Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 30 Issue 5
Oct 2019
Turn off MathJax
Article Contents
Siyuan Ma, Chong Xu. Applicability of Two Newmark Models in the Assessment of Coseismic Landslide Hazard and Estimation of Slope-Failure Probability: An Example of the 2008 Wenchuan Mw7.9 Earthquake Affected Area. Journal of Earth Science, 2019, 30(5): 1020-1030. doi: 10.1007/s12583-019-0874-0
Citation: Siyuan Ma, Chong Xu. Applicability of Two Newmark Models in the Assessment of Coseismic Landslide Hazard and Estimation of Slope-Failure Probability: An Example of the 2008 Wenchuan Mw7.9 Earthquake Affected Area. Journal of Earth Science, 2019, 30(5): 1020-1030. doi: 10.1007/s12583-019-0874-0

Applicability of Two Newmark Models in the Assessment of Coseismic Landslide Hazard and Estimation of Slope-Failure Probability: An Example of the 2008 Wenchuan Mw7.9 Earthquake Affected Area

doi: 10.1007/s12583-019-0874-0
More Information
  • Corresponding author: Chong Xu
  • Received Date: 20 Apr 2019
  • Accepted Date: 13 Jul 2019
  • Publish Date: 01 Oct 2019
  • This paper presents the landslide hazard assessment and slope-failure function using two Newmark displacement models regressed by regional and global station records. Taking the 2008 Wenchuan Mw7.9 earthquake area as an example, based on the topographic and geological data of the study area, we prepared a factor-of-safety (Fs) map and a critical acceleration (ac) map, respectively. Then using these two simplified Newmark models, two displacement maps were compiled by combining the ac map and peak ground acceleration (PGA) map. By virtue of the actual landslide inventory of the Wenchuan earthquake, we constructed the slope-failure probability curves of the two Newmark models. The results show that the abilities to predict landslide occurrence of the two simplified Newmark models are largely identical, by which the assessment results can well delineate the macroscopic distribution of coseismic landslides, and most predicted landslide cells are distributed on the two sides of the Beichuan-Yingxiu fault, especially Pengguan complex rock mass in the hanging wall of this fault. The probability equations of two Newmark models are roughly the same, though the parameters vary slightly. The probability equation proposed in this paper can be applied to the Wenchuan region and other areas with similar tectonic environments.

     

  • loading
  • Bojadjieva, J., Sheshov, V., Bonnard, C., 2018. Hazard and Risk Assessment of Earthquake-Induced Landslides—Case Study. Landslides, 15(1): 161–171. https://doi.org/10.1007/s10346-017-0905-9
    Bray, J. D., 2007. Simplified Procedure for Estimating Earthquake-Induced Deviatoric Slope Displacements. Journal of Geotechnical and Geoenvironmental Engineering, 133: 381–392 doi: 10.1061/(ASCE)1090-0241(2007)133:4(381)
    Chen, X. L., Liu, C. G., Yu, L., et al., 2014a. Critical Acceleration as a Criterion in Seismic Landslide Susceptibility Assessment. Geomorphology, 217: 15–22. https://doi.org/10.1016/j.geomorph.2014.04.011
    Chen, X. L., Yuan, R. M., Yu, L., 2014b. Applying the Newmark's Model of the Assessment of Earthquake-Triggered Landslides during the Lushan Earthquake. Seismology and Gelogy, 35(3): 661–670 (in Chinese with English Abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzdz201303019
