Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 30 Issue 2
Apr 2019
Turn off MathJax
Article Contents
Yan Chen, Qian Ye, Haishui Jiang, Paul B. Wignall, Jinling Yuan. Conodonts and Carbon Isotopes during the Permian-Triassic Transition on the Napo Platform, South China. Journal of Earth Science, 2019, 30(2): 244-257. doi: 10.1007/s12583-018-0884-3
Citation: Yan Chen, Qian Ye, Haishui Jiang, Paul B. Wignall, Jinling Yuan. Conodonts and Carbon Isotopes during the Permian-Triassic Transition on the Napo Platform, South China. Journal of Earth Science, 2019, 30(2): 244-257. doi: 10.1007/s12583-018-0884-3

Conodonts and Carbon Isotopes during the Permian-Triassic Transition on the Napo Platform, South China

doi: 10.1007/s12583-018-0884-3
Funds:

the National Natural Science Foundation of China 41572324

the Special Project on Basic Work of Science and Technology from the National Ministry of Science and Technology of China 2015FY310100-11

the China Geological Survey DD20160120-04

More Information
  • Corresponding author: Haishui Jiang
  • Received Date: 15 Oct 2018
  • Accepted Date: 12 Nov 2018
  • Publish Date: 01 Apr 2019
  • Two Permian-Triassic boundary (PTB) sections (Pojue and Dala) are well exposed in an isolated carbonate platform (Napo Platform) on the southwestern margin of the Nanpanjiang Basin, South China. These sections provide an insight into the transition across the PTB and a detailed investigation of the conodont biostratigraphy and inorganic carbon isotopes is presented. The PTB at the Pojue Section is placed at the base of Bed 10B (a dolomitized mudstone found below a microbialite horizon), defined by the first occurrence of Hindeodus parvus. At the Dala Section, four conodont zones occur. They are, in ascending order, the Hindeodus parvus Zone, Isarcicella staeschei Zone, Isarcicella isarcica Zone and Clarkina planata Zone. Comparison with the Pojue Section suggests the PTB at Dala also occurs at the base of dolomitized mudstone below a microbialite horizon, although the first occurrence of Hindeodus parvus is near the top of a microbialite bed:an occurrence that is also seen in other platform sections. The succeeding microbialite beds developed during the ongoing PTB mass extinction phase. This time was characterized by low carbon isotope values, and a microbialite ecosystem that provided a refuge for selected groups (bivalves, ostracods and microgastropods) that were likely tolerant of extremely high temperatures.

     

  • loading
  • Bai, R. Y., Dai, X., Song, H. J., 2017. Conodont and Ammonoid Biostratigraphies around the Permian-Triassic Boundary from Jianzishan of South China. Journal of Earth Science, 28(4):595-613. https://doi.org/10.1007/s12583-017-0754-4
    Baresel, B., Bucher, H., Bagherpour, B., et al., 2017. Timing of Global Regression and Microbial Bloom Linked with the Permian-Triassic Boundary Mass Extinction:Implications for Driving Mechanisms. Scientific Reports, 7(1):43630. https://doi.org/10.1038/srep43630
    Baud, A., Richoz, S., Pruss, S., 2007. The Lower Triassic Anachronistic Carbonate Facies in Space and Time. Global and Planetary Change, 55(1/2/3):81-89. https://doi.org/10.1016/j.gloplacha.2006.06.008
