Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 31 Issue 1
Jan 2020
Turn off MathJax
Article Contents
Hongfeng Shi, Junpeng Wang, Yuan Yao, Jing Zhang, Song Jin, Yingxin Zhu, Kang Jiang, Xiaolong Tian, Deng Xiao, Wenbin Ning. Geochemistry and Geochronology of Diorite in Pengshan Area of Jiangxi Province: Implications for Magmatic Source and Tectonic Evolution of Jiangnan Orogenic Belt. Journal of Earth Science, 2020, 31(1): 23-34. doi: 10.1007/s12583-020-0875-z
Citation: Hongfeng Shi, Junpeng Wang, Yuan Yao, Jing Zhang, Song Jin, Yingxin Zhu, Kang Jiang, Xiaolong Tian, Deng Xiao, Wenbin Ning. Geochemistry and Geochronology of Diorite in Pengshan Area of Jiangxi Province: Implications for Magmatic Source and Tectonic Evolution of Jiangnan Orogenic Belt. Journal of Earth Science, 2020, 31(1): 23-34. doi: 10.1007/s12583-020-0875-z

Geochemistry and Geochronology of Diorite in Pengshan Area of Jiangxi Province: Implications for Magmatic Source and Tectonic Evolution of Jiangnan Orogenic Belt

doi: 10.1007/s12583-020-0875-z
More Information
  • Corresponding author: Junpeng Wang
  • Received Date: 22 Aug 2019
  • Accepted Date: 07 Nov 2019
  • Publish Date: 01 Feb 2020
  • Magmatic activities associated with tectonic events play a significant role in understanding the evolution of an orogenic belt. The Jiangnan orogenic belt has been regarded as the collisional suture zone between the Yangtze Block and the Cathaysia Block. Although the magmatic activities during the period of intra-plate extension after the collision have been well studied in recent years,some remaining issues,including source nature and geodynamic mechanism,need to be further addressed. In this paper,based on a detailed field geological,petrological,geochemical and geochronological study,we focus our work on diorites in the Pengshan area located at the northwestern margin of the Jiangnan orogenic belt. The mineral assemblages are mainly composed of plagioclase (55 vol.%-65 vol.%) and hornblende (35 vol.%-45 vol.%). One diorite sample yields zircon 206Pb/238U mean age of 768±8 Ma (MSWD=0.29). The diorites have enriched large ion lithophile elements (Ba,K and Rb) and incompatible elements (Th and U),and are depleted in high field-strength elements including Ta,Ti and Nb. Diorites in this study have relatively high MgO content (6.56 wt.%-7.58 wt.%,7.07 wt.% on average) and Mg number values (65-67,65.8 on average). The diorites are metaluminous,high K calc-alkaline series rocks with high contents of K2O (1.59 wt.%-1.97 wt.%) and total alkali (Na2O+K2O=5.56 wt.%-6.05 wt.%). The Nd/Th ratio (4.34-5.27) is higher than that of crust-derived rocks and lower than mantle-derived rocks. The Rb/Sr ratio (0.19-0.22) is slightly lower than crust,but significantly higher than upper mantle. Based on the above geochemical and geochronological analyses,we suggest that the diorites in the Pengshan area were mainly derived from crustal materials with a small amount of mantle-originated materials involved,and possibly produced from an extensional tectonic setting after the collision between the Yangtze Block and Cathaysia Block.