    Chousianitis, K., Del Gaudio, V., Kalogeras, I., et al., 2014. Predictive Model of Arias Intensity and Newmark Displacement for Regional Scale Evaluation of Earthquake-Induced Landslide Hazard in Greece. Soil Dynamics and Earthquake Engineering, 65: 11–29. https://doi.org/10.1016/j.soildyn.2014.05.009
    Cui, S., Pei, X., Wang, G., et al., 2010. Initiation of a Large Landslide Triggered by Wenchuan Earthquake Based on Ring Shear Tests. Chinese Journal of Geotechnical Engineering, 39(12): 2268–2277 (in Chinese with English Abstract) http://d.old.wanfangdata.com.cn/Periodical/ytgcxb201712016
    Dai, F. C., Xu, C., Yao, X., et al., 2011. Spatial Distribution of Landslides Triggered by the 2008 Ms 8.0 Wenchuan Earthquake, China. Journal of Asian Earth Sciences, 40(4): 883–895. https://doi.org/10.1016/j.jseaes.2010.04.010
    Deng, Q. D., 2007. Chinese Active Tectonic Map. Seismological Press, Beijing (in Chinese)
    Di, B. F., Stamatopoulos, C. A., Dandoulaki, M., et al., 2016. A Method Predicting the Earthquake-Induced Landslide Risk by Back Analyses of Past Landslides and Its Application in the Region of the Wenchuan 12/5/2008 Earthquake. Natural Hazards, 85(2): 903–927. https://doi.org/10.1007/s11069-016-2611-7
    Dreyfus, D. K., 2011. A Comparison of Methodologies Used to Predict Earthquake-Induced Landslides: [Dissertation]. University of Texas, Texas
    Dreyfus, D. K., Rathje, E. M., Jibson, R. W., 2013. The Influence of Different Simplified Sliding-Block Models and Input Parameters on Regional Predictions of Seismic Landslides Triggered by the Northridge Earthquake. Engineering Geology, 163: 41–54. https://doi.org/10.1016/j.enggeo.2013.05.015
    Gallen, S. F., Clark, M. K., Godt, J. W., et al., 2017. Application and Evaluation of a Rapid Response Earthquake-Triggered Landslide Model to the 25 April 2015 Mw 7.8 Gorkha Earthquake, Nepal. Tectonophysics, 714/715: 173–187. https://doi.org/10.1016/j.tecto.2016.10.031
    Ge, H., Chen, Q. G., Wang, D. W., 2013. The Assessment and Mapping of Seismic Landslide Hazards: A Case Study of Yingxiu Area, Sichuan Province. Geology in China, 2: 644–652 (in Chinese with English Abstract) http://cn.bing.com/academic/profile?id=2a1f0ce5ff0719feec1362f2c7501eb3&encoded=0&v=paper_preview&mkt=zh-cn
    Godt, J. W., Sener, B., Verdin, K. L., et al., 2008. Rapid Assessment of Earthquake-Induced Landsliding. In: Proceedings of the First World Landslide Forum, Tokyo
    Harp, E. L., Jibson, R. W., 1996. Inventory of Landslides Triggered by the 1994 Northridge, California Earthquake. Bulletin of the Seismological Society of America, 86(1): S319–S332. https://doi.org/10.3133/ofr95213
    Hsieh, S. Y., Lee, C. T., 2011. Empirical Estimation of the Newmark Displacement from the Arias Intensity and Critical Acceleration. Engineering Geology, 122(1/2): 34–42. https://doi.org/10.1016/j.enggeo.2010.12.006
    Huang, R. Q., Li, W. L., 2009. Analysis of the Geo-Hazards Triggered by the 12 May 2008 Wenchuan Earthquake, China. Bulletin of Engineering Geology and the Environment, 68(3): 363–371. https://doi.org/10.1007/s10064-009-0207-0
    Jasper, J. C., Cook, N. G. W., 1969. Fundamentals of Rock Mechanics. Methuen and Company, London. 513
    Jibson, R. W., 1993. Predicting Earthquake-Induced Landslide Displacements Using Newmark's Sliding Block Analysis. Transportation Research Record, 1411: 9–17 http://cn.bing.com/academic/profile?id=8c6346df766358525a8bd7debbe2b652&encoded=0&v=paper_preview&mkt=zh-cn
