Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 30 Issue 6
Dec 2019
Turn off MathJax
Article Contents
Arne P. Willner, Michael Gopon, Johannes Glodny, Victor N. Puchkov, Hans-Peter Schertl. Timanide (Ediacaran-Early Cambrian) Metamorphism at the Transition from Eclogite to Amphibolite Facies in the Beloretsk Complex, SW-Urals, Russia. Journal of Earth Science, 2019, 30(6): 1144-1165. doi: 10.1007/s12583-019-1249-2
Citation: Arne P. Willner, Michael Gopon, Johannes Glodny, Victor N. Puchkov, Hans-Peter Schertl. Timanide (Ediacaran-Early Cambrian) Metamorphism at the Transition from Eclogite to Amphibolite Facies in the Beloretsk Complex, SW-Urals, Russia. Journal of Earth Science, 2019, 30(6): 1144-1165. doi: 10.1007/s12583-019-1249-2

Timanide (Ediacaran-Early Cambrian) Metamorphism at the Transition from Eclogite to Amphibolite Facies in the Beloretsk Complex, SW-Urals, Russia

doi: 10.1007/s12583-019-1249-2
More Information
  • Corresponding author: Arne P. Willner
  • Received Date: 21 Jun 2019
  • Accepted Date: 15 Sep 2019
  • Publish Date: 01 Dec 2019
  • The Beloretsk Metamorphic Complex in the SW Urals formed at a convergent eastern margin of Baltica during the Neoproterozoic-Early Cambrian Timanide orogeny. It comprises three major units with lenses of facies-critical metabasites within metasedimentary rocks:A lowermost eclogite unit, an intermediate garnet amphibolite unit and an upper amphibolite-greenschist unit. Pressure (P)-temperature (T)-paths of four rocks from the two lowermost units were determined mainly by PT pseudosection techniques showing similar clockwise loops at different peak metamorphic, water-satu-rated conditions:A phengite-bearing eclogite shows peak PT conditions of 16.5-18.5 kbar/525-550℃ (stage Ⅰ) followed by stage Ⅱ at 11.5-13.0 kbar/585-615℃. A garnet amphibolite from the intermediate unit yields lower peak conditions of 11.7-14.5 kbar/480-510℃ (stage Ⅰ) followed by stage Ⅱ at 9.5-11.0 kbar/535-560℃. However, a granite gneiss in the eclogite unit shows similar maximum pressures as the eclogite, but higher temperatures at 15.6-16.2 kbar/660-675℃, whereas a garnet micaschist contains comparable high pressure relicts, but underwent an advanced midcrustal reequilibration at 7.5-9.0 kbar/555-610℃. We dated the eclogite by a 7-point Rb/Sr mineral isochron (phengite, omphacite, apa-tite) at 532.2±9.1 Ma interpreted as age of crystallisation of the eclogitic peak PT assemblage. This age is the youngest compared to the known Timanide metamorphic and magmatic ages.

