Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 30 Issue 3
Jun 2019
Turn off MathJax
Article Contents
Huichao Rui, Jiangang Jiao, Mingzhe Xia, Jingsui Yang, Zhaode Xia. Origin of Chromitites in the Songshugou Peridotite Massif, Qinling Orogen (Central China): Mineralogical and Geochemical Evidence. Journal of Earth Science, 2019, 30(3): 476-493. doi: 10.1007/s12583-019-1227-8
Citation: Huichao Rui, Jiangang Jiao, Mingzhe Xia, Jingsui Yang, Zhaode Xia. Origin of Chromitites in the Songshugou Peridotite Massif, Qinling Orogen (Central China): Mineralogical and Geochemical Evidence. Journal of Earth Science, 2019, 30(3): 476-493. doi: 10.1007/s12583-019-1227-8

Origin of Chromitites in the Songshugou Peridotite Massif, Qinling Orogen (Central China): Mineralogical and Geochemical Evidence

doi: 10.1007/s12583-019-1227-8
Funds:

the International Geoscience Programme "Diamonds and Recycled Mantle" IGCP-649

the National Natural Science Foundation of China 41672064

More Information
  • Corresponding author: Jiangang Jiao
  • Received Date: 17 Nov 2018
  • Accepted Date: 15 Apr 2019
  • Publish Date: 01 Jun 2019
  • The Songshugou peridotite massif is located in the north of Shangdan suture zone, North Qinling orogenic belt of Central China. The massif is mainly composed of fine-grained mylonitic dunites, coarse-grained dunites, fine-and coarse-grained harzburgites, and minor clinopyroxenites. The coarsegrained dunites as well as parts of the harzburgites host small-scale chromitites. Chromite grains from various textural types of chromitites and dunites pervasively contain primary and secondary silicate inclusions. Primary inclusions are dominated by monophase olivine, with minor clinopyroxene and a few multiphase mineral assemblages consisting of olivine and clinopyroxene. Secondary inclusions, mainly Cr-chlorite and tremolite, show irregular crystal shapes. Besides, Cr2O3 contents (0.08 wt.%-0.71 wt.%) of primary olivine inclusions are remarkably higher than those of interstitial olivine (< 0.1 wt.%). Chromites in the Songshugou peridotite massif are high-Cr type, with Cr# and Mg# values ranging of 67.5-87.6, and 23.4-41.2, respectively. The Cr-chlorite, formed by reactions between olivine and chromite in the presence of fluid under middle temperature, indicates the Songshugou peridotite massif has undergone alteration/metamorphism process during emplacement. Chromite grains are modified by these processes, resulting in the various degrees of enrichment of Fe2O3, Cr2O3, Zn, Co and Mn, depletion of MgO, Al2O3, Ga, Ti and Ni. Due to low silicate/chromite ratios in the massive ores, chromites from them are slightly influenced by alteration/metamorphism and thus preserve the pristine magmatic compositions. The parental magma calculated based on them has 11.17 wt.%-13.57 wt.% Al2O3 and 0.15 wt.%-0.27 wt.% TiO2, which is similar to the parental melts of high-Cr chromitites from elsewhere and comparable with those of boninites. Combined with informations from previous studies, major and trace elements geochemistry of chromite, as well as the nature of the parental magma, it can be revealed that the Songshugou chromitities formed in a supra-subduction zone environment.