    Jibson, R. W., Harp, E. L., Michael, J. A., 2000. A Method for Producing Digital Probabilistic Seismic Landslide Hazard Maps. Engineering Geology, 58(3/4): 271–289. https://doi.org/10.1016/s0013-7952(00)00039-9
    Jibson, R. W., 2007. Regression Models for Estimating Coseismic Landslide Displacement. Engineering Geology, 91(2/3/4): 209–218. https://doi.org/10.1016/j.enggeo.2007.01.013
    Jibson, R. W., Harp, E. L., Michael, J. A., 1998. A Method for Producing Digital Probabilistic Seismic Landslide Hazard Maps: An Example from the Los Angeles, California Area. Open-File Report, California
    Jibson, R. W., Michael, J. A., 2009. Maps Showing Seismic Landslide Hazards in Anchorage, Alaska. U.S. Geological Survey Scientific Investigations Map 3077: 2 Sheets (Scale 1 : 25 000). 11
    Jibson, R. W., 2011. Methods for Assessing the Stability of Slopes during Earthquakes—A Retrospective. Engineering Geology, 122(1/2): 43–50. https://doi.org/10.1016/j.enggeo.2010.09.017
    Jibson, R. W., Rathje, E. M., Jibson, M. W., et al., 2013. SLAMMER: Seismic Landslide Movement Modeled Using Earthquake Records. Geologic Hazards Science Center, USGS, Reston Virginia
    Kargel, J. S., Leonard, G. J., Shugar, D. H., et al., 2016. Geomorphic and Geologic Controls of Geohazards Induced by Nepals 2015 Gorkha Earthquake. Science, 351(6269): aac8353–aac8353. https://doi.org/10.1126/science.aac8353
    Keefer, D. K., 1984. Landslides Caused by Earthquakes. Geological Society of America Bulletin, 95(4): 406 doi: 10.1130/0016-7606(1984)95<406:LCBE>2.0.CO;2
    Li, X. J., Liu, L., Wang, Y. S., et al., 2010. Analysis of Horizontal Strong-Motion Attenuation in the Great 2008 Wenchuan Earthquake. Bulletin of the Seismological Society of America, 100(5B): 2440–2449. https://doi.org/10.1785/0120090245
    Liu, H. B., Ling, H. I., 2012. Seismic Responses of Reinforced Soil Retaining Walls and the Strain Softening of Backfill Soils. International Journal of Geomechanics, 12(4): 351–356. https://doi.org/10.1061/(asce)gm.1943-5622.0000051
    Liu, J. M., Wang, T., Shi, J. S., et al., 2017. Emergency Rapid Assessment of Landslides Induced by the Jiuzhaigou Ms 7.0 earthquake, Sichuan, China. Journal of Geomechnics, (5): 639–645 (in Chinese with English Abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzlxxb201705001
    Ma, S. Y., Xu, C., 2019. Assessment of Co-Seismic Landslide Hazard Using the Newmark Model and Statistical Analyses: A Case Study of the 2013 Lushan, China, Mw 6.6 Earthquake. Natural Hazards, 96(1): 389–412. https://doi.org/10.1007/s11069-018-3548-9
    McCrink, T. P., 2001. Regional Earthquake-Induced Landslide Mapping Using Newmark Displacement Criteria. San Cruz County, California. 77–92
    Meehan, C. L., Vahedifard, F., 2013. Evaluation of Simplified Methods for Predicting Earthquake-Induced Slope Displacements in Earth Dams and Embankments. Engineering Geology, 152(1): 180–193. https://doi.org/10.1016/j.enggeo.2012.10.016
    Miles, S. B., Ho, C. L., 1999. Rigorous Landslide Hazard Zonation Using Newmark's Method and Stochastic Ground Motion Simulation. Soil Dynamics and Earthquake Engineering, 18(4): 305–323. https://doi.org/10.1016/s0267-7261(98)00048-7
    Ministry of Construction of the People's Republic of China, 2009. Code for Geotechnical Engineering Investigation GB 50021-2001(2009). National Bureau of Quality Inspection, Beijing (in Chinese)
