Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 32 Issue 1
Mar 2021
Turn off MathJax
Article Contents
Zhe Song, Houmin Li, Lixing Li, Jianhua Ding, Jie Meng. Iron Isotopes and Trace Element Compositions of Magnetite from the Submarine Volcanic-Hosted Iron Deposits in East Tianshan, NW China: New Insights into the Mineralization Processes. Journal of Earth Science, 2021, 32(1): 219-234. doi: 10.1007/s12583-020-1060-0
Citation: Zhe Song, Houmin Li, Lixing Li, Jianhua Ding, Jie Meng. Iron Isotopes and Trace Element Compositions of Magnetite from the Submarine Volcanic-Hosted Iron Deposits in East Tianshan, NW China: New Insights into the Mineralization Processes. Journal of Earth Science, 2021, 32(1): 219-234. doi: 10.1007/s12583-020-1060-0

Iron Isotopes and Trace Element Compositions of Magnetite from the Submarine Volcanic-Hosted Iron Deposits in East Tianshan, NW China: New Insights into the Mineralization Processes

doi: 10.1007/s12583-020-1060-0
More Information
  • Corresponding author: Houmin Li, lihoumin2002@163.com
  • Received Date: 13 Aug 2020
  • Accepted Date: 17 Dec 2020
  • Publish Date: 01 Feb 2021
  • The Aqishan-Yamansu metallogenic belt (AYMB) in East Tianshan hosts abundant submarine volcanic-hosted iron deposits. Although there is agreement with the magmatic source of the ore-forming materials and the role of hydrothermal replacement in iron ore formation,the mineralization processes of these iron deposits remain uncertain. Three ore types are identified on the basis of the geological occurrences of minerals and the sequence of mineral in ores. The type Ⅰ ores are characterized by magnetite,diopside,amphibole with a few pyrite,and chalcopyrite. The type Ⅱ ores are mainly composed of magnetite,garnet,chlorite with a few pyrite,while the type Ⅲ ores are mainly composed of magnetite,quartz,calcite with a few pyrite. In order to constrain the mineralization processes of these ore types,we performed iron isotopes and trace element compositions of magnetite from three typical iron deposits (Yamansu,Duotoushan and Luotuofeng). Trace element and Fe isotope investigations of the three ore types reveal two major groups. The group I consists of analyses of the type Ⅰ and Ⅱ ores,with both showing a narrow range of positive δ56Fe values (+0.08‰ to +0.22‰ for type Ⅰ ores and +0.15‰ to +0.22‰ for type Ⅱ ores) and plotting in the range of the ortho-magmatic field. In contrast,the group 2 is composed merely of the type Ⅲ ores,showing a wider range of negative δ56Fe values (-0.49‰ to -0.01‰),which is similar to the features of Fe-skarn magnetite. As shown in the binary diagrams of magnetite trace elements and a fractionation of the Fe isotopes,different ore types were likely produced during gradually changing ore-forming stages from magmatic to hydrothermal. Collectively,the submarine volcanic-hosted iron deposits in the East Tianshan are likely the results of a continuous magmatic-hydrothermal mineralization process.