     

  • loading
  • Alekseev, A. A., 1984. Riphean and Vendian Magmatism in the Southern Urals. Nauka, Moscow. 136 (in Russian)
    Alekseev, A. A., Alekseeva, G. V., Galieva, A. R., et al., 2006. Metamorphic Geology of the Western Slope of the Southern Urals. Gilem, Ufa. 212 (in Russian)
    Alekseev, A. A., Kovalev, S. G., Timofeeva, Y. A., 2009. The Beloretsk Metamorphic Complex. Dizain Poligraph Service, Ufa. 208 (in Russian)
    Angiboust, S., Glodny, J., Oncken, O., et al., 2014. In Search of Transient Subduction Interfaces in the Dent Blanche-Sesia Tectonic System (W. Alps). Lithos, 205: 298–321. https://doi.org/10.1016/j.lithos.2014.07.001
    Beckholmen, M., Glodny, J., 2004. Timanian Blueschist-Facies Metamorphism in the Kvarkush Metamorphic Basement, Northern Urals, Russia. Geological Society, London, Memoirs, 30(1): 125–134. https://doi.org/10.1144/gsl.mem.2004.030.01.11
    Berman, R. G., 1988. Internally-Consistent Thermodynamic Data for Minerals in the System Na2O-K2O-CaO-MgO-FeO-Fe2O3-Al2O3-SiO2-TiO2-H2O-CO2. Journal of Petrology, 29(2): 445–522. https://doi.org/10.1093/petrology/29.2.445
    Berman, R. G., 1991. Thermobarometry Using Multi-Equilibrium Calculations: A New Techique, with Petrological Applications. Canadian Mineralogist, 29: 833–855
    Bernhardt, H.-J., 2010. MINCALC-V5, a non EXCEL Based Computer Program for General Electron-Microprobe Mineral Analyses Data Processing. Abstract of 20th IMA-Meeting, Session XO150G. 869
    Brown, D., Juhlin, C., Alvarez-Marron, J., et al., 1998. Crustal-Scale Structure and Evolution of an Arc-Continent Collision Zone in the Southern Urals, Russia. Tectonics, 17(2): 158–170. https://doi.org/10.1029/98tc00129
    Brown, D., Spadea, P., Puchkov, V., et al., 2006. Arc Continent Collision in the Southern Urals. Earth Science Reviews, 79: 261–287 doi: 10.1016/j.earscirev.2006.08.003
    Cohen, K. M., Finney, S. C., Gibbard, P. L., et al., 2013. The ICS International Chronostratigraphic Chart. Episodes, 36(3): 199–204. https://doi.org/10.18814/epiiugs/2013/v36i3/002
    Connolly, J. A. D., 1990. Multivariable Phase Diagrams: An Algorithm Based on Generalized Thermodynamics. American Journal of Science, 290(6): 666–718. https://doi.org/10.2475/ajs.290.6.666
    Connolly, J. A. D., 2005. Computation of Phase Equilibria by Linear Programming: A Tool for Geodynamic Modeling and Its Application to Subduction Zone Decarbonation. Earth and Planetary Science Letters, 236(1/2): 524–541. https://doi.org/10.1016/j.epsl.2005.04.033
    Diener, J. F. A., Powell, R., White, R. W., et al., 2007. A New Thermodynamic Model for Clino- and Orthoamphiboles in the System Na2O-CaO-FeO- MgO-Al2O3-SiO2-H2O-O2. Journal of Metamorphic Geology, 25(6): 631–656. https://doi.org/10.1111/j.1525-1314.2007.00720.x
    Evans, B. W., 1990. Phase Relations of Epidote-Blueschists. Lithos, 25(1/2/3): 3–23. https://doi.org/10.1016/0024-4937(90)90003-j
    Galieva, A. R., 2004. Geology, Petrology and Conditions of Origin of Eclogites and Host Rocks of the Beloretsk Metamorphic Complex (Southern Urals): [Dissertation]. Russian Academy of Science, Ufa. 144 (in Russian)
    Giese, U., Glasmacher, U. A., Kozlov, V., et al., 1999. Structural Framework of the Bashkirian Anticlinorium, SW Urals. Geologische Rundschau, 87(4): 526–544. https://doi.org/10.1007/s005310050229