     

  • loading
  • Arnaud, N. O., Vidal, P., Tapponnier, P., et al., 1992. The High K2O Volcanism of Northwestern Tibet: Geochemistry and Tectonic Implications. Earth and Planetary Science Letters, 111(2/3/4): 351-367. https://doi.org/10.1016/0012-821x(92)90189-3
    Bea, F., Arzamastsev, A., Montero, P., et al., 2001. Anomalous Alkaline Rocks of Soustov, Kola: Evidence of Mantle-Derived Metasomatic Fluids Affecting Crustal Materials. Contributions to Mineralogy and Petrology, 140(5): 554-566. https://doi.org/10.1007/s004100000211
    Bi, H., 1999. The Pengshan Source Structure and Its Control over Mineralization. Geology and Exploration, 9: 12-16 (in Chinese with English Abstract)
    Cheng, H., 1991. The Late Proterozoic Collision Orgen in Northwestern Zhejiang Province. Geological Review, 3: 203-213 (in Chinese with English Abstract)
    Deng, G. H., Luo, F., Song, Z. R., et al., 2003. Mapping of the Low-Grade Terrains in the Northeast of Jiangxi, the South of Anhui, Tectono-Rock Block-Strata Method. Journal of East China Geological Institute, 1: 32-37 (in Chinese with English Abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hddzxyxb200301008
    Deng, Q., Wang, Z. J., Wang, J., et al., 2016. 800-780 Ma Continental Rift Magmatism in the Eastern Part of the Jiangnan Orogen: Implications from ~790 Ma Aluminous A-Type Granites in Zhejiang-Anhui-Jiangxi Border Area. Geological Bulletin of China, 35(11): 1855-1868 (in Chinese with English Abstract)
    Dong, S. W., Zhang, Y. Q., Gao, R., et al., 2015. A Possible Buried Paleoproterozoic Collisional Orogen beneath Central South China: Evidence from Seismic-Reflection Profiling. Precambrian Research, 264: 1-10. https://doi.org/10.1016/j.precamres.2015.04.003
    Ge, W. C., Li, X. H., Li, Z. X., et al., 2001. Mafic Intrusions in Longsheng Area: Age and Its Geological Implications. Chin. J. Geol., 36: 112-118 (in Chinese with English Abstract)
    King, P. L., Chappell, B. W., Allen, C. M., et al., 2001. Are A-Type Granites the High-Temperature Felsic Granites? Evidence from Fractionated Granites of the Wangrah Suite. Australian Journal of Earth Sciences, 48(4): 501-514. https://doi.org/10.1046/j.1440-0952.2001.00881.x
    Li, X. H., 2000. Cretaceous Magmatism and Lithospheric Extension in Southeast China. Journal of Asian Earth Sciences, 18(3): 293-305. https://doi.org/10.1016/s1367-9120(99)00060-7
    Li, X. H., Li, W. X., Li, Z. X., et al., 2008. 850-790 Ma Bimodal Volcanic and Intrusive Rocks in Northern Zhejiang, South China: A Major Episode of Continental Rift Magmatism during the Breakup of Rodinia. Lithos, 102(1/2): 341-357. https://doi.org/10.1016/j.lithos.2007.04.007
    Li, X. H., Li, Z. X., Li, W. X., 2014. Detrital Zircon U-Pb Age and Hf Isotope Constrains on the Generation and Reworking of Precambrian Continental Crust in the Cathaysia Block, South China: A Synthesis. Gondwana Research, 25(3): 1202-1215. https://doi.org/10.1016/j.gr.2014.01.003
    Li, Z. X., Li, X. H., Kinny, P. D., et al., 2003. Geochronology of Neoproterozoic Syn-Rift Magmatism in the Yangtze Craton, South China and Correlations with Other Continents: Evidence for a Mantle Superplume that Broke up Rodinia. Precambrian Research, 122(1/2/3/4): 85-109. https://doi.org/10.1016/s0301-9268(02)00208-5
    Lassiter, J. C., DePaolo, D. J., 1997. Plume/Lithosphere Interaction in the Generation of Continental and Oceanic Flood Basalts: Chemical and Isotope Constraints. In: Mahoney. J., ed., Large Igneous Provinces: Continental, Oceanic, and Planetary Flood Volcanism. Geophysical Monography 100, American Geophysical Union, Washionton DC. 335-355
