Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 30 Issue 3
Jun 2019
Turn off MathJax
Article Contents
Zhengbin Gou, Xin Dong, Baodi Wang. Petrogenesis and Tectonic Implications of the Paiku Leucogranites, Northern Himalaya. Journal of Earth Science, 2019, 30(3): 525-534. doi: 10.1007/s12583-019-1219-8
Citation: Zhengbin Gou, Xin Dong, Baodi Wang. Petrogenesis and Tectonic Implications of the Paiku Leucogranites, Northern Himalaya. Journal of Earth Science, 2019, 30(3): 525-534. doi: 10.1007/s12583-019-1219-8

Petrogenesis and Tectonic Implications of the Paiku Leucogranites, Northern Himalaya

doi: 10.1007/s12583-019-1219-8
More Information
  • Corresponding author: Xin Dong
  • Received Date: 25 Nov 2018
  • Accepted Date: 28 Mar 2019
  • Publish Date: 01 Jun 2019
  • The Himalayan leucogranites provide insights into the partial melting behavior of relatively deeper crustal rocks and tectono-magmatic history of the Himalayan Orogen. The Paiku leucogranites of northern Himalaya can be subdivided into two-mica leucogranite (TML), garnet-bearing leucogranite (GL), cordierite-bearing leucogranite (CL), and tourmaline-bearing leucogranite (TL). All of them are high-K, peraluminous, calc-alkalic to alkali-calcic rocks. They are enriched in light rare earth elements (LREE) and large ion lithophile elements (LILE), and show pronounced negative anomalies of Sr, Ba, K and Ti, but positive anomalies of Nb and Rb. LA-ICP-MS U-Pb zircon dating of one TML, one GL, and two CL samples yielded variable 206Pb/238U ages ranging from 23.6 to 16.1 Ma, indicating the Paiku leucogranites underwent a low degree of partial melting process. Combining with previous studies, we suggest the Paiku leucogranites were derived from partial melting of metasedimentary rocks of the Higher Himalayan Sequence (HHS). The GL and TL mainly resulted from the muscovite-dehydration melting, whereas the TML and CL were mainly derived from the biotite-dehydration melting. Finally, it is concluded that the Paiku leucogranites were probably formed during the subduction of the Indian crust.

     

  • loading
  • Andersen, T., 2002. Correction of Common Lead in U-Pb Analyses that do not Report 204Pb. Chemical Geology, 192(1/2): 59–79. doi: 10.1016/s0009-2541(02)00195-x
    Aikman, A. B., Harrison, T. M., Hermann, J., 2012. Age and Thermal History of Eo- and Neohimalayan Granitoids, Eastern Himalaya. Journal of Asian Earth Sciences, 51: 85–97. doi: 10.1016/j.jseaes.2012.01.011
    Aoya, M., Wallis, S. R., Terada, K., et al., 2005. North-South Extension in the Tibetan Crust Triggered by Granite Emplacement. Geology, 33(11): 853–856. doi: 10.1130/g21806.1
    Booth, A. L., Zeitler, P., Kidd, W., et al., 2004. U-Pb Zircon Constraints on the Tectonic Evolution of Southeastern Tibet, Namche Barwa Area. American Journal of Science, 304(10): 889–929. doi: 10.2475/ajs.304.10.889
    Braun, I., Raith, M., Kumar, G. R. R., 1996. Dehydration-Melting Phenomena in Leptynitic Gneisses and the Generation of Leucogranites: A Case Study from the Kerala Khondalite Belt, Southern India. Journal of Petrology, 37(6): 1285–1305. doi: 10.1093/petrology/37.6.1285
    Burchfiel, B. C., Royden, L. H., 1985. North-South Extension within the Convergent Himalayan Region. Geology, 13(10): 679–682. doi: 10.1130/0091-7613(1985)13 < 679:newtch > 2.0.co; 2