    Glasmacher, U. A., Bauer, W., Giese, U., et al., 2001. The Metamorphic Complex of Beloretzk, SW Urals, Russia—A Terrane with a Polyphase Meso- to Neoproterozoic Thermo-Dynamic Evolution. Precambrian Research, 110(1/2/3/4): 185–213. https://doi.org/10.1016/s0301-9268(01)00187-5
    Glodny, J., Ring, U., Kühn, A., 2008. Coeval High-Pressure Metamorphism, Thrusting, Strike-Slip, and Extensional Shearing in the Tauern Window, Eastern Alps. Tectonics, 27(4): TC4004. https://doi.org/10.1029/2007tc002193
    Grazhdankin, D. V., Marusin, V. V., Meert, J., et al., 2011. Kotlin Regional Stage in the South Urals. Doklady Earth Sciences, 440(1): 1222–1226. https://doi.org/10.1134/s1028334x11090170
    Harris, M. A., 1977. The Stages of Magmatism and Metamorphism in the Pre-Jurassic History of the Urals and Preurals. Nauka, Moscow. 296 (in Russian)
    Hawthorne, F. C., Oberti, R., Harlow, G. E., et al., 2012. Nomenclature of the Amphibole Supergroup. American Mineralogist, 97(11/12): 2031–2048. https://doi.org/10.2138/am.2012.4276
    Hetzel, R., Romer, R. L., 2000. A Moderate Exhumation Rate for the High-Pressure Maksyutov Complex, Southern Urals, Russia. Geological Journal, 35(3/4): 327–344. https://doi.org/10.1002/gj.862
    Holland, T. J. B., Powell, R., 1998. An Internally Consistent Thermodynamic Data Set for Phases of Petrological Interest. Journal of Metamorphic Geology, 16(3): 309–343. https://doi.org/10.1111/j.1525-1314.1998.00140.x
    Holland, T. J. B., Powell, R., 1996. Thermodynamics of Order-Disorder in Minerals; Ⅱ, Symmetric Formalism Applied to Solid Solutions. American Mineralogist, 81(11/12): 1425–1437. https://doi.org/10.2138/am-1996-11-1215
    Holland, T. J. B., Powell, R., 2003. Activity-Composition Relations for Phases in Petrological Calculations: An Asymmetric Multicomponent Formulation. Contributions to Mineralogy and Petrology, 145(4): 492–501. https://doi.org/10.1007/s00410-003-0464-z
    Jamieson, R. A., O'Beirne-Ryan, A. M., 1991. Decompression-Induced Growth of Albite Porphyroblasts, Fleur de Lys Supergroup, Western Newfoundland. Journal of Metamorphic Geology, 9(4): 433–439. https://doi.org/10.1111/j.1525-1314.1991.tb00537.x
    Kolesnikov, A. V., Marusin, V. V., Nagovitsin, K. E., et al., 2015. Ediacaran Biota in the Aftermath of the Kotlinian Crisis: Asha Group of the South Urals. Precambrian Research, 263: 59–78. https://doi.org/10.1016/j.precamres.2015.03.011
    Krasnobaev, A. A., Kozlov, V. I., Puchkov, V. N., et al., 2008. The Akhmerovo Granite Massif: A Proxy of Mesoproterozoic Intrusive Magmatism in the Southern Urals. Doklady Earth Sciences, 418(1): 103–108. https://doi.org/10.1134/s1028334x08010236
    Krogh Ravna, E., 2000. The Garnet-Clinopyroxene Fe2+-Mg Geothermometer: An Updated Calibration. Journal of Metamorphic Geology, 18(2): 211–219. https://doi.org/10.1046/j.1525-1314.2000.00247.x
    Kuznetsov, N. B., Natapov, L. M., Belousova, E. A., et al., 2010. Geochronological, Geochemical and Isotopic Study of Detrital Zircon Suites from Late Neoproterozoic Clastic Strata along the NE Margin of the East European Craton: Implications for Plate Tectonic Models. Gondwana Research, 17(2/3): 583–601. https://doi.org/10.1016/j.gr.2009.08.005