    Liu, Y. S., Gao, S., Hu, Z. C., et al., 2010. Continental and Oceanic Crust Recycling-Induced Melt-Peridotite Interactions in the Trans-North China Orogen: U-Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths. Journal of Petrology, 51(1/2): 537-571. https://doi.org/10.1093/petrology/egp082
    Lou, F. S., Huang, Z. Z., Song, Z. R., et al., 2003. Geotectonic Evolution Modal of the Middle-New Proterozoic Orogenic Belt in the Central Part of South China. Geological Survey and Research, 26(4): 200-206 (in Chinese with English Abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=qhwjyjjz200304002
    Ma, C. X., 1989. A High-Volatile Diapiric Granite Dome in the Pengshan Area and Its Ore-Controlling Role. Geological Review, 35(2): 127-135 (in Chinese with English Abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzlp198902004
    Patiño Douce, A. E., 1997. Generation of Metaluminous A-Type Granites by Low-Pressure Melting of Calc-Alkaline Granitoids. Geology, 25(8): 743 https://doi.org/10.1130/0091-7613(1997)025 < 0743:gomatg > 2.3.co; 2 doi: 10.1130/0091-7613(1997)025<0743:gomatg>2.3.co;2
    Pearce, J. A., Cann, J. R., 1973. Tectonic Setting of Basic Volcanic Rocks Determined Using Trace Element Analyses. Earth and Planetary Science Letters, 19(2): 290-300. https://doi.org/10.1016/0012-821x(73)90129-5
    Pearce, J.A., 1996. Sources and Settings of Granitic Rocks. Episodes, 19(4): 120-125. https://doi.org/10.18814/epiiugs/1996/v19i4/005
    Polat, A., Hofmann, A. W., 2003. Alteration and Geochemical Patterns in the 3.7-3.8 Ga Isua Greenstone Belt, West Greenland. Precambrian Research, 126(3/4): 197-218. https://doi.org/10.1016/s0301-9268(03)00095-0
    Rudnick, R. L., Gao, S., 2003. Composition of the Continental Crust. Treatise on Geochemistry (Second Edition), 4: 1-51 doi: 10.1016-0016-7037(95)00038-2/
    Shu, L. S., 2012. An Analysis of Principal Features of Tectonic Evolution in South China Block. Geological Bulletin of China, 31(7): 1035-1053 (in Chinese with English Abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz201207003
    Shu, L. S., Shi, Y. S., Guo, L. Z., et al., 1995. Plate Tectonic Evolution and the Kinematics of Collisional Orogeny in the Middle Jiangnan, Eastern China. Nanjing University Press, Nanjing (in Chinese with English Abstract)
    Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313-345. https://doi.org/10.1144 /gsl.sp.1989.042.01.19. doi: 10.1144/gsl.sp.1989.042.01.19
    Taylor, S. R., McLennan, S. M., 1995. The Geochemical Evolution of the Continental Crust. Reviews of Geophysics, 33(2): 241. https://doi.org/10.1029/95rg00262
    Thompson, A. B., 1996. Fertility of Crustal Rocks during Anatexis. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 87(1/2): 1-10. https://doi.org/10.1017/s0263593300006428
    Wang, J. P., Kusky, T. M., Wang, L., et al., 2017. Petrogenesis and Geochemistry of Circa 2.5 Ga Granitoids in the Zanhuang Massif: Implications for Magmatic Source and Neoarchean Metamorphism of the North China Craton. Lithos, 268-271: 149-162. https://doi.org/10.1016/j.lithos.2016.10.028
    Wang, J. P., Li, X. W., Ning, W. B., et al., 2019. Geology of a Neoarchean Suture: Evidence from the Zunhua Ophiolitic Mélange of the Eastern Hebei Province, North China Craton. GSA Bulletin. https://doi.org/10.1130/b35138.1
