Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 31 Issue 6
Dec 2020
Turn off MathJax
Article Contents
Xuan-Ce Wang, Simon A. Wilde, Zheng-Xiang Li, Shaojie Li, Linlin Li. Do Supercontinent-Superplume Cycles Control the Growth and Evolution of Continental Crust?. Journal of Earth Science, 2020, 31(6): 1142-1169. doi: 10.1007/s12583-020-1077-4
Citation: Xuan-Ce Wang, Simon A. Wilde, Zheng-Xiang Li, Shaojie Li, Linlin Li. Do Supercontinent-Superplume Cycles Control the Growth and Evolution of Continental Crust?. Journal of Earth Science, 2020, 31(6): 1142-1169. doi: 10.1007/s12583-020-1077-4

Do Supercontinent-Superplume Cycles Control the Growth and Evolution of Continental Crust?

doi: 10.1007/s12583-020-1077-4
More Information
  • Corresponding author: Xuan-Ce Wang, x.wang4@uq.edu.au
  • Received Date: 15 Apr 2020
  • Accepted Date: 17 Jul 2020
  • Publish Date: 18 Dec 2020
  • The evolution of continental crust can be directly linked to the first-order supercontinent-superplume cycles. We demonstrate that:(1) a mantle-like oxygen isotopic signature is not a diagnostic feature for distinguishing crustal addition from the reworking of pre-existing continental crust; (2) juvenile continental crust shows a wide range of whole-rock Hf isotopic compositions throughout Earth's history; and (3) detrital zircon Hf model ages cannot reliably determine the growth of continental crust. Thus, the wide use of zircon Hf model ages, based on zircon grains with mantle-like oxygen isotopes, is inappropriate for estimating the timing of continental crustal generation. Based on an analysis of global Hf and O isotope and zircon age databases, we argue that the actual U-Pb crystallization ages of juvenile zircon grains provide the best opportunity to unravel crustal growth through time and to test its relationship with supercontinent-superplume cycles. Furthermore, when the Hf isotopes of these juvenile grains plot within the field of juvenile continental crust, they correlate well with times of global mantle depletion as recorded by Os and He isotopes, plume activity as recorded by LIP events, and periods of crustal growth and the breakup of supercontinents. In contrast, zircon grains crystallized from magmas that were produced by partial melting of pre-existing continental crust show U-Pb age peaks that correspond mainly to times of supercontinent assembly and crustal reworking. Detailed analysis shows the key role played by recycling of mafic crustal components in the generation of juvenile continental crust.

     

  • loading
  • Alard, O., Griffin, W. L., Pearson, N. J., et al., 2002. New Insights into the Re-Os Systematics of Sub-Continental Lithospheric Mantle from in situ Analysis of Sulphides. Earth and Planetary Science Letters, 203(2):651-663. https://doi.org/10.1016/s0012-821x(02)00799-9
    Allègre, C. J., Rousseau, D., 1984. The Growth of the Continent through Geological Time Studied by Nd Isotope Analysis of Shales. Earth and Planetary Science Letters, 67(1):19-34. https://doi.org/10.1016/0012-821x(84)90035-9
    Amelin, Y., Lee, D.-C., Halliday, A. N., et al., 1999. Nature of the Earthʼs Earliest Crust from Hafnium Isotopes in Single Detrital Zircons. Nature, 399(6733):252-255. https://doi.org/10.1038/20426
    Anderson, D. L., 2005. Large Igneous Provinces, Delamination, and Fertile Mantle. Elements, 1(5):271-275. https://doi.org/10.2113/gselements.1.5.271
    Armstrong, R., 1981. Radiogenic Isotopes:The Case for Crustal Recycling on a Near-Steady-State No-Continental-Growth Earth. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 301(1461):443-472. https://doi.org/10.1098/rsta.1981.0122
    Arndt, N. T., Goldstein, S. L., 1987. Use and Abuse of Crust-Formation Ages. Geology, 15(10):893-895. https://doi.org/10.1130/0091-7613(1987)15 < 893:uaaoca > 2.0.co; 2 doi: 10.1130/0091-7613(1987)15<893:uaaoca>2.0.co;2
    Arndt, N. T., Goldstein, S. L., 1989. An Open Boundary between Lower Continental Crust and Mantle:Its Role in Crust Formation and Crustal Recycling. Tectonophysics, 161(3/4):201-212. https://doi.org/10.1016/0040-1951(89)90154-6
    Arndt, N., Davaille, A., 2013. Episodic Earth Evolution. Tectonophysics, 609:661-674. https://doi.org/10.1016/j.tecto.2013.07.002
    Aspler, L. B., Chiarenzelli, J. R., 1998. Two Neoarchean Supercontinents? Evidence from the Paleoproterozoic. Sedimentary Geology, 120(1/2/3/4):75-104. https://doi.org/10.1016/s0037-0738(98)00028-1
    Auer, S., Bindeman, I., Wallace, P., et al., 2009. The Origin of Hydrous, High-δ18O Voluminous Volcanism:Diverse Oxygen Isotope Values and High Magmatic Water Contents within the Volcanic Record of Klyuchevskoy Volcano, Kamchatka, Russia. Contributions to Mineralogy and Petrology, 157(2):209-230. https://doi.org/10.1007/s00410-008-0330-0