    Brand, U., Blamey, N., Garbelli, C., et al., 2016. Methane Hydrate:Killer Cause of Earth's Greatest Mass Extinction. Palaeoworld, 25(4):496-507. https://doi.org/10.1016/j.palwor.2016.06.002
    Brosse, M., Bucher, H., Bagherpour, B., et al., 2015. Conodonts from the Early Triassic Microbialite of Guangxi (South China):Implications for the Definition of the Base of the Triassic System. Palaeontology, 58(3):563-584. https://doi.org/10.1111/pala.12162
    Burgess, S. D., Bowring, S., Shen, S. Z., 2014. High-Precision Timeline for Earth's Most Severe Extinction. Proceedings of the National Academy of Sciences, 111(9):3316-3321. https://doi.org/10.1073/pnas.1317692111
    Chen, B., Joachimski, M. M., Wang, X. D., et al., 2016. Ice Volume and Paleoclimate History of the Late Paleozoic Ice Age from Conodont Apatite Oxygen Isotopes from Naqing (Guizhou, China). Palaeogeog-raphy, Palaeoclimatology, Palaeoecology, 448:151-161. https://doi.org/10.1016/j.palaeo.2016.01.002
    Chen, J., Beatty, T. W., Henderson, C. M., et al., 2009. Conodont Biostratigraphy across the Permian-Triassic Boundary at the Dawen Section, Great Bank of Guizhou, Guizhou Province, South China:Implications for the Late Permian Extinction and Correlation with Meishan. Journal of Asian Earth Sciences, 36(6):442-458. https://doi.org/10.1016/j.jseaes.2008.08.002
    Chen, Z.-Q., Yang, H., Luo, M., et al., 2015. Complete Biotic and Sedimentary Records of the Permian-Triassic Transition from Meishan Section, South China:Ecologically Assessing Mass Extinction and Its Aftermath. Earth-Science Reviews, 149:67-107. https://doi.org/10.1016/j.earscirev.2014.10.005
    Clark, D. L., 1959. Conodonts from the Triassic of Nevada and Utah. Journal of Paleontology, 33(2):305-312
    Clarkson, M. O., Kasemann, S. A., Wood, R. A., et al., 2015. Ocean Acidification and the Permo-Triassic Mass Extinction. Science, 348(6231):229-232. https://doi.org/10.1126/science.aaa0193
    Ernst, R. E., Youbi, N., 2017. How Large Igneous Provinces Affect Global Climate, sometimes Cause Mass Extinctions, and Represent Natural Markers in the Geological Record. Palaeogeography, Palaeoclimatology, Palaeoecology, 478:30-52. https://doi.org/10.1016/j.palaeo.2017.03.014
    Ezaki, Y., Liu, J., Nagano, T., et al., 2008. Geobiological Aspects of the Earliest Triassic Microbialites along the Southern Periphery of the Tropical Yangtze Platform:Initiation and Cessation of a Microbial Re-gime. PALAIOS, 23(6):356-369. https://doi.org/10.2110/palo.2007.p07-035r
    Forel, M. B., Crasquin, S., Kershaw, S., et al., 2013. In the Aftermath of the End-Permian Extinction:The Microbialite Refuge?. Terra Nova, 25(2):137-143. https://doi.org/10.1111/ter.12017
    Foster, W. J., Danise, S., Price, G. D., et al., 2017. Subsequent Biotic Crises Delayed Marine Recovery Following the Late Permian Mass Extinction Event in Northern Italy. PLOS ONE, 12(3):e0172321. https://doi.org/10.1371/journal.pone.0172321
    Grasby, S. E., Beauchamp, B., Knies, J., 2016. Early Triassic Productivity Crises Delayed Recovery from World's Worst Mass Extinction. Geology, 44(9):779-782. https://doi.org/10.1130/g38141.1
    Hautmann, M., Bucher, H., Brühwiler, T., et al., 2011. An Unusually Diverse Mollusc Fauna from the Earliest Triassic of South China and Its Implications for Benthic Recovery after the End-Permian Biotic Crisis. Geobios, 44(1):71-85. https://doi.org/10.1016/j.geobios.2010.07.004