     

  • loading
  • Akbulut, M., González-Jiménez, J.M., Griffin, W.L., et al., 2016.Tracing Ancient Events in the Lithospheric Mantle:A Case Study from Ophiolitic Chromitites of SW Turkey.Journal of Asian Earth Sciences, 119:1-19. https://doi.org/10.1016/j.jseaes.2016.01.008
    Arai, S., Matsukage, K., 1998.Petrology of a Chromitite Micropod from Hess Deep, Equatorial Pacific:A Comparison between Abyssal and Alpine-Type Podiform Chromitites.Lithos, 43(1):1-14. https://doi.org/10.1016/s0024-4937(98)00003-6
    Ballhaus, C., Wirth, R., Fonseca, R.O.C., et al., 2017.Ultra-High Pressure and Ultra-Reduced Minerals in Ophiolites may Form by Lightning Strikes.Geochemical Perspectives Letters, 5:42-46. https://doi.org/10.7185/geochemlet.1744
    Barnes, S.J., 2000.Chromite in Komatiites, Ⅱ.Modification during Greenschist to Mid-Amphibolite Facies Metamorphism.Journal of Petrology, 41(3):387-409. https://doi.org/10.1093/petrology/41.3.387
    Barnes, S.J., Roeder, P.L., 2001.The Range of Spinel Compositions in Terrestrial Mafic and Ultramafic Rocks.Journal of Petrology, 42(12):2279-2302. https://doi.org/10.1093/petrology/42.12.2279
    Bonatti, E., Michael, P.J., 1989.Mantle Peridotites from Continental Rifts to Ocean Basins to Subduction Zones.Earth and Planetary Science Letters, 91(3/4):297-311. https://doi.org/10.1016/0012-821x(89)90005-8
    Burkhard, D.J.M., 1993.Accessory Chromium Spinels:Their Coexistence and Alteration in Serpentinites.Geochimica et Cosmochimica Acta, 57(6):1297-1306. https://doi.org/10.1016/0016-7037(93)90066-6
    Cao, Y., Song, S.G., Su, L., et al., 2016.Highly Refractory Peridotites in Songshugou, Qinling Orogen:Insights into Partial Melting and Melt/Fluid-Rock Reactions in Forearc Mantle.Lithos, (252/253):234-254. https://doi.org/10.1016/j.lithos.2016.03.002
    Cao, Y., Jung, H., Song, S.G., 2017.Olivine Fabrics and Tectonic Evolution of Fore-Arc Mantles:A Natural Perspective from the Songshugou Dunite and Harzburgite in the Qinling Orogenic Belt, Central China.Geochemistry, Geophysics, Geosystems, 18(3):907-934. https://doi.org/10.1002/2016gc006614
    Cathelineau, M., Nieva, D., 1985.A Chlorite Solid Solution Geothermometer.The Los Azufres (Mexico) Geothermal System.Contributions to Mineralogy and Petrology, 91(3):235-244. https://doi.org/10.1007/bf00413350
    Cathelineau, M., 1988.Cation Site Occupancy in Chlorites and Illites as a Function of Temperature.Clay Minerals, 23(4):471-485. https://doi.org/10.1180/claymin.1988.023.4.13
    Chen, D.L., Ren, Y.F., Gong, X.K., et al., 2015.Identification and Its Geological Significance of Eclogite in Songshugou, the North Qinling.Acta Petrologica Sinica, 31(7):1841-1854(in Chinese with English Abstract) http://d.old.wanfangdata.com.cn/Periodical/ysxb98201507003
    Colás, V., González-Jiménez, J.M., Griffin, W.L., et al., 2014.Fingerprints of Metamorphism in Chromite:New Insights from Minor and Trace Elements.Chemical Geology, 389:137-152. https://doi.org/10.1016/j.chemgeo.2014.10.001
    Dong, Y.P., Santosh, M., 2016.Tectonic Architecture and Multiple Orogeny of the Qinling Orogenic Belt, Central China.Gondwana Research, 29(1):1-40. https://doi.org/10.1016/j.gr.2015.06.009