    Ministry of Water Resources of the People's Republic of China, 2014. Standard for Engineering Classification of Rock Masses GB/T 50218-2014. Standards Press of China, Beijing (in Chinese)
    Newmark, N. M., 1965. Effects of Earthquakes on Dams and Embankments. Géotechnique, 15(2): 139–160. https://doi.org/10.1680/geot.1965.15.2.139
    Nowicki Jessee, M. A., Hamburger, M. W., Allstadt, K., et al., 2018. A Global Empirical Model for Near-Real-Time Assessment of Seismically Induced Landslides. Journal of Geophysical Research: Earth Surface, 123(8): 1835–1859. https://doi.org/10.1029/2017jf004494
    Rao, G., Cheng, Y. L., Lin, A. M., et al., 2017. Relationship between Landslides and Active Normal Faulting in the Epicentral Area of the AD 1556 M~8.5 Huaxian Earthquake, SE Weihe Graben (Central China). Journal of Earth Science, 28(3): 545–554. https://doi.org/10.1007/s12583-017-0900-z
    Romeo, R., 2000. Seismically Induced Landslide Displacements: A Predictive Model. Engineering Geology, 58(3/4): 337–351. https://doi.org/10.1016/s0013-7952(00)00042-9
    Robinson, T. R., Rosser, N. J., Davies, T. R. H., et al., 2018. Near-Real-Time Modeling of Landslide Impacts to Inform Rapid Response: An Example from the 2016 Kaikōura, New Zealand, Earthquake. Bulletin of the Seismological Society of America, 108(3B): 1665–1682. https://doi.org/10.1785/0120170234
    Saygili, G., Rathje, E. M., 2008. Empirical Predictive Models for Earthquake-Induced Sliding Displacements of Slopes. Journal of Geotechnical and Geoenvironmental Engineering, 134(6): 790–803. https://doi.org/10.1061/(asce)1090-0241(2008)134:6(790)
    Shao, X. Y., Ma, S. Y., Xu, C., et al., 2019. Planet Image-Based Inventorying and Machine Learning-Based Susceptibility Mapping for the Landslides Triggered by the 2018 Mw 6.6 Tomakomai, Japan Earthquake. Remote Sensing, 11(8): 978. https://doi.org/10.3390/rs11080978
    Sharifi-Mood, M., Olsen, M. J., Gillins, D. T., et al., 2017. Performance-Based, Seismically-Induced Landslide Hazard Mapping of Western Oregon. Soil Dynamics and Earthquake Engineering, 103: 38–54. https://doi.org/10.1016/j.soildyn.2017.09.012
    Sun, P., Wang, F., Yin, Y., et al., 2010. An Experimental Study on the Mechanism of Rapid and Long Run-out Landslide Triggered by Wenchuan Earthquake. Seismology and Geology, 32(1): 98–106 (in Chinese with English Abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzdz201001010
    Tang, C., Qi, X., Ding, J., et al., 2010. Dynamic Analysis on Rainfall-Induced Landslide Activity in High Seismic Intensity Areas of the Wenchuan Earthquake Using Remote Sensing Image. Earth Science––Journal of China University o f Geosciences, 35(2): 317–323 (in Chinese with English Abstract) doi: 10.3799/dqkx.2010.033
    Tian, Y. Y., Xu, C., Xu, X. W., et al., 2016. Detailed Inventory Mapping and Spatial Analyses to Landslides Induced by the 2013 Ms 6.6 Minxian Earthquake of China. Journal of Earth Science, 27(6): 1016–1026. https://doi.org/10.1007/s12583-016-0905-z
    USGS, 2008. (2019/03/18). https://earthquake.usgs.gov/earthquakes/eventpage/usp000g650#finite-fault
    Wang, G. H., Huang, R. Q., Lourenço, S. D. N., et al., 2014. A Large Landslide Triggered by the 2008 Wenchuan (M8.0) Earthquake in Donghekou Area: Phenomena and Mechanisms. Engineering Geology, 182: 148–157. https://doi.org/10.1016/j.enggeo.2014.07.013