    He, W. H., Shi, G. R., Twitchett, R. J., et al., 2015. Late Permian Marine Ecosystem Collapse Began in Deeper Waters:Evidence from Brachiopod Diversity and Body Size Changes. Geobiology, 13(2):123-138. https://doi.org/10.1111/gbi.12119
    Huckriede, R., 1958. Die Conodonten Der Mediterranen Trias und Ihr Stratigraphischer Wert. Paläontologische Zeitschrift, 32(3/4):141-175 doi: 10.1007/BF02989028
    Jiang, H. S., Aldridge, R. J., Lai, X. L., et al., 2011. Phylogeny of the Conodont Genera Hindeodus and Isarcicella across the Permian-Triassic Boundary. Lethaia, 44(4):374-382. https://doi.org/10.1111/j.1502-3931.2010.00248.x
    Jiang, H. S., Joachimski, M. M., Wignall, P. B., et al., 2015. A Delayed End-Permian Extinction in Deep-Water Locations and Its Relationship to Temperature Trends (Bianyang, Guizhou Province, South China). Palaeogeography, Palaeoclimatology, Palaeoecology, 440:690-695. https://doi.org/10.1016/j.palaeo.2015.10.002
    Jiang, H. S., Lai, X. L., Luo, G. M., et al., 2007. Restudy of Conodont Zonation and Evolution across the P/T Boundary at Meishan Section, Changxing, Zhejiang, China. Global and Planetary Change, 55(1/2/3):39-55. https://doi.org/10.1016/j.gloplacha.2006.06.007
    Jiang, H. S., Lai, X. L., Sun, Y. D., et al., 2014. Permian-Triassic Conodonts from Dajiang (Guizhou, South China) and Their Implication for the Age of Microbialite Deposition in the Aftermath of the End-Permian Mass Extinction. Journal of Earth Science, 25(3):413-430. https://doi.org/10.1007/s12583-014-0444-4
    Joachimski, M. M., Lai, X., Shen, S., et al., 2012. Climate Warming in the Latest Permian and the Permian-Triassic Mass Extinction. Geology, 40(3):195-198. https://doi.org/10.1130/g32707.1
    Kershaw, S., Collin, P. Y., Crasquin, S., 2016. Comment to Lehrmann et al. New Sections and Observations from the Nanpanjiang Basin, South China. PALAIOS, 31(3):111-117. https://doi.org/10.2110/palo.2015.093
    Kozur, H., 1995. Some Remarks to the Conodonts Hindeodus and Isarcicella in the Latest Permian and Earliest Triassic. Palaeoworld, 6:64-77
    Kozur, H., 1996. The Conodonts Hindeodus, Isarcicella, Sweetohindeodus in the Uppermost Permian and Lowermost Triassic. Geologia Croatica, 49(1):81-116 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=Open J-Gate000002331318
    Kozur, H., Mostler, H., Rahimi-Yazd, A., 1975. Beiträge zur Mikrofauna Permotriadischer Schichtfolgen Teil Ⅱ:Neue Conodonten aus dem Oberperm und der Basalen Trias von Nord- und Zentraliran. Geol. Palaont. Mitt. Innsbruck, 5(3):1-23
    Kozur, H., Pjatakova, M., 1976. Die Conodontenart Anchignathodus parvus n.sp., eine wichtige Leiform der basalen Trias. Proceedings Koninkl Nederland Akademie van Wetenschappen, Series B, 79:123-128
    Krull, E. S., Lehrmann, D. J., Druke, D., et al., 2004. Stable Carbon Isotope Stratigraphy across the Permian-Triassic Boundary in Shallow Marine Carbonate Platforms, Nanpanjiang Basin, South China. Palaeogeog-raphy, Palaeoclimatology, Palaeoecology, 204(3/4):297-315. https://doi.org/10.1016/s0031-0182(03)00732-6