     

  • loading
  • Anbar, A. D. , 2004. Iron Stable Isotopes: Beyond Biosignatures. Earth and Planetary Science Letters, 217(3/4): 223-236. https://doi.org/10.1016/s0012-821x(03)00572-7
    BGMRXUAR (Bureau of Geology and Mineral Resources of Xinjiang Uygur Autonomous Region), 2010. Geological report of the Yamansu Iron Deposit in Hami, Xinjiang (in Chinese)
    Bilenker, L. D. , Simon, A. C. , Reich, M. , et al. , 2016. Fe-O Stable Isotope Pairs Elucidate a High-Temperature Origin of Chilean Iron Oxide-Apatite Deposits. Geochimica et Cosmochimica Acta, 177: 94-104. https://doi.org/10.1016/j.gca.2016.01.009
    Cai, H. M. , Yang, H. , Gong, X. K. , 2019. Geochronology and Petrogenesis of Mafic-Intermediate Intrusions on the Northern Margin of the Central Tianshan (NW China): Implications for Tectonic Evolution. Journal of Earth Science, 30(2): 323-334. https://doi.org/10.1007/s12583-018-1205-6
    Charvet, J. , Shu, L. S. , Laurent-Charvet, S. , 2007. Paleozoic Structural and Geodynamic Evolution of Eastern Tianshan (NW China): Welding of the Tarim and Junggar Plates. Episodes, 30(3): 162-186
    Chen, B. , Jahn, B. M. , 2004. Genesis of Post-Collisional Granitoids and Basement Nature of the Junggar Terrane, NW China: Nd-Sr Isotope and Trace Element Evidence. Journal of Asian Earth Sciences, 23(5): 691-703. https://doi.org/10.1016/s1367-9120(03)00118-4
    Chen, F. W. , He, G. Q. , Li, H. Q. , 2003. Tectonic Attribute of Qoltag Orogenic Belt in the Eastern Tianshan Mountains, Northwestern China. Geology in China, 30: 361-366 (in Chinese with English Abstract) http://www.cnki.com.cn/Article/CJFDTotal-DIZI200304007.htm
    Childress, T. M. , Simon, A. C. , Day, W. C. , et al. , 2016. Iron and Oxygen Isotope Signatures of the Pea Ridge and Pilot Knob Magnetite-Apatite Deposits, Southeast Missouri, USA. Economic Geology, 111(8): 2033-2044 doi: 10.2113/econgeo.111.8.2033
    Cook, N. , Ciobanu, C. , George, L. , et al. , 2016. Trace Element Analysis of Minerals in Magmatic-Hydrothermal Ores by Laser Ablation Inductively- Coupled Plasma Mass Spectrometry: Approaches and Opportunities. Minerals, 6(4): 111. https://doi.org/10.3390/min6040111
    Dare, S. A. S. , Barnes, S. J. , Beaudoin, G. , 2012. Variation in Trace Element Content of Magnetite Crystallized from a Fractionating Sulfide Liquid, Sudbury, Canada: Implications for Provenance Discrimination. Geochimica et Cosmochimica Acta, 88: 27-50. https://doi.org/10.1016/j.gca.2012.04.032
    Dare, S. A. S. , Barnes, S. J. , Beaudoin, G. , 2014b. Did the Massive Magnetite "Lava Flows" of El Laco (Chile) Form by Magmatic or Hydrothermal Processes? New Constraints from Magnetite Composition by LA-ICP-MS. Mineralium Deposita, 50(5): 607-617. https://doi.org/10.1007/s00126-014-0560-1
    Dare, S. A. S. , Barnes, S. J. , Beaudoin, G. , et al. , 2014a. Trace Elements in Magnetite as Petrogenetic Indicators. Mineralium Deposita, 49(7): 785-796. https://doi.org/10.1007/s00126-014-0529-0
    Du, L. , Yuan, C. , Li, X. P. , et al. , 2019. Petrogenesis and Geodynamic Implications of the Carboniferous Granitoids in the Dananhu Belt, Eastern Tianshan Orogenic Belt. Journal of Earth Science, 30(6): 1243-1252. https://doi.org/10.1007/s12583-019-1256-3
    Dupuis, C. , Beaudoin, G. , 2011. Discriminant Diagrams for Iron Oxide Trace Element Fingerprinting of Mineral Deposit Types. Mineralium Deposita, 46(4): 319-335. https://doi.org/10.1007/s00126-011-0334-y
    Dziony, W. , Horn, I. , Lattard, D. , et al. , 2014. In-situ Fe Isotope Ratio Determination in Fe-Ti Oxides and Sulfides from Drilled Gabbros and Basalt from the IODP Hole 1256D in the Eastern Equatorial Pacific. Chemical Geology, 363(10): 101-113. https://doi.org/10.1016/j.chemgeo.2013.10.035