    Wang, Q., Wyman, D. A., Li, Z. X., et al., 2010. Petrology, Geochronology and Geochemistry of ca. 780 Ma A-Type Granites in South China: Petrogenesis and Implications for Crustal Growth during the Breakup of the Supercontinent Rodinia. Precambrian Research, 178(1/2/3/4): 185-208. https://doi.org/10.1016/j.precamres.2010.02.004
    Wang, S. J., Schertl, H. P., Pang, Y. M., 2019a. Geochemistry, Geochronology and Sr-Nd-Hf Isotopes of Two Types of Early Cretaceous Granite Porphyry Dykes in the Sulu Orogenic Belt, Eastern China. Canadian Journal of Earth Sciences. https://doi.org/10.1139/cjes-2019-0003
    Wang, S. J., Li, X. P., Schertl, H. P., et al., 2019b. Petrogenesis of Early Cretaceous Andesite Dykes in the Sulu Orogenic Belt, Eastern China. Mineralogy and Petrology, 113(1): 77-97. https://doi.org/10.1007/s00710-018-0636-1
    Wang, W., Zhao, J. H., Zhou, M. F., et al., 2014. Neoproterozoic Mafic- Ultramafic Intrusions from the Fanjingshan Region, South China: Implications for Subduction-Related Magmatism in the Jiangnan Fold Belt. The Journal of Geology, 122(4): 455-473. https://doi.org/10.1086/676596
    Wang, W., Zhou, M. F., Yan, D. P., et al., 2013. Detrital Zircon Record of Neoproterozoic Active-Margin Sedimentation in the Eastern Jiangnan Orogen, South China. Precambrian Research, 235: 1-19. https://doi.org/10.1016/j.precamres.2013.05.013
    Wang, X. L., Shu, X. J., Xing, G. F., et al., 2012. LA-ICP-MS Zircon U-Pb Ages of the Shijiao-Huangshan Intrusive Rocks in Zhuji Area, Zhejiang Province: Implications for the Petrogenesis of the Ultramafic Orbicular Rocks. Geological Bulletin of China, 31(1): 75-81 (in Chinese with English Abstract)
    Wang, X. L., Zhou, J. C., Chen, X., et al., 2017. Formation and Evolution of the Jiangnan Orogen. Bulletin of Mineralogy. Petrology and Geochemistry, 5: 714-735 (in Chinese with English Abstract)
    Wang, X. L., Zhou, J. C., Qiu, J. S., et al., 2008. Geochronology and Geochemistry of Neoproterozoic Mafic Rocks from Western Hunan, South China: Implications for Petrogenesis and Post-Orogenic Extension. Geological Magazine, 145(2): 215-233. https://doi.org/10.1017/s0016756807004025
    Wang, X. X., Wang, T., Qi, Q. J., et al., 2011. Temporal Spatial Variations, Origin and Their Tectonic Significance of the Late Mesozoic Granites in the Qinling, Central China. Acta Prtrologica Sinica, 27(6): 1573-1593 (in Chinese with English Abstract)
    Wang, Y. Y., Song, C. Z., Li, J. H., et al., 2019. Deformational Characteristics and LA-ICP-MS Zircon U-Pb Ages of Granites at Shiershan in the Jiangnan Orogen and Their Geological Significance. Geological Review, 65(1): 85-102 (in Chinese with English Abstract) http://d.old.wanfangdata.com.cn/Periodical/dzlp201901011
    Wang, Z. J., Wang, J., Duan, T. Z., et al., 2010. Geochronology of Middle Neoproterozoic Volcanic Deposits in Yangtze Craton Interior of South China and Its Implications to Tectonic Settings. Science China Earth Science, 53: 1307-1315 (in Chinese with English Abstract) doi: 10.1007/s11430-010-4012-1
    Wu, F. Y., Li, X. H., Yang, J. H., et al., 2007. Discussions on the Petrogensis Granites. Acta Petrologica Sinica, 23(6): 1217-1238 (in Chinese with English Abstract)
    Wu, R. X., Zheng, Y. F, Wu, Y. B., 2005. Zircon U-Pb Age, Element and Oxygen Isotope Geochemisty of Neoproterozoic Granites at Shiershan in South Anhui Province. Geological Journal of China Universities, 11(3): 364-382 (in Chinese with English Abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxdzxb200503008