    Aulbach, S., Griffin, W. L., Pearson, N. J., et al., 2004. Mantle Formation and Evolution, Slave Craton:Constraints from HSE Abundances and Re-Os Isotope Systematics of Sulfide Inclusions in Mantle Xenocrysts. Chemical Geology, 208(1/2/3/4):61-88. https://doi.org/10.1016/j.chemgeo.2004.04.006
    Barbarin, B., 2005. Mafic Magmatic Enclaves and Mafic Rocks Associated with Some Granitoids of the Central Sierra Nevada Batholith, California:Nature, Origin, and Relations with the Hosts. Lithos, 80(1/2/3/4):155-177. https://doi.org/10.1016/j.lithos.2004.05.010
    Barker, S. J., Wilson, C. J. N., Baker, J. A., et al., 2012. Geochemistry and Petrogenesis of Silicic Magmas in the Intra-Oceanic Kermadec Arc. Journal of Petrology, 54(2):351-391. https://doi.org/10.1093/petrology/egs071
    Beate, B., Monzier, M., Spikings, R., et al., 2001. Mio-Pliocene Adakite Generation Related to Flat Subduction in Southern Ecuador:The Quimsacocha Volcanic Center. Earth and Planetary Science Letters, 192(4):561-570. https://doi.org/10.1016/s0012-821x(01)00466-6
    Bédard, J. H., 2006. A Catalytic Delamination-Driven Model for Coupled Genesis of Archaean Crust and Sub-Continental Lithospheric Mantle. Geochimica et Cosmochimica Acta, 70(5):1188-1214. https://doi.org/10.1016/j.gca.2005.11.008
    Behn, M. D., Kelemen, P. B., Hirth, G., et al., 2011. Diapirs as the Source of the Sediment Signature in Arc Lavas. Nature Geoscience, 4(9):641-646. https://doi.org/10.1038/ngeo1214
    Belousova, E. A., Kostitsyn, Y. A., Griffin, W. L., et al., 2010. The Growth of the Continental Crust:Constraints from Zircon Hf-Isotope Data. Lithos, 119(3/4):457-466. https://doi.org/10.1016/j.lithos.2010.07.024
    Bernini, D., Audétat, A., Dolejš, D., et al., 2013. Zircon Solubility in Aqueous Fluids at High Temperatures and Pressures. Geochimica et Cosmochimica Acta, 119:178-187. https://doi.org/10.1016/j.gca.2013.05.018
    Bindeman, I. N., Ponomareva, V. V., Bailey, J. C., et al., 2004. Volcanic Arc of Kamchatka:A Province with High-δ18O Magma Sources and Large-Scale 18O/16O Depletion of the Upper Crust. Geochimica et Cosmochimica Acta, 68(4):841-865. https://doi.org/10.1016/j.gca.2003.07.009
    Bindeman, I., 2008. Oxygen Isotopes in Mantle and Crustal Magmas as Revealed by Single Crystal Analysis. Reviews in Mineralogy and Geochemistry, 69(1):445-478. https://doi.org/10.2138/rmg.2008.69.12
    Bindeman, I., 2011. When do we Need Pan-Global Freeze to Explain 18O-Depleted Zircons and Rocks?. Geology, 39(8):799-800. https://doi.org/10.1130/focus082011.1
    Bindeman, I. N., Eiler, J. M., Yogodzinski, G. M., et al., 2005. Oxygen Isotope Evidence for Slab Melting in Modern and Ancient Subduction Zones. Earth and Planetary Science Letters, 235(3/4):480-496. https://doi.org/10.1016/j.epsl.2005.04.014
    Blichert-Toft, J., Albarède, F., 2008. Hafnium Isotopes in Jack Hills Zircons and the Formation of the Hadean Crust. Earth and Planetary Science Letters, 265(3/4):686-702. https://doi.org/10.1016/j.epsl.2007.10.054
    Blichert-Toft, J., Albarède, F., Rosing, M., et al., 1999. The Nd and Hf Isotopic Evolution of the Mantle through the Archean:Results from the Isua Supracrustals, West Greenland, and from the Birimian Terranes of West Africa. Geochimica et Cosmochimica Acta, 63(22):3901-3914. https://doi.org/10.1016/s0016-7037(99)00183-0
    Blichert-Toft, J., Arndt, N. T., 1999. Hf Isotope Compositions of Komatiites. Earth and Planetary Science Letters, 171(3):439-451. https://doi.org/10.1016/s0012-821x(99)00151-x
    Blichert-Toft, J., Arndt, N. T., Gruau, G., 2004. Hf Isotopic Measurements on Barberton Komatiites:Effects of Incomplete Sample Dissolution and Importance for Primary and Secondary Magmatic Signatures. Chemical Geology, 207(3/4):261-275. https://doi.org/10.1016/j.chemgeo.2004.03.005
    Blichert-Toft, J., Puchtel, I. S., 2010. Depleted Mantle Sources through Time:Evidence from Lu-Hf and Sm-Nd Isotope Systematics of Archean Komatiites. Earth and Planetary Science Letters, 297(3/4):598-606. https://doi.org/10.1016/j.epsl.2010.07.012
    Boehnke, P., Watson, E. B., Trail, D., et al., 2013. Zircon Saturation Re-Revisited. Chemical Geology, 351:324-334. https://doi.org/10.1016/j.chemgeo.2013.05.028
    Bolhar, R., Weaver, S. D., Whitehouse, M. J., et al., 2008. Sources and Evolution of Arc Magmas Inferred from Coupled O and Hf Isotope Systematics of Plutonic Zircons from the Cretaceous Separation Point Suite (New Zealand). Earth and Planetary Science Letters, 268(3/4):312-324. https://doi.org/10.1016/j.epsl.2008.01.022
    Bonin, B., 2007. A-Type Granites and Related Rocks:Evolution of a Concept, Problems and Prospects. Lithos, 97(1/2):1-29. https://doi.org/10.1016/j.lithos.2006.12.007
    Boschi, L., Becker, T. W., Steinberger, B., 2007. Mantle Plumes:Dynamic Models and Seismic Images. Geochemistry, Geophysics, Geosystems, 8(10):1-20. https://doi.org/10.1029/2007gc001733