    Gao, J. F. , Zhou, M. F. , Lightfoot, P. C. , et al. , 2013. Sulfide Saturation and Magma Emplacement in the Formation of the Permian Huangshandong Ni-Cu Sulfide Deposit, Xinjiang, Northwestern China. Economic Geology, 108(8): 1833-1848. https://doi.org/10.2113/econgeo.108.8.1833
    Gao, J. , Long, L. L. , Klemd, R. , et al. , 2009. Tectonic Evolution of the South Tianshan Orogen and Adjacent Regions, NW China: Geochemical and Age Constraints of Granitoid Rocks. International Journal of Earth Sciences, 98(6): 1221-1238. https://doi.org/10.1007/s00531-008-0370-8
    Han, B. F. , He, G. Q. , Wang, X. C. , et al. , 2011. Late Carboniferous Collision between the Tarim and Kazakhstan-Yili Terranes in the Western Segment of the South Tian Shan Orogen, Central Asia, and Implications for the Northern Xinjiang, Western China. Earth-Science Reviews, 109(3/4): 74-93. https://doi.org/10.1016/j.earscirev.2011.09.001
    Han, J. S. , Chen, H. Y. , Jiang, H. J. , et al. , 2019. Genesis of the Paleozoic Aqishan-Yamansu Arc-Basin System and Fe(-Cu) Mineralization in the Eastern Tianshan, NW China. Ore Geology Reviews, 105: 55-70. https://doi.org/10.1016/j.oregeorev.2018.12.012
    He X. G. , Pan Z. G. , Zhou C. P. , 2011. Metallogenic Geological Characteristics of Luotuofeng Iron Deposit in Shanshan, Xinjiang. Xinjiang Nonferrous Metals, 4: 1-5 (in Chinese)
    Heimann, A. , Beard, B. L. , Johnson, C. M. , 2008. The Role of Volatile Exsolution and Sub-Solidus Fluid/rock Interactions in Producing High 56Fe/54Fe Ratios in Siliceous Igneous Rocks. Geochimica et Cosmochimica Acta, 72(17): 4379-4396. https://doi.org/10.1016/j.gca.2008.06.009
    Hou, K. J. , Li, Y. H. , Tian, Y. Y. , 2009. In situ U-Pb Zircon Dating Using Laser Ablation Multiion Counting-ICP-MS. Mineral Deposits, 28: 481-492 (in Chinese with English Abstract)
    Hou, T. , Zhang, Z. C. , Pirajno, F. , et al. , 2014a. Geology, Tectonic Settings and Iron Ore Metallogenesis Associated with Submarine Volcanism in China: An Overview. Ore Geology Reviews, 57: 498-517. https://doi.org/10.1016/j.oregeorev.2013.08.007
    Hou, T. , Zhang, Z. C. , Santosh, M. , et al. , 2014b. Geochronology and Geochemistry of Submarine Volcanic Rocks in the Yamansu Iron Deposit, Eastern Tianshan Mountains, NW China: Constraints on the Metallogenesis. Ore Geology Reviews, 56: 487-502. https://doi.org/10.1016/j.oregeorev.2013.03.008
    Huang, F. , Zhang, Z. F. , Lundstrom, C. C. , et al. , 2011. Iron and Magnesium Isotopic Compositions of Peridotite Xenoliths from Eastern China. Geochimica et Cosmochimica Acta, 75(12): 3318-3334. https://doi.org/10.1016/j.gca.2011.03.036
    Huang, X. W. , Qi, L. , Gao, J. F. , et al. , 2013b. First Reliable Re-Os Ages of Pyrite and Stable Isotope Compositions of Fe(-Cu) Deposits in the Hami Region, Eastern Tianshan Orogenic Belt, NW China. Resource Geology, 63(2): 166-187. https://doi.org/10.1111/rge.12003
    Huang, X. W. , Qi, L. , Meng, Y. M. , 2013a. Trace Element and REE Geochemistry of Minerals from Heifengshan, Shuangfengshan and Shaquanzi (Cu-) Fe Deposits, Eastern Tianshan Mountains. Mineral Deposits, 32: 1188-1210 (in Chinese with English Abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-KCDZ201306007.htm
    Johnson, C. M. , Beard, B. L. , Roden, E. E. , et al. , 2004. Isotopic Constraints on Biogeochemical Cycling of Fe. Reviews in Mineralogy and Geochemistry, 55(1): 359-408. https://doi.org/10.2138/gsrmg.55.1.359