    Lehrmann, D. J., Bentz, J. M., Wood, T., et al., 2015. Environmental Controls on the Genesis of Marine Microbialites and Dissolution Surface Associated with the End-Permian Mass Extinction:New Sections and Observations from the Nanpanjiang Basin, South China. PALAIOS, 30(7):529-552. https://doi.org/10.2110/palo.2014.088
    Lehrmann, D. J., Minzoni, M., Li, X. W., et al., 2012. Lower Triassic Oolites of the Nanpanjiang Basin, South China:Facies Architecture, Giant Ooids, and Diagenesis-Implications for Hydrocarbon Reservoirs. AAPG Bulletin, 96(8):1389-1414. https://doi.org/10.1306/01231211148
    Lehrmann, D. J., Payne, J. L., Felix, S. V., et al., 2003. Permian-Triassic Boundary Sections from Shallow-Marine Carbonate Platforms of the Nanpanjiang Basin, South China:Implications for Oceanic Conditions Associated with the End-Permian Extinction and Its Aftermath. PALAIOS, 18(2):138-152. https://doi.org/10.1669/0883-1351(2003)18<138:pbsfsc>2.0.co;2 doi: 10.1669/0883-1351(2003)18<138:pbsfsc>2.0.co;2
    Li, F., Yan, J. X., Algeo, T., et al., 2013. Paleoceanographic Conditions Following the End-Permian Mass Extinction Recorded by Giant Ooids (Moyang, South China). Global and Planetary Change, 105:102-120. https://doi.org/10.1016/j.gloplacha.2011.09.009
    Li, F., Yan, J. X., Chen, Z. Q., et al., 2015. Global Oolite Deposits Across the Permian-Triassic Boundary:A Synthesis and Implications for Palaeoceanography Immediately after the End-Permian Biocrisis. Earth-Science Reviews, 149:163-180. https://doi.org/10.1016/j.earscirev.2014.12.006
    Li, Z. S., Zhan L. P., Dai, J. Y., et al., 1989. Study on the Permian-Triassic Biostratigraphy and Event Stratigraphy of Northern Sichuan and Southern Shaanxi. Geological Memoirs Vol. 9. Geological Publishing House, Beijing. 448 (in Chinese)
    Liu, J. B., Ezaki, Y., Yang, S. R., et al., 2007. Age and Sedimentology of Microbialites after the End-Permian Mass Extinction in Luodian, Gui-zhou Province. Journal of Palaeogeography, 9(5):473-486 (in Chinese with English Abstract)
    Luo, G. M., Kump, L. R., Wang, Y. B., et al., 2010. Isotopic Evidence for an Anomalously Low Oceanic Sulfate Concentration Following End-Permian Mass Extinction. Earth and Planetary Science Letters, 300(1/2):101-111. https://doi.org/10.1016/j.epsl.2010.09.041
    Nicoll, R. S., Metcalfe, I., Wang, C. Y., 2002. New Species of the Conodont Genus Hindeodus and the Conodont Biostratigraphy of the Permi-an-Triassic Boundary Interval. Journal of Asian Earth Sciences, 20(6):609-631. https://doi.org/10.1016/s1367-9120(02)00021-4
    Orchard, M. J., Nassichuk, W. W., Rui, L., 1994. Conodonts from the Lower Griesbachian Otoceras Latilobatum Bed of Selong, Tibet and the Posi-tion of the Permian-Triassic boundary. Memoir-Canadian Society of Petroleum Geologists, 17:823-843
    Payne, J. L., Lehrmann, D. J., Follett, D., et al., 2007. Erosional Truncation of Uppermost Permian Shallow-Marine Carbonates and Implications for Permian-Triassic Boundary Events. Geological Society of America Bulletin, 119(7/8):771-784. https://doi.org/10.1130/b26091.1
    Perri, M. C., Farabegoli, F., 2003. Conodonts across the Permian-Triassic Boundary in the Southern Alps. In: Mawson, R., Talent, J. A., eds., Contributions to the Second Australian Conodont Symposium. Courier Forschungsinstitut Senckenberg Series, 281-313