    Kuznetsov, N. B., Soboleva, A. A., Udoratina, O. V., et al., 2007. Pre-Ordovician Tectonic Evolution and Volcano Plutonic Associations of the Timanides and Northern Pre-Uralides, Northeast Part of the East European Craton. Gondwana Research, 12(3): 305–323. https://doi.org/10.1016/j.gr.2006.10.021
    Leake, B. E., Woolley, A. R., Arps, C. E. S., et al., 1997. Nomenclature of Amphiboles Report of the Subcommittee on Amphiboles of the International Mineralogical Association Commission on New Minerals and Mineral Names. European Journal of Mineralogy, 9(3): 623–651. https://doi.org/10.1127/ejm/9/3/0623
    Lennykh, V. I., 1968. The Regional Metamorphism of the Precambrian Deposits of the Western Urals Western Slope and Ural-Tau Ridge. Uralian Branch of the USSR Academy of Science, Sverdlowsk. 67
    Ludwig, K., 2009. Isoplot V. 3.71: A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center, Berkeley, California. Special Publication, 4: 70
    Maslov, A. V., Erdtmann, B. D., Ivanov, K. S., et al., 1997. The Main Tectonic Events, Depositional History, and the Palaeogeography of the Southern Urals during the Riphean-Early Palaeozoic. Tectonophysics, 276(1/2/3/4): 313–335. https://doi.org/10.1016/s0040-1951(97)00064-4
    Matenaar, I., Glasmacher, U. A., Pickel, W., et al., 1999. Incipient Metamorphism between Ufa and Beloretzk, Western Fold-And-Thrust Belt, Southern Urals, Russia. Geologische Rundschau, 87(4): 545–560. https://doi.org/10.1007/s005310050230
    Matte, P., Maluski, H., Caby, R., et al., 1993. Geodynamic Model and 39Ar/40Ar Dating for the Generation and Emplacement of the High Pressure (HP) Metamorphic Rocks in SW Urals. Compte Rendu Academie de Science Paris, 317: 1667–1674
    McDougall, I., Harrison, T. M., 1999. Geochronology and Thermochronology by the 40Ar/39Ar Method. Oxford University Press, Oxford. 269
    Meyer, M., Klemd, R., Hegner, E., et al., 2014. Subduction and Exhumation Mechanisms of Ultra-High and High-Pressure Oceanic and Continental Crust at Makbal (Tianshan, Kazakhstan and Kyrgyzstan). Journal of Metamorphic Geology, 32(8): 861–884. https://doi.org/10.1111/jmg.12097
    Nance, R. D., Gutiérrez-Alonso, G., Keppie, J. D., et al., 2012. A Brief History of the Rheic Ocean. Geoscience Frontiers, 3(2): 125–135. https://doi.org/10.1016/j.gsf.2011.11.008
    Nance, R. D., Murphy, J. B., 1994. Contrasting Basement Isotopic Signatures and the Palinspastic Restoration of Peripheral Orogens: Example from the Neoproterozoic Avalonian-Cadomian Belt. Geology, 22(7): 617. https://doi.org/10.1130/0091-7613(1994)022 < 0617:cbisat > 2.3.co; 2 doi: 10.1130/0091-7613(1994)022<0617:cbisat>2.3.co;2
    Nikiforov, O. V., Kaleganov, B. A., 1991. Potassium-Argon Dating in the Zonal Metamorphism of the Kvarkush Plateau. Ezhegodnik 1990, IGG Ekaterinburg, UrO AN SSSR. 78–79 (in Russian)
    Pindell, J. L., Barrett, S. F., 1990. Geological Evolution of the Caribbean Region: A Plate-Tectonic Perspective. In: Dengo, G., Case, J. E., eds., The Caribbean Region. In: The Geology of North America, Vol. H. Geological Society of America, Boulder. 405–432
    Powell, R., Holland, T. J. B., 1999. Relating Formulations of the Thermodynamics of Mineral Solid Solutions: Activity Modeling of Pyroxenes, Amphiboles, and Micas. American Mineralogist, 84(1/2): 1–14. https://doi.org/10.2138/am-1999-1-201
    Puchkov, V. N., 1997. Structure and Geodynamics of the Uralian Orogen. In: Burg, J. P., Ford, M., eds., Orogeny through Time. Geological Society London, Special Publications, 121: 201–236