    Dong, Y.P., Zhang, G.W., Neubauer, F., et al., 2011.Tectonic Evolution of the Qinling Orogen, China:Review and Synthesis.Journal of Asian Earth Sciences, 41(3):213-237. https://doi.org/10.1016/j.jseaes.2011.03.002
    Dong, Y.P., Zhou, M.F., Zhang, G.W., et al., 2008.The Grenvillian Songshugou Ophiolite in the Qinling Mountains, Central China:Implications for the Tectonic Evolution of the Qinling Orogenic Belt.Journal of Asian Earth Sciences, 32(5/6):325-335. https://doi.org/10.1016/j.jseaes.2007.11.010
    Evans, B.W., Hattori, K., Baronnet, A., 2013.Serpentinite:What, Why, Where?.Elements, 9(2):99-106. https://doi.org/10.2113/gselements.9.2.99
    Gervilla, F., Padrón-Navarta, J.A., Kerestedjian, T., et al., 2012.Formation of Ferrian Chromite in Podiform Chromitites from the Golyamo Kamenyane Serpentinite, Eastern Rhodopes, SE Bulgaria:A Two-Stage Process.Contributions to Mineralogy and Petrology, 164(4):643-657. https://doi.org/10.1007/s00410-012-0763-3
    González-Jiménez, J.M., Locmelis, M., Belousova, E., et al., 2015.Genesis and Tectonic Implications of Podiform Chromitites in the Metamorphosed Ultramafic Massif of Dobromirtsi (Bulgaria).Gondwana Research, 27(2):555-574. https://doi.org/10.1016/j.gr.2013.09.020
    González-Jiménez, J.M., Griffin, W.L., Proenza, J.A., et al., 2014.Chromitites in Ophiolites:How, Where, When, Why?Part Ⅱ.The Crystallization of Chromitites.Lithos, 189:140-158. https://doi.org/10.1016/j.lithos.2013.09.008
    González-Jiménez, J.M., Barra, F., Garrido, L.N.F., et al., 2016.A Secondary Precious and Base Metal Mineralization in Chromitites Linked to the Development of a Paleozoic Accretionary Complex in Central Chile.Ore Geology Reviews, 78:14-40. https://doi.org/10.1016/j.oregeorev.2016.02.017
    González-Jiménez, J.M., Camprubí, A., Colás, V., et al., 2017.The Recycling of Chromitites in Ophiolites from Southwestern North America.Lithos, 294/295:53-72. https://doi.org/10.1016/j.lithos.2017.09.020
    Graham, I.T., Franklin, B.J., Marshall, B., 1996.Chemistry and Mineralogy of Podiform Chromitite Deposits, Southern NSW, Australia:A Guide to Their Origin and Evolution.Mineralogy and Petrology, 57(3/4):129-150. https://doi.org/10.1007/bf01162355
    Griffin, W.L., Afonso, J.C., Belousova, E.A., et al., 2016.Mantle Recycling:Transition Zone Metamorphism of Tibetan Ophiolitic Peridotites and Its Tectonic Implications.Journal of Petrology, 57(4):655-684. https://doi.org/10.1093/petrology/egw011
    Guo, G.L., Yang, J.S., Liu, X.D., et al., 2015.Mid-Ocean Ridge (MOR) and Suprasubduction Zone (SSZ) Geological Events in the Yarlung Zangbo Suture Zone:Evidence from the Mineral Record of Mantle Peridotites.Journal of Asian Earth Sciences, 110:33-54. https://doi.org/10.1016/j.jseaes.2015.02.012
    Hey, M.H., 1954.A New Review of the Chlorites.Mineralogical Magazine and Journal of the Mineralogical Society, 30(224):277-292. https://doi.org/10.1180/minmag.1954.030.224.01
    Irvine, T.N., 1967.Chromian Spinel as a Petrogenetic Indictor:Part 2.Petrologic Applications.Canadian Journal of Earth Sciences, 4(1):71-103. https://doi.org/10.1139/e67-004