    Bouilhol, P., Schaltegger, U., Chiaradia, M., et al., 2011. Timing of Juvenile Arc Crust Formation and Evolution in the Sapat Complex (Kohistan-Pakistan). Chemical Geology, 280(3/4):243-256. https://doi.org/10.1016/j.chemgeo.2010.11.013
    Bouvier, A. S., Métrich, N., Deloule, E., 2008a. Slab-Derived Fluids in the Magma Sources of St. Vincent (Lesser Antilles Arc):Volatile and Light Element Imprints. Journal of Petrology, 49(8):1427-1448. https://doi.org/10.1093/petrology/egn031
    Bouvier, A., Vervoort, J. D., Patchett, P. J., 2008b. The Lu-Hf and Sm-Nd Isotopic Composition of CHUR:Constraints from Unequilibrated Chondrites and Implications for the Bulk Composition of Terrestrial Planets. Earth and Planetary Science Letters, 273(1/2):48-57. https://doi.org/10.1016/j.epsl.2008.06.010
    Bradley, D. C., 2011. Secular Trends in the Geologic Record and the Supercontinent Cycle. Earth-Science Reviews, 108(1/2):16-33. https://doi.org/10.1016/j.earscirev.2011.05.003
    Brandon, A. D., Walker, R. J., Puchtel, I. S., 2006. Platinum-Osmium Isotope Evolution of the Earth's Mantle:Constraints from Chondrites and Os-Rich Alloys. Geochimica et Cosmochimica Acta, 70(8):2093-2103. https://doi.org/10.1016/j.gca.2006.01.005
    Bryan, S. E., Ernst, R. E., 2008. Revised Definition of Large Igneous Provinces (LIPs). Earth-Science Reviews, 86(1/2/3/4):175-202. https://doi.org/10.1016/j.earscirev.2007.08.008
    Campbell, I. H., 2007. Testing the Plume Theory. Chemical Geology, 241(3/4):153-176. https://doi.org/10.1016/j.chemgeo.2007.01.024
    Campbell, I. H., Allen, C. M., 2008. Formation of Supercontinents Linked to Increases in Atmospheric Oxygen. Nature Geoscience, 1(8):554-558. https://doi.org/10.1038/ngeo259
    Campbell, I. H., Griffiths, R. W., 1990. Implications of Mantle Plume Structure for the Evolution of Flood Basalts. Earth and Planetary Science Letters, 99(1/2):79-93. https://doi.org/10.1016/0012-821x(90)90072-6
    Campbell, I. H., O'Neill, H. S. C., 2012. Evidence Against a Chondritic Earth. Nature, 483(7391):553-558. https://doi.org/10.1038/nature10901
    Cao, Q., van der Hilst, R. D., de Hoop, M. V., et al., 2011. Seismic Imaging of Transition Zone Discontinuities Suggests Hot Mantle West of Hawaii. Science, 332(6033):1068-1071. https://doi.org/10.1126/science.1202731
    Carlson, R. W., Czamanske, G., Fedorenko, V., et al., 2006. A Comparison of Siberian Meimechites and Kimberlites:Implications for the Source of High-Mg Alkalic Magmas and Flood Basalts. Geochemistry, Geophysics, Geosystems, 7(11):1-21. https://doi.org/10.1029/2006gc001342
    Caro, G., 2011. Early Silicate Earth Differentiation. Annual Review of Earth and Planetary Sciences, 39:31-58. https://doi.org/10.1016/j.epsl.2004.07.008
    Caro, G., Bourdon, B., 2010. Non-Chondritic Sm/Nd Ratio in the Terrestrial Planets:Consequences for the Geochemical Evolution of the Mantle-Crust System. Geochimica et Cosmochimica Acta, 74(11):3333-3349. https://doi.org/10.1016/j.gca.2010.02.025
    Castillo, P. R., 2012. Adakite Petrogenesis. Lithos, 134/135:304-316. https://doi.org/10.1016/j.lithos.2011.09.013
    Castro, A., Gerya, T., Garcia-Casco, A., et al., 2010. Melting Relations of MORB-Sediment Melanges in Underplated Mantle Wedge Plumes; Implications for the Origin of Cordilleran-Type Batholiths. Journal of Petrology, 51(6):1267-1295. https://doi.org/10.1093/petrology/egq019
    Castro, A., Vogt, K., Gerya, T., 2013. Generation of New Continental Crust by Sublithospheric Silicic-Magma Relamination in Arcs:A Test of Taylorʼs Andesite Model. Gondwana Research, 23(4):1554-1566. https://doi.org/10.1016/j.gr.2012.07.004
    Cawood, P. A., Hawkesworth, C. J., Dhuime, B., 2013. The Continental Record and the Generation of Continental Crust. Geological Society of America Bulletin, 125(1/2):14-32. https://doi.org/10.1130/b30722.1
    Chappell, B. W., 1996a. Compositional Variation within Granite Suites of the Lachlan Fold Belt:Its Causes and Implications for the Physical State of Granite Magma. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 87(1/2):159-170. https://doi.org/10.1017/s026359330000657x
    Chappell, B. W., 1996b. Magma Mixing and the Production of Compositional Variation within Granite Suites:Evidence from the Granites of Southeastern Australia. Journal of Petrology, 37(3):449-470. https://doi.org/10.1093/petrology/37.3.449
    Chen, J. Y., Yang, J. H., Zhang, J. H., et al., 2013. Petrogenesis of the Cretaceous Zhangzhou Batholith in Southeastern China:Zircon U-Pb Age and Sr-Nd-Hf-O Isotopic Evidence. Lithos, 162/163:140-156. https://doi.org/10.1016/j.lithos.2013.01.003
    Chen, L., Zhao, Z. F., Zheng, Y. F., 2014. Origin of Andesitic Rocks:Geochemical Constraints from Mesozoic Volcanics in the Luzong Basin, South China. Lithos, 190/191:220-239. https://doi.org/10.1016/j.lithos.2013.12.011
    Choulet, F., Cluzel, D., Faure, M., et al., 2012. New Constraints on the Pre-Permian Continental Crust Growth of Central Asia (West Junggar, China) by U-Pb and Hf Isotopic Data from Detrital Zircon. Terra Nova, 24(3):189-198. https://doi.org/10.1111/j.1365-3121.2011.01052.x