    Regional Geological Survey Team of the Guangxi Zhuang Autonomous Region Geological Bureau, 1974. 1: 20 000 Regional Geological Survey Report of the People's Republic of China: Baise Map and Delong Map, Geological Part. Guangxi Zhuang Autonomous Region Geological Bureau, Yishan. 1-188 (in Chinese)
    Shen, S. Z., Cao, C. Q., Zhang, H., et al., 2013. High-Resolution δ13Ccarb Chemostratigraphy from Latest Guadalupian through Earliest Triassic in South China and Iran. Earth and Planetary Science Letters, 375:156-165. https://doi.org/10.1016/j.epsl.2013.05.020
    Shen, S. Z., Crowley, J. L., Wang, Y., et al., 2011. Calibrating the End-Permian Mass Extinction. Science, 334(6061):1367-1372. https://doi.org/10.1126/science.1213454
    Shen, S. Z., Ramezani, J., Chen, J., et al., 2018. A Sudden End-Permian Mass Extinction in South China. GSA Bulletin. https: //doi.org/10.1130/b31909.1
    Song, H. J., Tong, J. N., Xiong, Y. L., et al., 2012. The Large Increase of δ13Ccarb-Depth Gradient and the End-Permian Mass Extinction. Science China Earth Sciences, 55(7):1101-1109. https://doi.org/10.1007/s11430-012-4416-1
    Song, H. J., Wignall, P. B., Chu, D. L., et al., 2014. Anoxia/High Temperature Double Whammy during the Permian-Triassic Marine Crisis and Its Aftermath. Scientific Reports, 4(1):4132. https://doi.org/10.1038/srep04132
    Song, H. J., Wignall, P. B., Tong, J. N., et al., 2013. Two Pulses of Extinction during the Permian-Triassic Crisis. Nature Geoscience, 6(1):52-56. https://doi.org/10.1038/ngeo1649
    Sun, H., Xiao, Y. L., Gao, Y. J., et al., 2018. Rapid Enhancement of Chemical Weathering Recorded by Extremely Light Seawater Lithium Isotopes at the Permian-Triassic Boundary. Proceedings of the National Academy of Sciences, 115(15):3782-3787. https://doi.org/10.1073/pnas.1711862115
    Sun, Y. D., Joachimski, M. M., Wignall, P. B., et al., 2012. Lethally Hot Temperatures during the Early Triassic Greenhouse. Science, 338(6105):366-370. https://doi.org/10.1126/science.1224126
    Tian, L., Bottjer, D. J., Tong, J. N., et al., 2015. Distribution and Size Variation of Ooids in the Aftermath of the Permian-Triassic Mass Extinction. PALAIOS, 30(9):714-727. https://doi.org/10.2110/palo.2014.110
    Wang, C. Y., 1996. Conodont Evolutionary Lineage and Zonation for the Latest Permian and the Earliest Triassic. Permophiles, 29:30-37
    Wang, L. N., Wignall, P. B., Wang, Y. B., et al., 2016. Depositional Conditions and Revised Age of the Permo-Triassic Microbialites at Gaohua Section, Cili County (Hunan Province, South China). Palaeogeography, Palaeoclimatology, Palaeoecology, 443:156-166. https://doi.org/10.1016/j.palaeo.2015.11.032
    Wang, Y. B., Meng, Z., Liao, W., et al., 2011. Shallow Marine Ecosystem Feedback to the Permian/Triassic Mass Extinction. Frontiers of Earth Science, 5(1):14-22. https://doi.org/10.1007/s11707-011-0164-3
    Wang, Y., Sadler, P. M., Shen, S. Z., et al., 2014. Quantifying the Process and Abruptness of the End-Permian Mass Extinction. Paleobiology, 40(1):113-129. https://doi.org/10.1666/13022
    Wignall, P. B., 2015. The Worst of Times:How Life on Earth Survived Eighty Million Years of Extinctions. Princeton University Press, Princeton. 224. https://doi.org/10.1515/9781400874248