    Jollands, M.C., O'Neill, H.S.C., Van Orman, J., et al., 2018.Substitution and Diffusion of Cr2+ and Cr3+ in Synthetic Forsterite and Natural Olivine at 1 200-1 500 ℃ and 1 bar.Geochimica et Cosmochimica Acta, 220:407-428. https://doi.org/10.1016/j.gca.2017.09.030
    Kamenetsky, V.S., Crawford, A.J., Meffre, S., 2001.Factors Controlling Chemistry of Magmatic Spinel:An Empirical Study of Associated Olivine, Cr-Spinel and Melt Inclusions from Primitive Rocks.Journal of Petrology, 42(4):655-671. https://doi.org/10.1093/petrology/42.4.655
    Kelemen, P.B., Hirth, G., Shimizu, N., et al., 1997.A Review of Melt Migration Processes in the Adiabatically Upwelling Mantle beneath Oceanic Spreading Ridges.Philosophical Transactions of the Royal Society of London Series A:Mathematical, Physical and Engineering Sciences, 355(1723):283-318. https://doi.org/10.1098/rsta.1997.0010
    Klein, E.L., Koppe, J.C., 2000.Chlorite Geothermometry and Physicochemical Conditions of Gold Mineralization in the Paleoproterozoic Caixas Deposit, S o Luis Craton, Northern Brazil.Geochimica Brasiliensis, 14(2):219-232. https://doi.org/10.21715/gb.v14i2.177
    Kranidiotis, P., MacLean, W.H., 1987.Systematics of Chlorite Alteration at the Phelps Dodge Massive Sulfide Deposit, Matagami, Quebec.Economic Geology, 82(7):1898-1911. https://doi.org/10.2113/gsecongeo.82.7.1898
    Lee, B., Zhu, L.M., Gong, H.J., et al., 2010.Genetic Relationship between Peridotites and Chromite Deposit from Songshugou Area of North Qinling.Acta Petrologica Sinica, 26:1487-1502(in Chinese with English Abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201005014
    Li, H.Y., Liu, J.F., Yang, L., 2009.Characteristics of Zircons from a Metamorphic Contact Zone of the Songshugou Ultramafic Pluton in North Qinling and Their Geological Significance.Acta Petrologica Sinica, 28:225-234(in Chinese with English Abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yskwxzz200903003
    Lian, D., Yang, J., Yildirim, D., et al., 2017.Deep Mantle Origin and Ultra-Reducing Conditions in Podiform Chromitite:Diamond, Moissanite, and other Unusual Minerals in Podiform Chromitites from the Pozanti-Karsanti Ophiolite, Southern Turkey.American Mineralogist, 102(5):1101-1113. https://doi.org/10.2138/am-2017-5850
    Liang, F.H., Yang, J.S., Xu, Z.Q., et al., 2014.Chromium in the Olivine Lattice:Chromium-Rich Olivines and Their Implication of Deep Mantle Origin in the Luobusa Mantle Peridotite and Chromitite, Tibet.Acta Petrologica Sinica, 30(8):2125-2136(in Chinese with English Abstract) http://d.old.wanfangdata.com.cn/Periodical/ysxb98201408002
    Liu, J.F., Li, C., Sun, Y., et al., 2014.Melt Percolation in the Songshugou Ultramafic Massif of the Qinling Orogenic Belt, Central China.International Geology Review, 57(9/10):1326-1339. https://doi.org/10.1080/00206814.2014.990525
    Liu, J.F., Sun, Y., Tong, L.X., et al., 2009.Emplacement Age of the Songshugou Ultramafic Massif in the Qinling Orogenic Belt, and Geologic Implications.International Geology Review, 51(1):58-76. https://doi.org/10.1080/00206810802650576