    Chu, Z. Y., Wu, F. Y., Walker, R. J., et al., 2009. Temporal Evolution of the Lithospheric Mantle beneath the Eastern North China Craton. Journal of Petrology, 50(10):1857-1898. https://doi.org/10.1093/petrology/egp055
    Coffin, M. F., Eldholm, O., 1992. Volcanism and Continental Break-up:A Global Compilation of Large Igneous Provinces. Geological Society, London, Special Publications, 68(1):17-30. https://doi.org/10.1144/gsl.sp.1992.068.01.02
    Coltice, N., Bertrand, H., Rey, P., et al., 2009. Global Warming of the Mantle beneath Continents back to the Archaean. Gondwana Research, 15(3/4):254-266. https://doi.org/10.1016/j.gr.2008.10.001
    Coltice, N., Phillips, B. R., Bertrand, H., et al., 2007. Global Warming of the Mantle at the Origin of Flood Basalts over Supercontinents. Geology, 35(5):391. https://doi.org/10.1130/g23240a.1
    Condie, K. C., 1998. Episodic Continental Growth and Supercontinents:A Mantle Avalanche Connection?. Earth and Planetary Science Letters, 163(1/2/3/4):97-108. https://doi.org/10.1016/s0012-821x(98)00178-2
    Condie, K. C., 2000. Episodic Continental Growth Models:Afterthoughts and Extensions. Tectonophysics, 322(1/2):153-162. https://doi.org/10.1016/s0040-1951(00)00061-5
    Condie, K. C., 2005. TTGs and Adakites:Are they both Slab Melts?. Lithos, 80(1/2/3/4):33-44. https://doi.org/10.1016/j.lithos.2003.11.001
    Condie, K. C., Abbott, D., 1999. Oceanic Plateaus and Hotspot Islands:Identification and Role in Continental Growth. Lithos, 46:1-4
    Condie, K. C., Aster, R. C., 2010. Episodic Zircon Age Spectra of Orogenic Granitoids:The Supercontinent Connection and Continental Growth. Precambrian Research, 180(3/4):227-236. https://doi.org/10.1016/j.precamres.2010.03.008
    Condie, K. C., Belousova, E., Griffin, W. L., et al., 2009. Granitoid Events in Space and Time:Constraints from Igneous and Detrital Zircon Age Spectra. Gondwana Research, 15(3/4):228-242. https://doi.org/10.1016/j.gr.2008.06.001
    Condie, K. C., Bickford, M. E., Aster, R. C., et al., 2011. Episodic Zircon Ages, Hf Isotopic Composition, and the Preservation Rate of Continental Crust. Geological Society of America Bulletin, 123(5/6):951-957. https://doi.org/10.1130/b30344.1
    Condie, K. C., Kröner, A., 2013. The Building Blocks of Continental Crust:Evidence for a Major Change in the Tectonic Setting of Continental Growth at the End of the Archean. Gondwana Research, 23(2):394-402. https://doi.org/10.1016/j.gr.2011.09.011
    Cox, K. G., 1978. Flood Basalts, Subduction and the Break-up of Gondwanaland. Nature, 274(5666):47-49. https://doi.org/10.1038/274047a0
    Crépisson, C., Morard, G., Bureau, H., et al., 2014. Magmas Trapped at the Continental Lithosphere-Asthenosphere Boundary. Earth and Planetary Science Letters, 393:105-112. https://doi.org/10.1016/j.epsl.2014.02.048
    Dai, L. Q., Zhao, Z. F., Zheng, Y. F., et al., 2011. Zircon Hf-O Isotope Evidence for Crust-Mantle Interaction during Continental Deep Subduction. Earth and Planetary Science Letters, 308(1/2):229-244. https://doi.org/10.1016/j.epsl.2011.06.001
    Dan, W., Li, X. H., Guo, J. H., et al., 2012. Paleoproterozoic Evolution of the Eastern Alxa Block, Westernmost North China:Evidence from in situ Zircon U-Pb Dating and Hf-O Isotopes. Gondwana Research, 21(4):838-864. https://doi.org/10.1016/j.gr.2011.09.004
    Davidson, J., Wilson, M., 2011. Differentiation and Source Processes at Mt Pelée and the Quill; Active Volcanoes in the Lesser Antilles Arc. Journal of Petrology, 52(7/8):1493-1531. https://doi.org/10.1093/petrology/egq095
    Davies, G. F., 1995. Punctuated Tectonic Evolution of the Earth. Earth and Planetary Science Letters, 136(3/4):363-379. https://doi.org/10.1016/0012-821x(95)00167-b
    Defant, M. J., Drummond, M. S., 1990. Derivation of Some Modern Arc Magmas by Melting of Young Subducted Lithosphere. Nature, 347(6294):662-665. https://doi.org/10.1038/347662a0
    DePaolo, D. J., 1981a. A Neodymium and Strontium Isotopic Study of the Mesozoic Calc-Alkaline Granitic Batholiths of the Sierra Nevada and Peninsular Ranges, California. Journal of Geophysical Research:Solid Earth, 86(B11):10470-10488. https://doi.org/10.1029/jb086ib11p10470
    DePaolo, D. J., 1981b. Trace Element and Isotopic Effects of Combined Wallrock Assimilation and Fractional Crystallization. Earth and Planetary Science Letters, 53(2):189-202. https://doi.org/10.1016/0012-821x(81)90153-9
    Dhuime, B., Hawkesworth, C. J., Cawood, P. A., et al., 2012. A Change in the Geodynamics of Continental Growth 3 Billion Years Ago. Science, 335(6074):1334-1336. https://doi.org/10.1126/science.1216066
    Dhuime, B., Hawkesworth, C., Cawood, P., 2011. When Continents Formed. Science, 331(6014):154-155. https://doi.org/10.1126/science.1201245