    Knipping, J. L. , Bilenker, L. D. , Simon, A. C. , et al. , 2015a. Giant Kiruna-Type Deposits Form by Efficient Flotation of Magmatic Magnetite Suspensions. Geology, 43(7): 591-594. https://doi.org/10.1130/g36650.1
    Knipping, J. L. , Bilenker, L. D. , Simon, A. C. , et al. , 2015b. Trace Elements in Magnetite from Massive Iron Oxide-Apatite Deposits Indicate a Combined Formation by Igneous and Magmatic-Hydrothermal Processes. Geochimica et Cosmochimica Acta, 171: 15-38. https://doi.org/10.1016/j.gca.2015.08.010
    Knipping, J. L. , Fiege, A. , Simon, A. C. , et al. , 2019. In-situ Iron Isotope Analyses Reveal Igneous and Magmatic-Hydrothermal Growth of Magnetite at the Los Colorados Kiruna-Type Iron Oxide-Apatite Deposit, Chile. American Mineralogist, 104(4): 471-484. https://doi.org/10.2138/am-2019-6623
    Li, G. R. , Wu, C. Z. , 2013. Recent Advances in Skarn Forming Models and the Yamansu Skarn Related Deposits. Geological Journal of China Universities, 19(3), 425-436 (in Chinese with English Abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-GXDX201303004.htm
    Li, H. M. , Ding, J. H. , Li, L. X. , et al. , 2014. The Genesis of the Skarn and the Genetic Type of the Yamansu Iron Deposits, Eastern Tianshan, Xinjiang. Acta Geologica Sinica, 12: 2477-2489 (in Chinese with English Abstract) http://www.researchgate.net/publication/292759104_The_genesis_of_the_skarn_and_the_genetic_type_of_the_Yamansu_iron_deposit_Eastern_Tianshan_Xinjiang
    Li, H. M., Li, L. X., 2013. Metallogenic Map of Iron Deposits in China (1: 5 000 000). Geological Publishing House, Beijing (in Chinese)
    Li, H. M. , Li, L. X. , Ding, J. H. , et al. , 2018. Occurrence of the Iron-Rich Melt in the Heijianshan Iron Deposit, Eastern Tianshan, NW China: Insights into the Origin of Volcanic Rock-Hosted Iron Deposits. Acta Geologica Sinica: English Edition, 92(2): 666-681. https://doi.org/10.1111/1755-6724.13548
    Li, Q. G. , Liu, S. W. , Wang, Z. Q. , et al. , 2008. Electron Microprobe Monazite Geochronological Constraints on the Late Palaeozoic Tectonothermal Evolution in the Chinese Tianshan. Journal of the Geological Society, 165(2): 511-522. https://doi.org/10.1144/0016-76492007-077
    Li, W. Q. , Ma, H. D. , Wang, R. , et al. , 2008. SHRIMP Dating and Nd-Sr Isotopic Tracing of Kangguertage Ophiolite in East Tianshan, Xinjiang. Acta Petrologica Sinica, 24(4): 773-780 (in Chinese with English Abstract) http://www.researchgate.net/publication/287568192_SHRIMP_dating_and_Nd-Sr_isotopic_Tracing_of_Kangguertage_ophiolite_in_eastern_Tianshan_Xinjiang
    Liu, F. , Chai, F. M. , Li, Q. , et al. , 2019. Constraints on the Timing of Fe-(Cu) Metallogenesis in the Eastern Aqishan-Yamansu-Shaquanzi Metallogenic Belt, Eastern Tianshan, NW China. Ore Geology Reviews, 113: 103089. https://doi.org/10.1016/j.oregeorev.2019.103089
    Luo, T. , Liao, Q. A. , Chen, J. P. , et al. , 2012. LA-ICP-MS Zircon U-Pb Dating of the Volcanic Rocks from Yamansu Formation in the Eastern Tianshan, and Its Geological Significance. Earth Science——Journal of China University of Geosciences, 37(6): 1338-1352 (in Chinese with English Abstract)
    Mandernack, K. W. , 1999. Oxygen and Iron Isotope Studies of Magnetite Produced by Magnetotactic Bacteria. Science, 285(5435): 1892-1896. https://doi.org/10.1126/science.285.5435.1892
    Mao, J. W. , Goldfarb, R. J. , Wang, Y. T. , et al. , 2005. Late Paleozoic Base and Precious Metal Deposits, East Tianshan, Xinjiang, China: Characteristics and Geodynamic Setting. Episodes, 28(1): 23-36. https://doi.org/10.18814/epiiugs/2005/v28i1/003