    Liu, J.G., Hattori, K., Wang, J., 2017.Mineral Inclusions in Chromite from the Chromite Deposit in the Kudi Ophiolite, Tibet, Proto-Tethys.Acta Geologica Sinica(English Edition), 91(2):469-485. https://doi.org/10.1111/1755-6724.13112
    Liu, L., Zhou, D.W., Dong, Y.P., et al., 1995.High Pressure Metabasites and Their Retrograde Metamorphic P-T-t Path from Songshugou Area, Eastern Qinling Mountain.Acta Petrologica Sinica, 11:127-136(in Chinese with English Abstract)
    Liu, Y.S., Hu, Z.C., Gao, S., et al., 2008.In situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS without Applying an Internal Standard.Chemical Geology, 257(1/2):34-43. https://doi.org/10.1016/j.chemgeo.2008.08.004
    Luo, J., Wakabayashi, J., He, Z.L., et al., 2018.An Upper Crustal Ophiolite Remnant within the Feather River Ultramafic Belt, California:Tectonomagmatic Origins and Implications for Its Evolution.Journal of Earth Science, 13(5). https://doi.org/10.1007/s12583-017-0964-9
    Malpas, J., Robinson, P.T., Zhou, M.F., 1997.Chromitite and Ultramafic Rock Compositional Zoning through a Paleotransform Fault, Poum, New Caledonia:Discussion.Economic Geology, 92(4):502-503. https://doi.org/10.2113/gsecongeo.92.4.502
    Maurel, C., Maurel, P., 1982.Etude Experimentale de la Distribution de lʼAluminium Entre Bain Silicate Basique et Spinelle Chromifere.Implications Petrogenetiques:Teneur en Chrome des Spinelles.Bulletin de Mineralogie, 105:197-202 http://cn.bing.com/academic/profile?id=8d54468fd3843c9a5d50f21aaa0e177b&encoded=0&v=paper_preview&mkt=zh-cn
    McElduff, B., Stumpfl, E.F., 1991.The Chromite Deposits of the Troodos Complex, Cyprus-Evidence for the Role of a Fluid Phase Accompanying Chromite Formation.Mineralium Deposita, 26(4):307-318. https://doi.org/10.1007/bf00191079
    Merlini, A., Grieco, G., Diella, V., 2009.Ferritchromite and Chromian-Chlorite Formation in Melange-Hosted Kalkan Chromitite (Southern Urals, Russia).American Mineralogist, 94(10):1459-1467. https://doi.org/10.2138/am.2009.3082
    Merlini, A., Grieco, G., Ottolini, L., et al., 2011.Probe and SIMS Investigation of Clinopyroxene Inclusions in Chromites from the Troodos Chromitites (Cyprus):Implications for Dunite-Chromitite Genesis.Ore Geology Reviews, 41(1):22-34. https://doi.org/10.1016/j.oregeorev.2011.06.002
    Mukherjee, R., Mondal, S.K., González-Jiménez, J.M., et al., 2015.Trace-Element Fingerprints of Chromite, Magnetite and Sulfides from the 3.1 Ga Ultramafic-mafic Rocks of the Nuggihalli Greenstone Belt, Western Dharwar Craton (India).Contributions to Mineralogy and Petrology, 169(6):59. https://doi.org/10.1007/s00410-015-1148-1
    Nie, H., Yang, J.Z., Zhou, G.Y., et al., 2017.Geochemical and Re-Os Isotope Constraints on the Origin and Age of the Songshugou Peridotite Massif in the Qinling Orogen, Central China.Lithos, 292/293:307-319. https://doi.org/10.1016/j.lithos.2017.09.009
    Ozawa, K., 1994.Melting and Melt Segregation in the Mantle Wedge above a Subduction Zone:Evidence from the Chromite-Bearing Peridotites of the Miyamori Ophiolite Complex, Northeastern Japan.Journal of Petrology, 35(3):647-678. https://doi.org/10.1093/petrology/35.3.647