    Dorendorf, F., Wiechert, U., Wörner, G., 2000. Hydrated Sub-Arc Mantle:A Source for the Kluchevskoy Volcano, Kamchatka/Russia. Earth and Planetary Science Letters, 175(1/2):69-86. https://doi.org/10.1016/s0012-821x(99)00288-5
    Doucet, L. S., Li, Z.-X., Ernst, R. E., et al., 2020. Coupled Supercontinent-Mantle Plume Events Evidenced by Oceanic Plume Record. Geology, 48(2):159-163. https://doi.org/10.1130/g46754.1
    Downes, H., Thirlwall, M. F., Trayhorn, S. C., 2001. Miocene Subduction-Related Magmatism in Southern Sardinia:Sr-Nd and Oxygen Isotopic Evidence for Mantle Source Enrichment. Journal of Volcanology and Geothermal Research, 106(1/2):1-22. https://doi.org/10.1016/s0377-0273(00)00269-9
    Drummond, M. S., Defant, M. J., 1990. A Model for Trondhjemite-Tonalite-Dacite Genesis and Crustal Growth via Slab Melting:Archean to Modern Comparisons. Journal of Geophysical Research, 95(B13):21503-21521. https://doi.org/10.1029/jb095ib13p21503
    Eiler, J. M., 2001. Oxygen Isotope Variations of Basaltic Lavas and Upper Mantle Rocks. Reviews in Mineralogy and Geochemistry, 43(1):319-364. https://doi.org/10.2138/gsrmg.43.1.319
    Eiler, J. M., Crawford, A., Elliott, T., et al., 2000. Oxygen Isotope Geochemistry of Oceanic-Arc Lavas. Journal of Petrology, 41(2):229-256. https://doi.org/10.1093/petrology/41.2.229
    Eiler, J. M., McInnes, B., Valley, J. W., et al., 1998. Oxygen Isotope Evidence for Slab-Derived Fluids in the Sub-Arc Mantle. Nature, 393(6687):777-781. https://doi.org/10.1038/31679
    Ernst, R. E., Buchan, K. L., Campbell, I. H., 2005. Frontiers in Large Igneous Province Research. Lithos, 79(3/4):271-297. https://doi.org/10.1016/j.lithos.2004.09.004
    Ernst, W. G., 2009. Archean Plate Tectonics, Rise of Proterozoic Supercontinentality and Onset of Regional, Episodic Stagnant-Lid Behavior. Gondwana Research, 15(3/4):243-253. https://doi.org/10.1016/j.gr.2008.06.010
    Evans, D. A. D., Mitchell, R. N., 2011. Assembly and Breakup of the Core of Paleoproterozoic-Mesoproterozoic Supercontinent Nuna. Geology, 39(5):443-446. https://doi.org/10.1130/g31654.1
    Ewart, A., Marsh, J., Milner, S., et al., 2004. Petrology and Geochemistry of Early Cretaceous Bimodal Continental Flood Volcanism of the NW Etendeka, Namibia. Part 1:Introduction, Mafic Lavas and Re-Evaluation of Mantle Source Components. Journal of Petrology, 45(1):59-105. https://doi.org/10.1093/petrology/egg083
    Feeley, T. C., Clynne, M. A., Winer, G. S., et al., 2008. Oxygen Isotope Geochemistry of the Lassen Volcanic Center, California:Resolving Crustal and Mantle Contributions to Continental Arc Magmatism. Journal of Petrology, 49(5):971-997. https://doi.org/10.1093/petrology/egn013
    Finney, B., Turner, S., Hawkesworth, C., et al., 2008. Magmatic Differentiation at an Island-Arc Caldera:Okmok Volcano, Aleutian Islands, Alaska. Journal of Petrology, 49(5):857-884. https://doi.org/10.1093/petrology/egn008
    Foley, S., Tiepolo, M., Vannucci, R., 2002. Growth of Early Continental Crust Controlled by Melting of Amphibolite in Subduction Zones. Nature, 417(6891):837-840. https://doi.org/10.1038/nature00799
    Foulger, G. R., 2007. The "Plate" Model for the Genesis of Melting Anomalies. Special Papers-Geological Society of America, 430:1-28. https://doi.org/10.1130/2007.2430(01)
    Frey, F. A., Huang, S., Blichert-Toft, J., et al., 2005. Origin of Depleted Components in Basalt Related to the Hawaiian Hot Spot:Evidence from Isotopic and Incompatible Element Ratios. Geochemistry, Geophysics, Geosystems, 6(2):1-23. https://doi.org/10.1029/2004gc000757
    Fukao, Y., Obayashi, M., Nakakuki, T., et al., 2009. Stagnant Slab:A Review. Annual Review of Earth and Planetary Sciences, 37:19-46. https://doi.org/10.1146/annurev.earth.36.031207.124224
    Furnes, H., de Wit, M., Staudigel, H., et al., 2007. A Vestige of Earthʼs Oldest Ophiolite. Science, 315(5819):1704-1707. https://doi.org/10.1126/science.1139170
    Furnes, H., Rosing, M., Dilek, Y., et al., 2009. Isua Supracrustal Belt (Greenland)-A Vestige of a 3.8 Ga Suprasubduction Zone Ophiolite, and the Implications for Archean Geology. Lithos, 113(1/2):115-132. https://doi.org/10.1016/j.lithos.2009.03.043
    Gamal El Dien, H., Doucet, L. S., Li, Z.-X., et al., 2019. Global Geochemical Fingerprinting of Plume Intensity Suggests Coupling with the Supercontinent Cycle. Nature Communications, 10(1):5270. https://doi.org/10.1038/s41467-019-13300-4
    Gao, S., Rudnick, R. L., Yuan, H. L., et al., 2004. Recycling Lower Continental Crust in the North China Craton. Nature, 432(7019):892-897. https://doi.org/10.1038/nature03162
    Gertisser, R., Keller, J., 2003. Trace Element and Sr, Nd, Pb and O Isotope Variations in Medium-K and High-K Volcanic Rocks from Merapi Volcano, Central Java, Indonesia:Evidence for the Involvement of Subducted Sediments in Sunda Arc Magma Genesis. Journal of Petrology, 44(3):457-489. https://doi.org/10.1093/petrology/44.3.457