    Wang, T., Wu, S. R., Shi, J. S., et al., 2013. Case Study on Rapid Assessment of Regional Seismic Landslide Hazard Based on Simplified Newmark Displacement Model: Wenchuan Ms 8.0 Earthquake. Journal of Engineering Geology, 21(1): 16–24 http://en.cnki.com.cn/Article_en/CJFDTotal-GCDZ201301004.htm
    Wen, Z., Xie, J., Gao, M., et al., 2010. Near-Source Strong Ground Motion Characteristics of the 2008 Wenchuan Earthquake. Bulletin of the Seismological Society of America, 100(5B): 2425–2439. https://doi.org/10.1785/0120090266
    Wilson, R. C., Keefer, D. K., 1983. Dynamic Analysis of a Slope Failure from the 6 August 1979 Coyote Lake, California, Earthquake. Bulletin of the Deismological Society of America, 73(3): 863–877 http://cn.bing.com/academic/profile?id=2c0e476d67212da1426ff218b73dee9b&encoded=0&v=paper_preview&mkt=zh-cn
    Xu, C., Xu, X. W., Dai, F. C., et al., 2013a. Application of an Incomplete Landslide Inventory, Logistic Regression Model and Its Validation for Landslide Susceptibility Mapping Related to the May 12, 2008 Wenchuan Earthquake of China. Natural Hazards, 68(2): 883–900. https://doi.org/10.1007/s11069-013-0661-7
    Xu, C., Xu, X. W., Yao, Q., et al., 2013b. GIS-Based Bivariate Statistical Modelling for Earthquake-Triggered Landslides Susceptibility Mapping Related to the 2008 Wenchuan Earthquake, China. Quarterly Journal of Engineering Geology and Hydrogeology, 46(2): 221–236. https://doi.org/10.1144/qjegh2012-006
    Xu, C., Xu, X. W., Yao, X., et al., 2014. Three (nearly) Complete Inventories of Landslides Triggered by the May 12, 2008 Wenchuan Mw 7.9 Earthquake of China and Their Spatial Distribution Statistical Analysis. Landslides, 11(3): 441–461. https://doi.org/10.1007/s10346-013-0404-6
    Xu, C., Xu, X. W., Tian, Y. Y., et al., 2016. Two Comparable Earthquakes Produced Greatly Different Coseismic Landslides: The 2015 Gorkha, Nepal and 2008 Wenchuan, China Events. Journal of Earth Science, 27(6): 1008–1015. https://doi.org/10.1007/s12583-016-0684-6
    Xu, C., Ma, S. Y., Tan, Z. B., et al., 2018. Landslides Triggered by the 2016 Mj 7.3 Kumamoto, Japan, Earthquake. Landslides, 15(3): 551–564. https://doi.org/10.1007/s10346-017-0929-1
    Xu, G. X., Yao, L. K., Li, C. H., et al., 2012. Predictive Models for Permanent Displacement of Slopes Based on Recorded Strong-Motion Data of Wenchuan Earthquake. Chinese Journal of Geotechnical Engineering, 34(6): 1131–1136 (in Chinese with English Abstract) http://cn.bing.com/academic/profile?id=b64b637830c0332ddec5d7024975ad64&encoded=0&v=paper_preview&mkt=zh-cn
    Xu, L., Dai, F., Min, H., et al., 2010. Loess Landslide Types and Topographic Features at South Jingyang Plateau, China. Earth Science––Journal of China University o f Geosciences, 35(1): 155–160 (in Chinese with English Abstract) doi: 10.3799/dqkx.2010.016
    Xu, X. W., Wen, X. Z., Yu, G. H., et al., 2009. Coseismic Reverse- and Oblique-Slip Surface Faulting Generated by the 2008 Mw 7.9 Wenchuan Earthquake, China. Geology, 37(6): 515–518. https://doi.org/10.1130/g25462a.1
    Yin, Y. P., Wang, F. W., Sun, P., 2009. Landslide Hazards Triggered by the 2008 Wenchuan Earthquake, Sichuan, China. Landslides, 6(2): 139–152. https://doi.org/10.1007/s10346-009-0148-5
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(1)

    Article Metrics

    Article views(433) PDF downloads(13) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return