    Clemens, J. D., Vielzeuf, D., 1987. Constraints on Melting and Magma Production in the Crust. Earth and Planetary Science Letters, 86(2/3/4): 287–306. doi: 10.1016/0012-821x(87)90227-5
    Clemens, J. D., Stevens, G., 2015. Comment on 'Water-Fluxed Melting of the Continental Crust: A Review' by R. F. Weinberg and P. Hasalová. Lithos, 234/235: 100–101. doi: 10.1016/j.lithos.2015.06.032
    Deniel, C., Vidal, P., Fernandez, A., et al., 1987. Isotopic Study of the Manaslu Granite (Himalaya, Nepal): Inferences on the Age and Source of Himalayan Leucogranites. Contributions to Mineralogy and Petrology, 96(1): 78–92. doi: 10.1007/bf00375529
    Ding, L., Kapp, P., Wan, X. Q., 2005. Paleocene–Eocene Record of Ophiolite Obduction and Initial India-Asia Collision, South Central Tibet. Tectonics, 24(3): 1–18. doi: 10.1029/2004tc001729
    Edwards, M. A., Harrison, T. M., 1997. When did the Roof Collapse? Late Miocene North-South Extension in the High Himalaya Revealed by Th-Pb Monazite Dating of the Khula Kangri Granite. Geology, 25(6): 543–546. doi: 10.1130/0091-7613(1997)025 < 0543:wdtrcl > 2.3.co; 2
    Frost, B. R., Barnes, C. G., Collins, W. J., et al., 2001. A Geochemical Classification for Granitic Rocks. Journal of Petrology, 42(11): 2033–2048. doi: 10.1093/petrology/42.11.2033
    Gao, L. E., Zeng, L. S., 2014. Fluxed Melting of Metapelite and the Formation of Miocene High-CaO Two-Mica Granites in the Malashan Gneiss Dome, Southern Tibet. Geochimica et Cosmochimica Acta, 130: 136–155. doi: 10.1016/j.gca.2014.01.003
    Gao, L. E., Zeng, L. S., Hou, K. J., et al., 2013. Episodic Crustal Anatexis and the Formation of Paiku Composite Leucogranitic Pluton in the Malashan Gneiss Dome, Southern Tibet. Chinese Science Bulletin, 58(28/29): 3546–3563. doi: 10.1007/s11434-013-5792-4
    Gao, L. E., Zeng, L. S., Xie, K. J., 2011. Eocene High Grade Metamorphism and Crustal Anatexis in the North Himalaya Gneiss Domes, Southern Tibet. Chinese Science Bulletin, 57(36): 3078–3090 (in Chinese)
    Gou, Z. B., Zhang, Z. M., Dong, X., et al., 2016. Petrogenesis and Tectonic Implications of the Yadong Leucogranites, Southern Himalaya. Lithos, 256/257: 300–310. doi: 10.1016/j.lithos.2016.04.009
    Groppo, C., Rubatto, D., Rolfo, F., et al., 2010. Early Oligocene Partial Melting in the Main Central Thrust Zone (Arun Valley, Eastern Nepal Himalaya). Lithos, 118(3/4): 287–301. doi: 10.1016/j.lithos.2010.05.003
    Groppo, C., Rolfo, F., Indares, A., 2012. Partial Melting in the Higher Himalayan Crystallines of Eastern Nepal: The Effect of Decompression and Implications for the 'Channel Flow' Model. Journal of Petrology, 53(5): 1057–1088. doi: 10.1093/petrology/egs009
    Guillot, S., Le Fort, P., Pêcher, A., et al., 1995. Contact Metamorphism and Depth of Emplacement of the Manaslu Granite (Central Nepal). Implications for Himalayan Orogenesis. Tectonophysics, 241(1/2): 99–119. doi: 10.1016/0040-1951(94)00144-x
    Guillot, S., Le Fort, P., 1995. Geochemical Constraints on the Bimodal Origin of High Himalayan Leucogranites. Lithos, 35(3/4): 221–234. doi: 10.1016/0024-4937(94)00052-4
    Guilmette, C., Indares, A., Hébert, R., 2011. High-Pressure Anatectic Paragneisses from the Namche Barwa, Eastern Himalayan Syntaxis: Textural Evidence for Partial Melting, Phase Equilibria Modeling and Tectonic Implications. Lithos, 124(1/2): 66–81. doi: 10.1016/j.lithos.2010.09.003
    Guo, Z. F., Wilson, M., 2012. The Himalayan Leucogranites: Constraints on the Nature of Their Crustal Source Region and Geodynamic Setting. Gondwana Research, 22(2): 360–376. doi: 10.1016/j.gr.2011.07.027
