1):35-53. https://doi.org/10.1016/0031-9201(78)90008-0
    Feng, J., Xie, M., Zhang, H., et al., 1982.Hannuoba Basalts and Nodules Derived from the Deep Earth.Bulletin of Hebei College of Geology, 1:45-63
    Fujisawa, H., Fujii, N., Mizutani, H., et al., 1968.Thermal Diffusivity of Mg2SiO4, Fe2SiO4, and NaCl at High Pressures and Temperatures.Journal of Geophysical Research, 73(14):4727-4733. https://doi.org/10.1029/jb073i014p04727
    Gibert, B., Schilling, F.R., Tommasi, A., et al., 2003a.Thermal Diffusivity of Olivine Single-Crystals and Polycrystalline Aggregates at Ambient Conditions—A Comparison.Geophysical Research Letters, 30(22):2172-2176. https://doi.org/10.1029/2003gl018459
    Gibert, B., Seipold, U., Tommasi, A., et al., 2003b.Thermal Diffusivity of Upper Mantle Rocks:Influence of Temperature, Pressure, and the Deformation Fabric.Journal of Geophysical Research, 108(B8):1-15. https://doi.org/10.1029/2002jb002108
    Gibert, B., Schilling, F.R., Gratz, K., et al., 2005.Thermal Diffusivity of Olivine Single Crystals and a Dunite at High Temperature:Evidence for Heat Transfer by Radiation in the Upper Mantle.Physics of the Earth and Planetary Interiors, 151(1/2):129-141. https://doi.org/10.1016/j.pepi.2005.02.003
    Gong, W., Jiang X.D.2017.Thermal Evolution History and Its Genesis of the Ailao Shan-Red River Fault Zone in the Ailao Shan and Day Nui Con Voi Massif during Oligocene-Early Miocene.Earth Science—Journal of China University of Geosciences, 42(2):223-239 (in Chinese with English Abstract) doi: 10.3799/dqkx.2017.017
    Hofmeister, A.M., 1999.Mantle Values of Thermal Conductivity and the Geotherm from Phonon Lifetimes.Science, 283(5408):1699-1706. https://doi.org/10.1126/science.283.5408.1699
    Hofmeister, A.M., 2006.Thermal Diffusivity of Garnets at High Temperature.Physics and Chemistry of Minerals, 33(1):45-62. https://doi.org/10.1007/s00269-005-0056-8
    Hofmeister, A.M., 2007.Pressure Dependence of Thermal Transport Properties.Proceedings of the National Academy of Sciences of the United States of America, 104(22):9192-9197 doi: 10.1073/pnas.0610734104
    Hofmeister, A.M., 2012.Thermal Diffusivity of Orthopyroxenes and Protoenstatite as a Function of Temperature and Chemical Composition.European Journal of Mineralogy, 24(4):669-681. https://doi.org/10.1127/0935-1221/2012/0024-2204
    Horai, K.I., Susaki, J.I., 1989.The Effect of Pressure on the Thermal Conductivity of Silicate Rocks up to 12 kbar.Physics of the Earth and Planetary Interiors, 55(3/4):292-305. https://doi.org/10.1016/0031-9201(89)90077-0
    Katsura, T., 1995.Thermal Diffusivity of Olivine under Upper Mantle Conditions.Geophysical Journal International, 122(1):63-69. https://doi.org/10.1111/j.1365-246x.1995.tb03536.x
    Kubičár, Ľ., Vretenár, V., Hammerschmidt, U., 2005.Thermophysical Parameters of Optical Glass BK 7 Measured by the Pulse Transient Method.International Journal of Thermophysics, 26(2):507-518. https://doi.org/10.1007/s10765-005-4512-y
    Miao, S.Q., Li, H.P., Chen, G., 2014.Measurement of Thermal Diffusivity for Rocks at High Temperature and High Pressure-Application to Basalt.Chinese Journal of High Pressure Physics, 28:11-17 (in Chinese with English Abstract) http://www.cqvip.com/QK/96553X/201401/49130639.html
    Osako, M., Ito, E., Yoneda, A., 2004.Simultaneous Measurements of Thermal Conductivity and Thermal Diffusivity for Garnet and Olivine under High Pressure.Physics of the Earth and Planetary Interiors, 143-144:311-320. https://doi.org/10.1016/j.pepi.2003.10.010
    Pertermann, M., Hofmeister, A.M., 2006.Thermal Diffusivity of Olivine-Group Minerals at High Temperature.American Mineralogist, 91(11/12):1747-1760. https://doi.org/10.2138/am.2006.2105
    Tommasi, A., Gibert, B., Seipold, U., et al., 2001.Anisotropy of Thermal Diffusivity in the Upper Mantle.Nature, 411(6839):783-786. https://doi.org/10.1038/35081046
    Wang, Y., Cheng, S.H., 2012.Lithospheric Thermal Structure and Rheology of the Eastern China.Journal of Asian Earth Sciences, 47:51-63. https://doi.org/10.1016/j.jseaes.2011.11.022
    Xu, L.L., Jin, Z.M., Mei, S.H.2017.Deformation-DIA Coupled with Synchrotron X-Ray Diffraction and Its Applications to Deformation Experiments of Minerals at High Temperature and High Pressure.Earth Science—Journal of China University of Geosciences, 42(6):974-989 (in Chinese with English Abstract) doi: 10.3799/dqkx.2017.078
    Xu, Y.S., Shankland, T.J., Linhardt, S., et al., 2004.Thermal Diffusivity and Conductivity of Olivine, Wadsleyite and Ringwoodite to 20 GPa and 1373 K.Physics of the Earth and Planetary Interiors, 143/144:321-336. https://doi.org/10.1016/j.pepi.2004.03.005
    Xu, Y.X., Zhu, L.P., Wang, Q.Y., et al., 2017.Heat Shielding Effects in the Earth's Crust.Journal of Earth Science, 28(1):161-167. https://doi.org/10.1007/s12583-017-0744-6
    Zhang, Y.F., Hu, C.L., Wang, X.M., et al., 2017.An Improved Method of Laser Particle Size Analysis and Its Applications in Identification of Lacustrine Tempestite and Beach Bar:An Example from the Dongying Depression.Journal of Earth Science, 28(6):1145-1152. https://doi.org/10.1007/s12583-016-0930-1
    Zhou, F.Z., Zheng, X.H., 2015a.Heat Transfer in Tubing-Casing Annulus during Production Process of Geothermal Systems.Journal of Earth Science, 26(1):116-123. https://doi.org/10.1007/s12583-015-0511-5
    Zhou, F.Z., Xiong, Y.C., Tian, M., 2015b.Predicting Initial Formation Temperature for Deep Well Engineering with a New Method.Journal of Earth Science, 26(1):108-115. https://doi.org/10.1007/s12583-015-0512-4
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(2)

    Article Metrics

    Article views(581) PDF downloads(22) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return