    Pagé, P., Barnes, S.J., 2009.Using Trace Elements in Chromites to Constrain the Origin of Podiform Chromitites in the Thetford Mines Ophiolite, Quebec, Canada.Economic Geology, 104(7):997-1018. https://doi.org/10.2113/econgeo.104.7.997
    Pagé, P., Bédard, J.H., Schroetter, J.M., et al., 2008.Mantle Petrology and Mineralogy of the Thetford Mines Ophiolite Complex.Lithos, 100(1-4):255-292. https://doi.org/10.1016/j.lithos.2007.06.017
    Ratschbacher, L., Hacker, B.R., Calvert, A., et al., 2003.Tectonics of the Qinling (Central China):Tectonostratigraphy, Geochronology, and Deformation History.Tectonophysics, 366(1/2):1-53. https://doi.org/10.1016/s0040-1951(03)00053-2
    Ren, Y.F., Chen, F.Y., Yang, J.S., et al., 2008.Exsolutions of Diopside and Magnetite in Olivine from Mantle Dunite, Luobusa Ophiolite, Tibet, China.Acta Geologica Sinica(English Edition), 82(2):377-384. https://doi.org/10.1111/j.1755-6724.2008.tb00587.x
    Sack, R.O., Ghiorso, M.S., 1991.Chromian Spinels as Petrogenetic Indicators:Thermodynamics and Petrological Applications.American Mineralogist, 76:827-847 https://www.researchgate.net/publication/282061101_Chromian_spinels_as_petrogenetic_indicators_thermodynamics_and_petrological_applications
    Satsukawa, T., Griffin, W.L., Piazolo, S., et al., 2015.Messengers from the Deep:Fossil Wadsleyite-Chromite Microstructures from the Mantle Transition Zone.Scientific Reports, 5(1):1-8. https://doi.org/10.1038/srep16484
    Shabani, T.A.A., 2009.Mineral Chemistry of Chlorite Replacing Biotite from Granitic Rocks of the Canadian Appalachians.Journal of Sciences, Islamic Republic of Iran, 20(3):265-275
    Smith, S.E., Elthon, D., 1988.Mineral Compositions of Plutonic Rocks from the Lewis Hills Massif, Bay of Islands Ophiolite.Journal of Geophysical Research, 93(B4):3450-3468. https://doi.org/10.1029/jb093ib04p03450
    Song, S.G., Su, L., Yang, H.Q., et al., 1998.Petrogenesis and Emplacement of the Songshugou Peridotite in Shangnan, Shaanxi.Acta Petrologica Sinica, 14:212-221(in Chinese with English Abstract) http://www.en.cnki.com.cn/Article_en/CJFDTotal-YSXB802.008.htm
    Su, L., Song, S.G., Song, B., et al., 2004.SHRIMP Zircon U-Pb Ages of garnet Pyroxenite and Fushui Gabbroic Complex in Songshugou Region and Constraints on Tectonic Evolution of Qinling Orogenic Belt.Chinese Science Bulletin, 49(12):1146-1157(in Chinese) http://www.cnki.com.cn/Article/CJFDTotal-JXTW20041200I.htm
    Su, L., Song, S.G., Zhou, D.W., 2005.Petrogenesis of Songshugou Dunite Body in the Qinling Orogenic Belt, Central China:Constraints from Geochemistry and Melt Inclusions.Science in China Series D: Earth Sciences, 48(8):1146-1157(in Chinese) doi: 10.1360/03yd0037
    Tang, L., Santosh, M., Dong, Y.P., et al., 2016.Early Paleozoic Tectonic Evolution of the North Qinling Orogenic Belt:Evidence from Geochemistry, Phase Equilibrium Modeling and Geochronology of Metamorphosed Mafic Rocks from the Songshugou Ophiolite.Gondwana Research, 30:48-64. https://doi.org/10.1016/j.gr.2014.10.006
    Uysal, İ., Tarkian, M., Sadiklar, M.B., et al., 2009.Petrology of Al-and Cr-Rich Ophiolitic Chromitites from the Muğla, SW Turkey:Implications from Composition of Chromite, Solid Inclusions of Platinum-Group Mineral, Silicate, and Base-Metal Mineral, and Os-Isotope Geochemistry.Contributions to Mineralogy and Petrology, 158(5):659-674. https://doi.org/10.1007/s00410-009-0402-9