    Goss, A. R., Kay, S. M., 2009. Extreme High Field Strength Element (HFSE) Depletion and Near-Chondritic Nb/Ta Ratios in Central Andean Adakite-Like Lavas (~28°S, ~68°W). Earth and Planetary Science Letters, 279(1/2):97-109. https://doi.org/10.1016/j.epsl.2008.12.035
    Gómez-Tuena, A., Mori, L., Rincón-Herrera, N. E., et al., 2008. The Origin of a Primitive Trondhjemite from the Trans-Mexican Volcanic Belt and Its Implications for the Construction of a Modern Continental Arc. Geology, 36(6):471-474. https://doi.org/10.1130/g24687a.1
    Gray, C. M., 1984. An Isotopic Mixing Model for the Origin of Granitic Rocks in Southeastern Australia. Earth and Planetary Science Letters, 70(1):47-60. https://doi.org/10.1016/0012-821x(84)90208-5
    Griffin, W. L., Graham, S., OʼReilly, S. Y., et al., 2004. Lithosphere Evolution beneath the Kaapvaal Craton:Re-Os Systematics of Sulfides in Mantle-Derived Peridotites. Chemical Geology, 208(1/2/3/4):89-118. https://doi.org/10.1016/j.chemgeo.2004.04.007
    Griffin, W. L., Pearson, N. J., Belousova, E., et al., 2000. The Hf Isotope Composition of Cratonic Mantle:LAM-MC-ICPMS Analysis of Zircon Megacrysts in Kimberlites. Geochimica et Cosmochimica Acta, 64(1):133-147. https://doi.org/10.1016/s0016-7037(99)00343-9
    Griffin, W. L., Spetsius, Z. V., Pearson, N. J., et al., 2002. In situ Re-Os Analysis of Sulfide Inclusions in Kimberlitic Olivine:New Constraints on Depletion Events in the Siberian Lithospheric Mantle. Geochemistry, Geophysics, Geosystems, 3(11):1-25. https://doi.org/10.1029/2001gc000287
    Guitreau, M., Blichert-Toft, J., Martin, H., et al., 2012. Hafnium Isotope Evidence from Archean Granitic Rocks for Deep-Mantle Origin of Continental Crust. Earth and Planetary Science Letters, 337/338:211-223. https://doi.org/10.1016/j.epsl.2012.05.029
    Guo, C. L., Chen, Y. C., Zeng, Z. L., et al., 2012. Petrogenesis of the Xihuashan Granites in Southeastern China:Constraints from Geochemistry and in-situ Analyses of Zircon U-Pb-Hf-O Isotopes. Lithos, 148:209-227. https://doi.org/10.1016/j.lithos.2012.06.014
    Hacker, B. R., Kelemen, P. B., Behn, M. D., 2011. Differentiation of the Continental Crust by Relamination. Earth and Planetary Science Letters, 307(3/4):501-516. https://doi.org/10.1016/j.epsl.2011.05.024
    Hales, T. C., Abt, D. L., Humphreys, E. D., et al., 2005. A Lithospheric Instability Origin for Columbia River Flood Basalts and Wallowa Mountains Uplift in Northeast Oregon. Nature, 438(7069):842-845. https://doi.org/10.1038/nature04313
    Hamilton, P. J., OʼNions, R. K., Pankhurst, R. J., 1980. Isotopic Evidence for the Provenance of some Caledonian Granites. Nature, 287(5780):279-284. https://doi.org/10.1038/287279a0
    Handler, M. R., Wysoczanski, R. J., Gamble, J. A., 2003. Proterozoic Lithosphere in Marie Byrd Land, West Antarctica:Re-Os Systematics of Spinel Peridotite Xenoliths. Chemical Geology, 196(1/2/3/4):131-145. https://doi.org/10.1016/s0009-2541(02)00410-2
    Harmon, R. S., Gerbe, M. C., 1992. The 1982-83 Eruption at Galunggung Volcano, Java (Indonesia):Oxygen Isotope Geochemistry of a Chemically Zoned Magma Chamber. Journal of Petrology, 33(3):585-609. https://doi.org/10.1093/petrology/33.3.585
    Hastie, A. R., Kerr, A. C., Mitchell, S. F., et al., 2008. Geochemistry and Petrogenesis of Cretaceous Oceanic Plateau Lavas in Eastern Jamaica. Lithos, 101(3/4):323-343. https://doi.org/10.1016/j.lithos.2007.08.003
    Hawkesworth, C. J., Dhuime, B., Pietranik, A. B., et al., 2010. The Generation and Evolution of the Continental Crust. Journal of the Geological Society, 167(2):229-248. https://doi.org/10.1144/0016-76492009-072
    Hawkesworth, C. J., Kemp, A. I. S., 2006a. Evolution of the Continental Crust. Nature, 443(7113):811-817. https://doi.org/10.1038/nature05191
    Hawkesworth, C. J., Kemp, A. I. S., 2006b. Using Hafnium and Oxygen Isotopes in Zircons to Unravel the Record of Crustal Evolution. Chemical Geology, 226(3/4):144-162. https://doi.org/10.1016/j.chemgeo.2005.09.018
    Hawkesworth, C., Cawood, P., Kemp, T., et al., 2009. Geochemistry:A Matter of Preservation. Science, 323(5910):49-50. https://doi.org/10.1126/science.1168549
    Hawkesworth, C. J., Gallagher, K., Kirstein, L., et al., 2000. Tectonic Controls on Magmatism Associated with Continental Break-up:An Example from the Paraná-Etendeka Province. Earth and Planetary Science Letters, 179(2):335-349. https://doi.org/10.1016/s0012-821x(00)00114-x
    Hawkesworth, C. J., Lightfoot, P. C., Fedorenko, V. A., et al., 1995. Magma Differentiation and Mineralisation in the Siberian Continental Flood Basalts. Lithos, 34(1/2/3):61-88. https://doi.org/10.1016/0024-4937(95)90011-x
    Heinonen, A. P., Fraga, L. M., Rämö, O. T., et al., 2012. Petrogenesis of the Igneous Mucajaí AMG Complex, Northern Amazonian Craton-Geochemical, U-Pb Geochronological, and Nd-Hf-O Isotopic Constraints. Lithos, 151:17-34. https://doi.org/10.1016/j.lithos.2011.07.016