    Harris, N., Inger, S., 1992. Trace Element Modelling of Pelite-Derived Granites. Contributions to Mineralogy and Petrology, 110(1): 46–56. doi: 10.1007/bf00310881
    Harris, N., Massey, J., Inger, S., 1993. The Role of Fluids in the Formation of High Himalayan Leucogranites. Geological Society, London, Special Publications, 74(1): 391–400. doi: 10.1144/gsl.sp.1993.074.01.26
    Harris, N., Massey, J., 1994. Decompression and Anatexis of Himalayan Metapelites. Tectonics, 13(6): 1537–1546. doi: 10.1029/94tc01611
    Harris, N., Caddick, M., Kosler, J., et al., 2004. The Pressure-Temperature-Time Path of Migmatites from the Sikkim Himalaya. Journal of Metamorphic Geology, 22(3): 249–264. doi: 10.1111/j.1525-1314.2004.00511.x
    Harrison, M. T., Grove, M., McKeegan, K. D., et al., 1999. Origin and Episodic Emplacement of the Manaslu Intrusive Complex, Central Himalaya. Journal of Petrology, 40(1): 3–19. doi: 10.1093/petroj/40.1.3
    Hoskin, P. W. O., Schaltegger, U., 2003. The Composition of Zircon and Igneous and Metamorphic Petrogenesis. Reviews in Mineralogy and Geochemistry, 53(1): 27–62. doi: 10.2113/0530027
    Hou, Z. Q., Zheng, Y. C., Zeng, L. S., et al., 2012. Eocene–Oligocene Granitoids in Southern Tibet: Constraints on Crustal Anatexis and Tectonic Evolution of the Himalayan Orogen. Earth and Planetary Science Letters, 349/350: 38–52. doi: 10.1016/j.epsl.2012.06.030
    Huang, C. M., Zhao, Z. D., Li, G. M., et al., 2017. Leucogranites in Lhozag, Southern Tibet: Implications for the Tectonic Evolution of the Eastern Himalaya. Lithos, 294/295: 246–262. doi: 10.1016/j.lithos.2017.09.014
    Icenhower, J., London, D., 1995. An Experimental Study of Element Partitioning among Biotite, Muscovite, and Coexisting Peraluminous Silicic Melt at 200 MPa (H2O). American Mineralogist, 80(11/12): 1229–1251. doi: 10.2138/am-1995-11-1213
    Imayama, T., Suzuki, K., 2013. Carboniferous Inherited Grain and Age Zoning of Monazite and Xenotime from Leucogranites in Far-Eastern Nepal: Constraints from Electron Probe Microanalysis. American Mineralogist, 98(8/9): 1393–1406. doi: 10.2138/am.2013.4267
    Inger, S., Harris, N., 1993. Geochemical Constraints on Leucogranite Magmatism in the Langtang Valley, Nepal Himalaya. Journal of Petrology, 34(2): 345–368. doi: 10.1093/petrology/34.2.345
    King, J., Harris, N., Argles, T., et al., 2011. Contribution of Crustal Anatexis to the Tectonic Evolution of Indian Crust beneath Southern Tibet. Geological Society of America Bulletin, 123(1/2): 218–239. doi: 10.1130/b30085.1
    Liu, Y. S., Hu, Z. C., Zong, K. Q., et al., 2010. Reappraisement and Refinement of Zircon U-Pb Isotope and Trace Element Analyses by LA-ICP-MS. Chinese Science Bulletin, 55(15): 1535–1546. doi: 10.1007/s11434-010-3052-4
    Liu, Z. C., Wu, F. Y., Ji, W. Q., et al., 2014. Petrogenesis of the Ramba Leucogranite in the Tethyan Himalaya and Constraints on the Channel Flow Model. Lithos, 208/209: 118–136. doi: 10.1016/j.lithos.2014.08.022
    Ludwig, K. R., 2003. Isoplot/Ex Version 3.00: A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center, Special Publication, Berkeley. 1–73
    Maniar, P. D., Piccoli, P. M., 1989. Tectonic Discrimination of Granitoids. Geological Society of America Bulletin, 101(5): 635–643. doi: 10.1130/0016-7606(1989)101 < 0635:tdog > 2.3.co; 2