    Muhetaer, Z. , Nijat, A. , Wu, Z. N. , 2015. Geochemical Characteristics of the Volcanics from the Southern Jueluotage Area and Their Constraints on the Tectonic Evolution of Paleo-Asian Ocean. Earth Science Frontiers, 22(1): 238-250 (in Chinese with English Abstract) http://www.researchgate.net/publication/282189449_Geochemical_characteristics_of_the_volcanics_from_the_Southern_Jueluotage_Area_and_their_constraints_on_the_tectonic_evolution_of_Paleo-Asian_Ocean
    Nadoll, P. , Angerer, T. , Mauk, J. L. , et al. , 2014. The Chemistry of Hydrothermal Magnetite: A Review. Ore Geology Reviews, 61: 1-32. https://doi.org/10.1016/j.oregeorev.2013.12.013
    Pirajno, F. , 2010a. Intracontinental Strike-Slip Faults, Associated Magmatism, Mineral Systems and Mantle Dynamics: Examples from NW China and Altay-Sayan (Siberia). Journal of Geodynamics, 50(3/4): 325-346. https://doi.org/10.1016/j.jog.2010.01.018
    Pirajno, F., 2010a. Tianshan, Junggar and Altay Orogens (NW China), the Alpine-Himalayan Fold Belts (Tethyan Orogens), Kunlun and Songpan-Ganzi Terranes. The Geology and Tectonic Settings of China's Mineral Deposits, 381-545
    Qin, K. Z. , Peng, X. M. , San, J. Z. , et al. , 2003. Types of Major Ore Deposits, Division of Metallogenic Belts in Eastern Tianshan, and Discrimination of Potential Prospects of Cu, Au, Ni Mineralization. Xinjiang Geology, 21(2): 143-150 (in Chinese with English Abstract) http://www.researchgate.net/publication/313608375_Types_of_major_ore_deposits_division_of_metallogenic_belts_in_eastern_Tianshan_and_discrimination_of_potential_prospects_of_Cu_Au_Ni_mineralization
    Sang, S. J. , Peng, M. X. , Guo, Y. H. , 2003. Optimized Target Areas and Evaluation Report of Resource in the Caixiashan to Jintan Area. Xingjiang Inst of Geol Investigation, 1: 42-44 (in Chinese with English Abstract)
    Schüßler, J. A., 2008. Controls on Stable Iron Isotope Variations in Magmatic Systems: Significance of Mineral-Melt Isotopic Fractionation in Experiments and Nature: [Dissertation].
    Severmann, S. , Anbar, A. D. , 2009. Reconstructing Paleoredox Conditions through a Multitracer Approach: The Key to the Past is the Present. Elements, 5(6): 359-364. https://doi.org/10.2113/gselements.5.6.359
    Sun, J. , Zhu, X. K. , Chen, Y. L. , et al. , 2012. Fe Isotope Compositions of Related Geological Formation in Bayan Obo Area and Their Constrains on the Genesis of Bayan Obo Ore Deposit. Acta Geologica Sinica, 86(5): 819-828 (in Chinese with English Abstract) http://www.researchgate.net/publication/292779120_Fe_isotope_compositions_of_related_geological_formation_in_Bayan_Obo_area_and_their_constrains_on_the_genesis_of_Bayan_Obo_ore_deposit
    Teixeira, N. L. , Caxito, F. A. , Rosière, C. A. , et al. , 2017. Trace Elements and Isotope Geochemistry (C, O, Fe, Cr) of the Cauê Iron Formation, Quadrilátero Ferrífero, Brazil: Evidence for Widespread Microbial Dissimilatory Iron Reduction at the Archean/Paleoproterozoic Transition. Precambrian Research, 298: 39-55. https://doi.org/10.1016/j.precamres.2017.05.009
    Tornos, F. , Velasco, F. , Hanchar, J. M. , 2016. Iron-Rich Melts, Magmatic Magnetite, and Superheated Hydrothermal Systems: The El Laco Deposit, Chile. Geology, 44(6): 427-430. https://doi.org/10.1130/g37705.1
    Van Baalen, M. R. , 1993. Titanium Mobility in Metamorphic Systems: A Review. Chemical Geology, 110(1/2/3): 233-249. https://doi.org/10.1016/0009-2541(93)90256-i
    Wang, Y. , Zhu, X. K. , Mao, J. W. , et al. , 2011. Iron Isotope Fractionation during Skarn-Type Metallogeny: A Case Study of Xinqiao Cu-S-Fe-Au Deposit in the Middle-Lower Yangtze Valley. Ore Geology Reviews, 43(1): 194-202. https://doi.org/10.1016/j.oregeorev.2010.12.004