    Heinonen, J. S., Carlson, R. W., Luttinen, A. V., 2010. Isotopic (Sr, Nd, Pb, and Os) Composition of Highly Magnesian Dikes of Vestfjella, Western Dronning Maud Land, Antarctica:A Key to the Origins of the Jurassic Karoo Large Igneous Province?. Chemical Geology, 277(3/4):227-244. https://doi.org/10.1016/j.chemgeo.2010.08.004
    Heinonen, J. S., Carlson, R. W., Riley, T. R., et al., 2014. Subduction-Modified Oceanic Crust Mixed with a Depleted Mantle Reservoir in the Sources of the Karoo Continental Flood Basalt Province. Earth and Planetary Science Letters, 394:229-241. https://doi.org/10.1016/j.epsl.2014.03.012
    Heinonen, J. S., Luttinen, A. V., Riley, T. R., et al., 2013. Mixed Pyroxenite-Peridotite Sources for Mafic and Ultramafic Dikes from the Antarctic Segment of the Karoo Continental Flood Basalt Province. Lithos, 177:366-380. https://doi.org/10.1016/j.lithos.2013.05.015
    Hermann, J., Spandler, C. J., 2007. Sediment Melts at Sub-Arc Depths:An Experimental Study. Journal of Petrology, 49(4):717-740. https://doi.org/10.1093/petrology/egm073
    Hervé, F., Calderón, M., Fanning, C. M., et al., 2013. Provenance Variations in the Late Paleozoic Accretionary Complex of Central Chile as Indicated by Detrital Zircons. Gondwana Research, 23(3):1122-1135. https://doi.org/10.1016/j.gr.2012.06.016
    Hidalgo, S., Gerbe, M. C., Martin, H., et al., 2012. Role of Crustal and Slab Components in the Northern Volcanic Zone of the Andes (Ecuador) Constrained by Sr-Nd-O Isotopes. Lithos, 132/133:180-192. https://doi.org/10.1016/j.lithos.2011.11.019
    Hiess, J., Bennett, V. C., Nutman, A. P., et al., 2009. In situ U-Pb, O and Hf Isotopic Compositions of Zircon and Olivine from Eoarchaean Rocks, West Greenland:New Insights to Making Old Crust. Geochimica et Cosmochimica Acta, 73(15):4489-4516. https://doi.org/10.1016/j.gca.2009.04.019
    Hirose, K., 1997. Melting Experiments on Lherzolite KLB-1 under Hydrous Conditions and Generation of High-Magnesian Andesitic Melts. Geology, 25(1):42-44. https://doi.org/10.1130/0091-7613(1997)025 < 0042:meolku > 2.3.co; 2 doi: 10.1130/0091-7613(1997)025<0042:meolku>2.3.co;2
    Hofmann, A. W., 1988. Chemical Differentiation of the Earth:The Relationship between Mantle, Continental Crust, and Oceanic Crust. Earth and Planetary Science Letters, 90(3):297-314. https://doi.org/10.1016/0012-821x(88)90132-x
    Hofmann, A. W., 1997. Mantle Geochemistry:The Message from Oceanic Volcanism. Nature, 385(6613):219-229. https://doi.org/10.1038/385219a0
    Hofmann, A. W., White, W. M., 1982. Mantle Plumes from Ancient Oceanic Crust. Earth and Planetary Science Letters, 57(2):421-436. https://doi.org/10.1016/0012-821x(82)90161-3
    Hurley, P. M., Rand, J. R., 1969. Pre-Drift Continental Nuclei. Science, 164(3885):1229-1242. https://doi.org/10.1126/science.164.3885.1229
    Iizuka, T., Campbell, I. H., Allen, C. M., et al., 2013. Evolution of the African Continental Crust as Recorded by U-Pb, Lu-Hf and O Isotopes in Detrital Zircons from Modern Rivers. Geochimica et Cosmochimica Acta, 107:96-120. https://doi.org/10.1016/j.gca.2012.12.028
    Iizuka, T., Hirata, T., Komiya, T., et al., 2005. U-Pb and Lu-Hf Isotope Systematics of Zircons from the Mississippi River Sand:Implications for Reworking and Growth of Continental Crust. Geology, 33(6):485-488. https://doi.org/10.1130/g21427.1
    Ingle, S., Coffin, M. F., 2004. Impact Origin for the Greater Ontong Java Plateau?. Earth and Planetary Science Letters, 218(1/2):123-134. https://doi.org/10.1016/s0012-821x(03)00629-0
    Irving, E., Baker, J., Hamilton, M., et al., 2004. Early Proterozoic Geomagnetic Field in Western Laurentia:Implications for Paleolatitudes, Local Rotations and Stratigraphy. Precambrian Research, 129(3/4):251-270. https://doi.org/10.1016/j.precamres.2003.10.002
    Ivanov, A. V., Litasov, K. D., 2014. The Deep Water Cycle and Flood Basalt Volcanism. International Geology Review, 56(1):1-14. https://doi.org/10.1080/00206814.2013.817567
    Jackson, M. G., Carlson, R. W., 2011. An Ancient Recipe for Flood-Basalt Genesis. Nature, 476(7360):316-319. https://doi.org/10.1038/nature10326
    Jackson, M. G., Carlson, R. W., Kurz, M. D., et al., 2010. Evidence for the Survival of the Oldest Terrestrial Mantle Reservoir. Nature, 466(7308):853-856. https://doi.org/10.1038/nature09287
    Jagoutz, O. E., 2010. Construction of the Granitoid Crust of an Island Arc. Part Ⅱ:A Quantitative Petrogenetic Model. Contributions to Mineralogy and Petrology, 160(3):359-381. https://doi.org/10.1007/s00410-009-0482-6
    Jagoutz, O., Müntener, O., Schmidt, M. W., et al., 2011. The Roles of Flux-and Decompression Melting and Their Respective Fractionation Lines for Continental Crust Formation:Evidence from the Kohistan Arc. Earth and Planetary Science Letters, 303(1/2):25-36. https://doi.org/10.1016/j.epsl.2010.12.017