    Middlemost, E. A. K., 1994. Naming Materials in the Magma/Igneous Rock System. Earth-Science Reviews, 37(3/4): 215–224. doi: 10.1016/0012-8252(94)90029-9
    Patino Douce, A. E., Harris, N., 1998. Experimental Constraints on Himalayan Anatexis. Journal of Petrology, 39(4): 689–710. doi: 10.1093/petroj/39.4.689
    Patino Douce, A. E., Humphreys, E. D., Johnston, A. D., 1990. Anatexis and Metamorphism in Tectonically Thickened Continental Crust Exemplified by the Sevier Hinterland, Western North America. Earth and Planetary Science Letters, 97(3/4): 290–315. doi: 10.1016/0012-821x(90)90048-3
    Paul, A., Jung, S., Romer, R. L., et al., 2014. Petrogenesis of Synorogenic High- Temperature Leucogranites (Damara Orogen, Namibia): Constraints from U-Pb Monazite Ages and Nd, Sr and Pb Isotopes. Gondwana Research, 25(4): 1614–1626. doi: 10.1016/j.gr.2013.06.008
    Rubatto, D., Chakraborty, S., Dasgupta, S., 2013. Timescales of Crustal Melting in the Higher Himalayan Crystallines (Sikkim, Eastern Himalaya) Inferred from Trace Element-Constrained Monazite and Zircon Chronology. Contributions to Mineralogy and Petrology, 165(2): 349–372. doi: 10.1007/s00410-012-0812-y
    Scaillet, B., France-Lanord, C., Le Fort, P., 1990. Badrinath-Gangotri Plutons (Garhwal, India): Petrological and Geochemical Evidence for Fractionation Processes in a High Himalayan Leucogranite. Journal of Volcanology and Geothermal Research, 44(1/2): 163–188. doi: 10.1016/0377-0273(90)90017-a
    Schärer, U., 1984. The Effect of Initial 230Th Disequilibrium on Young U-Pb Ages: The Makalu Case, Himalaya. Earth and Planetary Science Letters, 67(2): 191–204. doi: 10.1016/0012-821x(84)90114-6
    Searle, M. P., Godin, L., 2003. The South Tibetan Detachment and the Manaslu Leucogranite: A Structural Reinterpretation and Restoration of the Annapurna-Manaslu Himalaya, Nepal. The Journal of Geology, 111(5): 505–523. doi: 10.1086/376763
    Searle, M. P., Szulc, A. G., 2005. Channel Flow and Ductile Extrusion of the High Himalayan Slab—The Kangchenjunga-Darjeeling Profile, Sikkim Himalaya. Journal of Asian Earth Sciences, 25(1): 173–185. doi: 10.1016/j.jseaes.2004.03.004
    Searle, M. P., Cottle, J. M., Streule, M. J., et al., 2009. Crustal Melt Granites and Migmatites along the Himalaya: Melt Source, Segregation, Transport and Granite Emplacement Mechanisms. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 100(1/2): 219–233. doi: 10.1017/s175569100901617x
    Sorcar, N., Hoppe, U., Dasgupta, S., et al., 2014. High-Temperature Cooling Histories of Migmatites from the High Himalayan Crystallines in Sikkim, India: Rapid Cooling Unrelated to Exhumation?. Contributions to Mineralogy and Petrology, 167(2): 1–34. doi: 10.1007/s00410-013-0957-3
    Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313–345. doi: 10.1144/gsl.sp.1989.042.01.19
    Thompson, A. B., Connolly, J. A. D., 1995. Melting of the Continental Crust: Some Thermal and Petrological Constraints on Anatexis in Continental Collision Zones and other Tectonic Settings. Journal of Geophysical Research: Solid Earth, 100(B8): 15565–15579. doi: 10.1029/95jb00191
    Vielzeuf, D., Holloway, J. R., 1988. Experimental Determination of the Fluid-Absent Melting Relations in the Pelitic System. Contributions to Mineralogy and Petrology, 98(3): 257–276. doi: 10.1007/bf00375178