    Puchkov, V. N., 2010. Geology of the Urals and Pre-Urals. Russian Academy of Sience, Ufa Branch, Institute of Geology, Ufa. 280
    Puchkov, V. N., 2013. Structural Stages and Evolution of the Urals. Mineralogy and Petrology, 107(1): 3–37. https://doi.org/10.1007/s00710-012-0263-1
    Puchkov, V. N., Bogdanova, S. V., Ernst, R. E., et al., 2013. The ca. 1 380 Ma Mashak Igneous Event of the Southern Urals. Lithos, 174: 109–124. https://doi.org/10.1016/j.lithos.2012.08.021
    Puchkov, V. N., Krasnobaev, A. A., Sergeeva, N. D., 2014. The New Data on Stratigraphy of the Riphean Stratotype in the Southern Urals, Russia. Journal of Geoscience and Environment Protection, 02(3): 108–116. https://doi.org/10.4236/gep.2014.23015
    Rieder, M., Cavazini, G., D'Yakonov, Y. S., et al., 1998. Nomenclature of the Micas. Canadian Mineralogist, 36: 905–912 http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_7f07afb8c19709da256f57be45a889f5
    Ring, U., Brandon, M. T., 1999. Ductile Deformation and Mass Loss in the Franciscan Subduction Complex: Implications for Exhumation Processes in Accretionary Wedges. Geological Society, London, Special Publications, 154(1): 55–86. https://doi.org/10.1144/gsl.sp.1999.154.01.03
    Ring, U., Glodny, J., 2010. No Need for Lithospheric Extension for Exhuming (U)HP Rocks by Normal Faulting. Journal of the Geological Society, 167(2): 225–228. https://doi.org/10.1144/0016-76492009-134
    Rusin, A. I., 1996. Metamorphic Map of the Northern Part of the Kvarkush Uplift (Northern Urals). Ezhegodnik 1995, IGG Ekaterinburg, UrO RAN. 96–99 (in Russian)
    Semikhatov, M. A., Shurkin, K. A., Aksenov, E. M., et al., 1991. A New Stratigraphic Scale for the Precambrian of the USSR. Izvestija, Akademia Nauk SSSR, Ser. Geol., 4: 3–13 (in Russian) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1080/00206819109465699
    Shardakova, G. Y., 2016. Geochemistry and Isotopic Ages of Granitoids of the Bashkirian Mega-Anticlinorium: Evidence for Several Pulses of Tectono-Magmatic Activity at the Junction Zone between the Uralian Orogen and East European Platform. Geochemistry International, 54(7): 594–608. https://doi.org/10.1134/s0016702916070089
    Shervais, J. W., Dennis, A. J., Mcgee, J. J., et al., 2003. Deep in the Heart of Dixie: Pre-Alleghanian Eclogite and HP Granulite Metamorphism in the Carolina Terrane, South Carolina, USA. Journal of Metamorphic Geology, 21(1): 65–80. https://doi.org/10.1046/j.1525-1314.2003.00416.x
    Shvetsov, P. N., 1980. Stratigraphy of the Beloretzk Complex, Southern Urals. Sovjetskaya Geologiya, 3: 43–55 (in Russian)
    Sobolev, D., Avtoneyev, S. V., Belkovskaya, T. Y., et al., 1968. Tectonic Map of the Urals on a Scale 1 : 1 000 000 with Explanatory Notes. Ural-Geologiya Sverdlovsk (in Russian)
    Spear, F. S., 1993. Metamorphic Phase Equilibria and Pressure-Temperature- Time Paths. Mineralogical Society of America Monograph, Washington DC. 799
    Torsvik, T., Smethurst, M., Meert, J., et al., 1996. Continental Break-up and Collision in the Neoproterozoic and Palaeozoic—A Tale of Baltica and Laurentia. Earth-Science Reviews, 40(3/4): 229–258. https://doi.org/10.1016/0012-8252(96)00008-6
    Villa, I. M., 1998. Isotopic Closure. Terra Nova, 10(1): 42–47. https://doi.org/10.1046/j.1365-3121.1998.00156.x