    Varfalvy, V., Hébert, R., Bédard, J.H., 1996.Interactions between Melt and Upper-Mantle Peridotites in the North Arm Mountain Massif, Bay of Islands Ophiolite, Newfoundland, Canada:Implications for the Genesis of Boninitic and Related Magmas.Chemical Geology, 129(1/2):71-90. https://doi.org/10.1016/0009-2541(95)00140-9
    Varfalvy, V., Hébert, R., Bédard, J.H., 1997.Interactions between Melt and Upper-Mantle Peridotites in the North Arm Mountain Massif, Bay of Islands Ophiolite, Newfoundland, Canada:Implications for the Genesis of Boninitic and Related Magmas.Chemical Geology, 129(1/2):71-90. https://doi.org/10.1016/0009-2541(95)00140-9
    Wang, X.B., Yang, J.S., Shi, R.D., et al., 2005.The Songshugou Rock Body from Qinling—A Example of Ultramafic Cumulate Undergone Amphibole Facies Metamorphism.Acta Geologica Sinica, 79:174-189(in Chinese with English Abstract) doi: 10.1111/acgs.2005.79.issue-2
    Wu, W.W., Yang, J.S., Dilek, Y., et al., 2018.Multiple Episodes of Melting, Depletion, and Enrichment of the Tethyan Mantle:Petrogenesis of the Peridotites and Chromitites in the Jurassic Skenderbeu Massif, Mirdita Ophiolite, Albania.Lithosphere, 10(1):54-78.https://doi.org/10.1130/l606.1 doi: 10.1130/L606.1
    Xiao, Y., Teng, F.Z., Su, B.X., et al., 2016.Iron and Magnesium Isotopic Constraints on the Origin of Chemical Heterogeneity in Podiform Chromitite from the Luobusa Ophiolite, Tibet.Geochemistry, Geophysics, Geosystems, 17(3):940-953.https://doi.org/10.1002/2015gc006223 doi: 10.1002/2015GC006223
    Xiong, F.H., Yang, J.S., Robinson, P.T., et al., 2015.Origin of Podiform Chromitite, a New Model Based on the Luobusa Ophiolite, Tibet.Gondwana Research, 27(2):525-542. https://doi.org/10.1016/j.gr.2014.04.008
    Xiong, F.H., Yang, J.S., Robinson, P.T., et al., 2017a.Petrology and Geochemistry of Peridotites and Podiform Chromitite in the Xigaze Ophiolite, Tibet:Implications for a Suprasubduction Zone Origin.Journal of Asian Earth Sciences, 146:56-75. https://doi.org/10.1016/j.jseaes.2017.05.001
    Xiong, F.H., Yang, J.S., Dilek, Y., et al., 2017b.Origin and Significance of Diamonds and other Exotic Minerals in the Dingqing Ophiolite Peridotites, Eastern Bangong-Nujiang Suture Zone, Tibet.Lithosphere.https://doi.org/10.1130/l607.1
    Xiong, Q., Griffin, W.L., Zheng, J.P., et al., 2016.Southward Trench Migration at~130-120 Ma Caused Accretion of the Neo-Tethyan Forearc Lithosphere in Tibetan Ophiolites.Earth and Planetary Science Letters, 438:57-65. https://doi.org/10.1016/j.epsl.2016.01.014
    Xiong, Q., Henry, H., Griffin, W.L., et al., 2017.High-and Low-Cr Chromitite and Dunite in a Tibetan Ophiolite:Evolution from Mature Subduction System to Incipient Forearc in the Neo-Tethyan Ocean.Contributions to Mineralogy and Petrology, 172(6):45. https://doi.org/10.1007/s00410-017-1364-y
    Yang, J.S., Bai, W.J., Fang, Q.S., et al., 2007.Discovery of Diamond and an Unusual Mineral Group from the Podiform Chromite, Polar Ural.Geology in China, 34(5):950-952(in Chinese with English Abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdizhi200705024