    Vielzeuf, D., Montel, J. M., 1994. Partial Melting of Metagreywackes. Part I. Fluid-Absent Experiments and Phase Relationships. Contributions to Mineralogy and Petrology, 117(4): 375–393. doi: 10.1007/bf00307272
    Visonà, D., Lombardo, B., 2002. Two-Mica and Tourmaline Leucogranites from the Everest-Makalu Region (Nepal-Tibet). Himalayan Leucogranite Genesis by Isobaric Heating?. Lithos, 62(3/4): 125–150. doi: 10.1016/s0024-4937(02)00112-3
    Wang, L. X., Ma, C. Q., Zhang, C., et al., 2014. Genesis of Leucogranite by Prolonged Fractional Crystallization: A Case Study of the Mufushan Complex, South China. Lithos, 206/207: 147–163. doi: 10.1016/j.lithos.2014.07.026
    Wang, X. X., Zhang, J. J., Wang, J. M.., 2016. Geochronology and Formation Mechanism of the Paiku Granite in Northern Himalaya, and Its Tectonic Implications. Earth Science, 41: 982–998 (in Chinese with English Abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201606006
    Wu, F. Y., Liu, Z. C., Liu, X. C., et al. 2015. Himalayan Leucogranites: Petrogenesis and Implications to Orogenesis and Plateau Uplift. Acta Petrologica Sinica, 31: 1–36 (in Chinese with English Abstract) http://d.old.wanfangdata.com.cn/Periodical/ysxb98201501001
    Yin, A., 2006. Cenozoic Tectonic Evolution of the Himalayan Orogen as Constrained by Along-Strike Variation of Structural Geometry, Exhumation History, and Foreland Sedimentation. Earth-Science Reviews, 76(1/2): 1–131. doi: 10.1016/j.earscirev.2005.05.004
    Zeng, L. S., Gao, L. E., Xie, K. J., et al., 2011. Mid-Eocene High Sr/Y Granites in the Northern Himalayan Gneiss Domes: Melting Thickened Lower Continental Crust. Earth and Planetary Science Letters, 303(3/4): 251–266. doi: 10.1016/j.epsl.2011.01.005
    Zeng, L. S., Gao, L. E., Tang, S. H., et al., 2014. Eocene Magmatism in the Tethyan Himalaya, Southern Tibet. Geological Society, London, Special Publications, 412(1): 287–316. doi: 10.1144/sp412.8
    Zhang, H. F., Harris, N., Parrish, R., et al., 2004. U-Pb Ages of Kude and Sajia Leucogranites in Sajia Dome from North Himalaya and Their Geological Implications. Chinese Science Bulletin, 49(19): 2087. doi: 10.1360/04wd0198
    Zhang, Z. M., Dong, X., Santosh, M., et al., 2014. Metamorphism and Tectonic Evolution of the Lhasa Terrane, Central Tibet. Gondwana Research, 25(1): 170–189. doi: 10.1016/j.gr.2012.08.024
    Zhang, Z. M., Xiang, H., Dong, X., et al., 2015. Long-Lived High-Temperature Granulite-Facies Metamorphism in the Eastern Himalayan Orogen, South Tibet. Lithos, 212–215: 1–15. doi: 10.1016/j.lithos.2014.10.009
    Zhang, Z. M., Xiang, H., Dong, X., et al., 2017. Oligocene HP Metamorphism and Anatexis of the Higher Himalayan Crystalline Sequence in Yadong Region, East-Central Himalaya. Gondwana Research, 41: 173–187. doi: 10.1016/j.gr.2015.03.002
    Zhang, Z. M., Kang, D. Y., Ding, H. X., et al., 2018a. Partial Melting of Himalayan Orogen and Formation Mechanism of Leucogranites. Earth Science, 43(1): 82–98 (in Chinese with English Abstract) http://d.old.wanfangdata.com.cn/Periodical/dqkx201801005
    Zhang, Z. M., Ding, H. X., Dong, X., et al., 2018b. High-Temperature Metamorphism, Anataxis and Tectonic Evolution of a Mafic Granulite from the Eastern Himalayan Orogen. Journal of Earth Science, 29(5): 1010–1025. doi: 10.1007/s12583-018-0852-y
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)

    Article Metrics

    Article views(535) PDF downloads(21) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return