    Wignall, P. B., Hallam, A., 1996. Facies Change and the End-Permian Mass Extinction in S.E. Sichuan, China. PALAIOS, 11(6):587-596. https://doi.org/10.2307/3515193
    Wignall, P. B., Kershaw, S., Collin, P. Y., et al., 2009. Erosional Truncation of Uppermost Permian Shallow-Marine Carbonates and Implications for Permian-Triassic Boundary Events:Comment. Geological Society of America Bulletin, 121(5/6):954-956. https://doi.org/10.1130/b26424.1
    Wu, H. C., Zhang, S. H., Hinnov, L. A., et al., 2013. Time-Calibrated Milankovitch Cycles for the Late Permian. Nature Communications, 4(1):2452. https://doi.org/10.1038/ncomms3452
    Xiang, L., Schoepfer, S. D., Zhang, H., et al., 2016. Oceanic Redox Evolu-tion across the End-Permian Mass Extinction at Shangsi, South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 448:59-71. https://doi.org/10.1016/j.palaeo.2015.10.046
    Yan, C. B., Wang, L. N., Jiang, H. S., et al., 2013. Uppermost Permian to Lower Triassic Conodonts at Bianyang Section, Guihzou Province, South China. PALAIOS, 28(8):509-522. https://doi.org/10.2110/palo.2012.p12-077r
    Yang, B., Lai, X. L., Wignall, P. B., et al., 2012. A Newly Discovered Earliest Triassic Chert at Gaimao Section, Guizhou, Southwestern China. Palaeogeography, Palaeoclimatology, Palaeoecology, 344/345:69-77. https://doi.org/10.1016/j.palaeo.2012.05.019
    Yin, H. F., Jiang, H. S., Xia, W. C., et al., 2014. The End-Permian Regression in South China and Its Implication on Mass Extinction. Earth-Science Reviews, 137:19-33. https://doi.org/10.1016/j.earscirev.2013.06.003
    Yin, H. F., Xie, S. C., Luo, G. M., et al., 2012. Two Episodes of Environmental Change at the Permian-Triassic Boundary of the GSSP Section Meishan. Earth-Science Reviews, 115(3):163-172. https://doi.org/10.1016/j.earscirev.2012.08.006
    Yin, H. F., Zhang, K. X., Tong, J. N., et al., 2001. The Global Stratotype Section and Point (GSSP) of the Permian-Triassic Boundary. Episodes, 24(2):102-114 http://d.old.wanfangdata.com.cn/Periodical/zggdxxxswz-dqkx200702001
    Yuan, J. L., Jiang, H. S., Wang, D. C., 2015. LST:A New Inorganic Heavy Liquid Used in Conodont Separation. Geological Science and Tech-nology Information, 34(5):225-230 (in Chinese with English Abstract) http://d.old.wanfangdata.com.cn/Periodical/gpxygpfx201301045
    Zhang, K. X., Tong, J. N., Lai, X. L., et al., 2009. Progress on Study of Conodont Sequence for the GSSP Section at Meishan, Changxing, Zhejiang Province, South China. Acta Palaeontologica Sinica, 48(3):474-486 (in Chinese with English Abstract)
    Zhang, N., Jiang, H. S., Zhong, W. L., et al., 2014. Conodont Biostratigraphy across the Permian-Triassic Boundary at the Xinmin Section, Guizhou, South China. Journal of Earth Science, 25(5):779-786. https://doi.org/10.1007/s12583-014-0472-0
    Zhao, X. M., Tong, J. N., Yao, H. Z., et al., 2008. Anachronistic Facies in the Lower Triassic of South China and Their Implications to the Ecosystems during the Recovery Time. Science in China Series D:Earth Sciences, 51(11):1646-1657. https://doi.org/10.1007/s11430-008-0128-y
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)

    Article Metrics

    Article views(584) PDF downloads(21) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return