    Yang, J.S., Meng, F.C., Xu, X.Z., et al., 2015.Diamonds, Native Elements and Metal Alloys from Chromitites of the Ray-Iz Ophiolite of the Polar Urals.Gondwana Research, 27(2):459-485. https://doi.org/10.1016/j.gr.2014.07.004
    Yang, J.S., Robinson, P.T., Dilek, Y., 2014.Diamonds in Ophiolites.Elements, 10(2):127-130. https://doi.org/10.2113/gselements.10.2.127
    Yu, H., Zhang, H.F., Li, X.H., et al., 2016.Tectonic Evolution of the North Qinling Orogen from Subduction to Collision and Exhumation:Evidence from Zircons in Metamorphic Rocks of the Qinling Group.Gondwana Research, 30(1):65-78. https://doi.org/10.1016/j.gr.2015.07.003
    Yu, H., Zhang, H.F., Santosh, M., 2017.Mylonitized Peridotites of Songshugou in the Qinling Orogen, Central China:A Fragment of Fossil Oceanic Lithosphere Mantle.Gondwana Research, 52:1-17. https://doi.org/10.1016/j.gr.2017.08.007
    Zaccarini, F., Garuti, G., Proenza, J.A., et al., 2011.Chromite and Platinum-Group-Elements Mineralization in the Santa Elena Ophiolitic Ultramafic Nappe (Costa Rica):Geodynamic Implications.Geologica Acta, 9:407-423
    Zanetti, A., Giovanardi, T., Langone, A., et al., 2016.Origin and Age of Zircon-Bearing Chromitite Layers from the Finero Phlogopite Peridotite (Ivrea-Verbano Zone, Western Alps) and Geodynamic Consequences.Lithos, 262:58-74. https://doi.org/10.1016/j.lithos.2016.06.015
    Zang, W., Fyfe, W.S., 1995.Chloritization of the Hydrothermally Altered Bedrock at the Igarapé Bahia Gold Deposit, Carajás, Brazil.Mineralium Deposita, 30(1):30-38. https://doi.org/10.1007/bf00208874
    Zhang, G.W., Zhang, Z.Q., Dong, Y.P., 1995.Nature of the Main Tectono-Lithostratigraphic Units of the Qinling Orogen:Implications for the Tectonic Evolution.Acta Petrologica Sinica, 11:101-114(in Chinese with English Abstract)
    Zhang, Z.J., 1995.The Genesis of Dunites in the Songshugou Ultramafic Rock Body, North Qinling.Acta Petrologica Sinica, 11:178-189(in Chinese with English Abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-YSXB5S1.013.htm
    Zhou, M.F., Robinson, P.T., Malpas, J., et al., 1996.Podiform Chromitites in the Luobusa Ophiolite (Southern Tibet):Implications for Melt-Rock Interaction and Chromite Segregation in the Upper Mantle.Journal of Petrology, 37(1):3-21. https://doi.org/10.1093/petrology/37.1.3
    Zhou, M.F., Robinson, P.T., Malpas, J., et al., 2005.REE and PGE Geochemical Constraints on the Formation of Dunites in the Luobusa Ophiolite, Southern Tibet.Journal of Petrology, 46(3):615-639. https://doi.org/10.1093/petrology/egh091
    Zhou, M.F., Robinson, P.T., Su, B.X., et al., 2014.Compositions of Chromite, Associated Minerals, and Parental Magmas of Podiform Chromite Deposits:The Role of Slab Contamination of Asthenospheric Melts in Suprasubduction Zone Environments.Gondwana Research, 26(1):262-283. https://doi.org/10.1016/j.gr.2013.12.011
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(4)

    Article Metrics

    Article views(795) PDF downloads(21) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return