    Wu, R. X., Zheng, Y. F., Wu, Y. B., et al., 2006. Reworking of Juvenile Crust: Element and Isotope Evidence from Neoproterozoic Granodiorite in South China. Precambrian Research, 146(3/4): 179-212. https://doi.org/10.1016/j.precamres.2006.01.012
    Wu, W. G., Xie W. H., 2005. The features of Pengshan Dome Strata Bound the Dominating Magma and Mine of the Pengshan Area, Dean Country, Jiangxi. Beijing Geology, 17(1): 7-11 (in Chinese with English Abstract)
    Wu, Y. B., Zheng, Y. F., 2004. Genesis of Zircon and Its Constraints on Interpretation of U-Pb Age. Chinese Science Bulletin, 49(15): 1554-1569. https://doi.org/10.1007/bf03184122
    Xia, Y., Xu, X. S., Niu, Y. L., et al., 2018. Neoproterozoic Amalgamation between Yangtze and Cathaysia Blocks: The Magmatism in Various Tectonic Settings and Continent-Arc-Continent Collision. Precambrian Research, 309: 56-87. https://doi.org/10.1016/j.precamres.2017.02.020
    Xin, Y. J., Li, J. H., Dong, S. W., et al., 2017. Neoproterozoic Post-Collisional Extension of the Central Jiangnan Orogen: Geochemical, Geochronological, and Lu-Hf Isotopic Constraints from the Ca. 820-800 Ma Magmatic Rocks. Precambrian Research, 294: 91-110. https://doi.org/10.1016/j.precamres.2017.03.018
    Yang, F., Song, C. Z., Ren, S. L., et al., 2015. Metamorphism and Deformation of the Lushan Metamorphic Core Complex and Their Tectonic Significance. Geological Review, 61(4): 752-766 (in Chinese with English Abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzlp201504005
    Yao, J. L., Shu, L. S., Santosh, M., 2014. Neoproterozoic Arc-Trench System and Breakup of the South China Craton: Constraints from N-MORB Type and Arc-Related Mafic Rocks, and Anorogenic Granite in the Jiangnan Orogenic Belt. Precambrian Research, 247: 187-207. https://doi.org/10.1016/j.precamres.2014.04.008
    Yin, G. S., Xie, G. G., 1996. Extensional Structure and the Xingzi Metamorphic Core Complex in the Lushan Area, Jiangxi. Regional Geology of China, 1: 7-26 (in Chinese with English Abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199600880200
    Zhang, G. W., Guo, A. L., Wang, Y. J., et al., 2013. Tectonics of South China Continent and Its Implications. Science China Earth Sciences, 56(11): 1804-1828. https://doi.org/10.1007/s11430-013-4679-1
    Zheng, Y. F., Wu, R. X., Wu, Y. B., et al., 2008. Rift Melting of Juvenile Arc-Derived Crust: Geochemical Evidence from Neoproterozoic Volcanic and Granitic Rocks in the Jiangnan Orogen, South China. Precambrian Research, 163(3/4): 351-383. https://doi.org/10.1016/j.precamres.2008.01.004
    Zhou, J. B., Li, X. H., Ge, W. C., et al., 2007. Age and Origin of Middle Neoproterozoic Mafic Magmatism in Southern Yangtze Block and Relevance to the Break-Up of Rodinia. Gondwana Research, 12(1/2): 184-197. https://doi.org/10.1016/j.gr.2006.10.011
    Zhou, J. C., Wang, X. L., Qiu, J. S., 2009. Geochronology of Neoproterozoic Mafic Rocks and Sandstones from Northeastern Guizhou, South China: Coeval Arc Magmatism and Sedimentation. Precambrian Research, 170(1/2): 27-42. https://doi.org/10.1016/j.precamres.2008.11.002
    Zhou, J. C., Wang, X. L., Qiu, J. S., et al., 2004. Geochemistry of Meso- and Neoproterozoic Mafic-Ultramafic Rocks from Northern Guangxi, China: Arc or Plume Magmatism. Geochemical Journal, 38(2): 139-152. https://doi.org/10.2343/geochemj.38.139 (in Chinese with English Abstract)
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(4)

    Article Metrics

    Article views(844) PDF downloads(73) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return