    Weis, F., 2013. Oxygen and Iron Isotope Systematics of the Grängesberg Mining District (GMD): [Dissertation]. Uppsala Universitet, Uppsala. 77
    Wu, C. Z. , Zhang, Z. X. , Zaw, K. , et al. , 2006. Geochronology, Geochemistry and Tectonic Significances of the Hongyuntan Granitoids in the Qoltag Area, Eastern Tianshan. Acta Petrologica Sinica, 22(5): 1121-1134 (in Chinese with English Abstract) http://www.researchgate.net/publication/235353498_Geochronology_geochemistry_and_tectonic_significances_of_the_Hongyuntan_granitoids_in_the_Qoltag_area_Eastern_Tianshan
    Xiao, W. J. , 2004. Paleozoic Accretionary and Collisional Tectonics of the Eastern Tianshan (China): Implications for the Continental Growth of Central Asia. American Journal of Science, 304(4): 370-395. https://doi.org/10.2475/ajs.304.4.370
    Xiao, W. J. , Han, C. M. , Yuan, C. , et al. , 2008. Middle Cambrian to Permian Subduction-Related Accretionary Orogenesis of Northern Xinjiang, NW China: Implications for the Tectonic Evolution of Central Asia. Journal of Asian Earth Sciences, 32(2/3/4): 102-117. https://doi.org/10.1016/j.jseaes.2007.10.008
    Xiao, W. J. , Windley, B. F. , Allen, M. B. , et al. , 2013. Paleozoic Multiple Accretionary and Collisional Tectonics of the Chinese Tianshan Orogenic Collage. Gondwana Research, 23(4): 1316-1341. https://doi.org/10.1016/j.gr.2012.01.012
    Yang, X. P. , Li, A. , Hunag, W. , 2013. Uplift Differential of Active Fold Zones during the Late Quaternary, Northern Piedmonts of the Tianshan Mountains, China. Science China Earth Sciences, 56(5): 794-805. https://doi.org/10.1007/s11430-012-4531-z
    Yao, P. H., Wang, K. N., Du, C. L., et al., 1993. Records of China's Iron Deposits. Metallurgic Industry Press, Beijing. 1-662 (in Chinese)
    Zhang, D. Y. , Zhou, T. F. , Yuan, F. , et al. , 2014. Genesis of Permian Granites along the Kangguer Shear Zone, Jueluotage Area, Northwest China: Geological and Geochemical Evidence. Lithos, 198/199: 141-152. https://doi.org/10.1016/j.lithos.2014.03.023
    Zhang, W. F. , Chen, H. Y. , Han, J. S. , et al. , 2016. Geochronology and Geochemistry of Igneous Rocks in the Bailingshan Area: Implications for the Tectonic Setting of Late Paleozoic Magmatism and Iron Skarn Mineralization in the Eastern Tianshan, NW China. Gondwana Research, 38: 40-59. https://doi.org/10.1016/j.gr.2015.10.011
    Zhang, X. R. , Zhao, G. C. , Sun, M. , et al. , 2016. Tectonic Evolution from Subduction to Arc-Continent Collision of the Junggar Ocean: Constraints from U-Pb Dating and Hf Isotopes of Detrital Zircons from the North Tianshan Belt, NW China. Geological Society of America Bulletin, 128(3/4): 644-660. https://doi.org/10.1130/b31230.1
    Zhang, Z. C. , Santosh, M. , Li, J. W. , 2015. Iron Deposits in Relation to Magmatism in China. Journal of Asian Earth Sciences, 113: 951-956. https://doi.org/10.1016/j.jseaes.2015.09.026
    Zhao, L. D. , Chen, H. Y. , Zhang, L. , et al. , 2017. Geology and Ore Genesis of the Late Paleozoic Heijianshan Fe Oxide-Cu(-Au) Deposit in the Eastern Tianshan, NW China. Ore Geology Reviews, 91: 110-132. https://doi.org/10.1016/j.oregeorev.2017.10.014
    Zhu, X. K. , Sun, J. , Wang, Y. , 2016. Fe Isotope Geochemistry of Magmatic System. Journal of Earth Sciences and Environment, 38(1): 1-1 (in Chinese with English Abstract)
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(3)

    Article Metrics

    Article views(159) PDF downloads(11) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return