    Villa, I. M., 2006. From Nanometer to Megameter: Isotopes, Atomic-Scale Processes, and Continent-Scale Tectonic Models. Lithos, 87(3/4): 155–173. https://doi.org/10.1016/j.lithos.2005.06.012
    Villa, I. M., 2015. 39Ar-40Ar Geochronology of Mono- and Polymetamorphic Basement Rocks. Periodico di Mineralogia, 84: 615–632 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=9164915659c807ba013f631055b483df
    Villa, I. M., De Bièvre, P., Holden, N. E., et al., 2015. IUPAC-IUGS Recommendation on the Half Life of 87Rb. Geochimica et Cosmochimica Acta, 164: 382–385. https://doi.org/10.1016/j.gca.2015.05.025
    Waters, D. J., Martin, H. N., 1993. Geobarometry of Phengite-Bearing Eclogites. Terra Abstracts, 5: 410–411
    White, C. E., Barr, S. M., Jamieson, R. A., et al., 2001. Neoproterozoic High-Pressure/Low-Temperature Metamorphic Rocks in the Avalon Terrane, Southern New Brunswick, Canada. Journal of Metamorphic Geology, 19(5): 519–530. https://doi.org/10.1046/j.0263-4929.2001.00326.x
    Wijbrans, J. R., McDougall, I., 1986. 40Ar/39Ar Dating of White Micas from an Alpine High-Pressure Metamorphic Belt on Naxos (Greece): The Resetting of the Argon Isotopic System. Contributions to Mineralogy and Petrology, 93(2): 187–194. https://doi.org/10.1007/bf00371320
    Willner, A. P., 2005. Pressure-Temperature Evolution of a Late Palaeozoic Paired Metamorphic Belt in North-Central Chile (34°–35°30'S). Journal of Petrology, 46(9): 1805–1833. https://doi.org/10.1093/petrology/egi035
    Willner, A. P., Ermolaeva, T., Stroink, L., et al., 2001. Contrasting Provenance Signals in Riphean and Vendian Sandstones in the SW Urals (Russia): Constraints for a Change from Passive to Active Continental Margin Conditions in the Neoproterozoic. Precambrian Research, 110(1/2/3/4): 215–239. https://doi.org/10.1016/s0301-9268(01)00190-5
    Willner, A. P., Gerdes, A., Massonne, H.-J., et al., 2014. Crustal Evolution of the Northeast Laurentian Margin and the Peri-Gondwanan Microcontinent Ganderia Prior to and during Closure of the Iapetus Ocean: Detrital Zircon U-Pb and Hf Isotope Evidence from Newfoundland. Geoscience Canada, 41(3): 345–361. https://doi.org/10.12789/geocanj.2014.41.046
    Willner, A. P., Sindern, S., Metzger, R., et al., 2002. Typology and Single Grain U/Pb Ages of Detrital Zircons from Proterozoic Sandstones in the SW Urals (Russia): Early Time Marks at the Eastern Margin of Baltica. Precambrian Research, 124(1): 1–20. https://doi.org/10.1016/s0301-9268(03)00045-7
    Willner, A. P., Thomson, S. N., Kröner, A., et al., 2005. Time Markers for the Evolution and Exhumation History of a Late Palaeozoic Paired Metamorphic Belt in North-Central Chile (34°–35°30'S). Journal of Petrology, 46(9): 1835–1858. https://doi.org/10.1093/petrology/egi036
    Willner, A. P., Wartho, J. A., Kramm, U., et al., 2004. Laser 40Ar/39Ar Ages of Single Detrital White Mica Grains Related to the Exhumation of Neoproterozoic and Late Devonian High Pressure Rocks in the Southern Urals (Russia). Geological Magazine, 141(2): 161–172. https://doi.org/10.1017/s0016756803008628
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(14)  / Tables(3)

    Article Metrics

    Article views(735) PDF downloads(20) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return