    Jahn, B. M., 2004. The Central Asian Orogenic Belt and Growth of the Continental Crust in the Phanerozoic. Geological Society, London, Special Publications, 226(1):73-100. https://doi.org/10.1144/gsl.sp.2004.226.01.05
    Jahn, B. M., Capdevila, R., Liu, D. Y., et al., 2004. Sources of Phanerozoic Granitoids in the Transect Bayanhongor-Ulaan Baatar, Mongolia:Geochemical and Nd Isotopic Evidence, and Implications for Phanerozoic Crustal Growth. Journal of Asian Earth Sciences, 23(5):629-653. https://doi.org/10.1016/s1367-9120(03)00125-1
    Jahn, B. M., Griffin, W. L., Windley, B., 2000. Continental Growth in the Phanerozoic:Evidence from Central Asia. Tectonophysics, 328(1/2):vii-x. https://doi.org/10.1016/s0040-1951(00)00174-8
    Jenner, F. E., Bennett, V. C., Nutman, A. P., et al., 2009. Evidence for Subduction at 3.8 Ga:Geochemistry of Arc-Like Metabasalts from the Southern Edge of the Isua Supracrustal Belt. Chemical Geology, 261(1/2):83-98. https://doi.org/10.1016/j.chemgeo.2008.09.016
    Jiang, N., Chen, J. Z., Guo, J. H., et al., 2012. In situ Zircon U-Pb, Oxygen and Hafnium Isotopic Compositions of Jurassic Granites from the North China Craton:Evidence for Triassic Subduction of Continental Crust and Subsequent Metamorphism-Related 18O Depletion. Lithos, 142/143:84-94. https://doi.org/10.1016/j.lithos.2012.02.018
    Johnson, E. R., Wallace, P. J., Delgado Granados, H., et al., 2009. Subduction-Related Volatile Recycling and Magma Generation beneath Central Mexico:Insights from Melt Inclusions, Oxygen Isotopes and Geodynamic Models. Journal of Petrology, 50(9):1729-1764. https://doi.org/10.1093/petrology/egp051
    Jones, A. P., Price, G. D., Price, N. J., et al., 2002. Impact Induced Melting and the Development of Large Igneous Provinces. Earth and Planetary Science Letters, 202(3/4):551-561. https://doi.org/10.1016/s0012-821x(02)00824-5
    Jourdan, F., Bertrand, H., SchĠrer, U., et al., 2007. Major and Trace Element and Sr, Nd, Hf, and Pb Isotope Compositions of the Karoo Large Igneous Province, Botswana-Zimbabwe:Lithosphere vs. Mantle Plume Contribution. Journal of Petrology, 48(6):1043-1077. https://doi.org/10.1093/petrology/egm010
    Kawabata, H., Shuto, K., 2005. Magma Mixing Recorded in Intermediate Rocks Associated with High-Mg Andesites from the Setouchi Volcanic Belt, Japan:Implications for Archean TTG Formation. Journal of Volcanology and Geothermal Research, 140(4):241-271. https://doi.org/10.1016/j.jvolgeores.2004.08.013
    Kay, R., Kay, S. M., 1993. Delamination and Delamination Magmatism. Tectonophysics, 219(1/2/3):177-189. https://doi.org/10.1016/0040-1951(93)90295-u
    Kelemen, P. B., 1995. Genesis of High Mg# Andesites and the Continental Crust. Contributions to Mineralogy and Petrology, 120(1):1-19. https://doi.org/10.1007/bf00311004
    Kelemen, P. B., Hanghøj, K., Greene, A. R., 2007. One View of the Geochemistry of Subduction-Related Magmatic Arcs, with an Emphasis on Primitive Andesite and Lower Crust. In: Turekian, H. D. H. K., ed., Treatise on Geochemistry. Pergamon, Oxford. 1-70. https://doi.org/10.1016/B0-08-043751-6/03035-8
    Kelemen, P. B., Hanghøj, K., Greene, A. R., 2003. One View of the Geochemistry of Subduction-Related Magmatic Arcs, with an Emphasis on Primitive Andesite and Lower Crust. In: Heinrich, D. H., Karl, K. T., eds., Treatise on Geochemistry. Pergamon, Oxford. 1-70. https://doi.org/10.1016/b0-08-043751-6/03035-8
    Kemp, A. I. S., Hawkesworth, C. J., Foster, G. L., et al., 2007. Magmatic and Crustal Differentiation History of Granitic Rocks from Hf-O Isotopes in Zircon. Science, 315(5814):980-983. https://doi.org/10.1126/science.1136154
    Kemp, A. I. S., Hawkesworth, C. J., Paterson, B. A., et al., 2006. Episodic Growth of the Gondwana Supercontinent from Hafnium and Oxygen Isotopes in Zircon. Nature, 439(7076):580-583. https://doi.org/10.1038/nature04505
    Kemp, A. I. S., Wilde, S. A., Hawkesworth, C. J., et al., 2010. Hadean Crustal Evolution Revisited:New Constraints from Pb-Hf Isotope Systematics of the Jack Hills Zircons. Earth and Planetary Science Letters, 296(1/2):45-56. https://doi.org/10.1016/j.epsl.2010.04.043
    Kimura, J. I., Manton, W. I., Sun, C. H., et al., 2002. Chemical Diversity of the Ueno Basalts, Central Japan:Identification of Mantle and Crustal Contributions to Arc Basalts. Journal of Petrology, 43(10):1923-1946. https://doi.org/10.1093/petrology/43.10.1923
    King, S. D., Anderson, D. L., 1998. Edge-Driven Convection. Earth and Planetary Science Letters, 160(3/4):289-296. https://doi.org/10.1016/s0012-821x(98)00089-2
    Kirkland, C. L., Smithies, R. H., Woodhouse, A. J., et al., 2013. Constraints and Deception in the Isotopic Record:The Crustal Evolution of the West Musgrave Province, Central Australia. Gondwana Research, 23(2):759-781. https://doi.org/10.1016/j.gr.2012.06.001
    Klimm, K., Blundy, J. D., Green, T. H., 2008. Trace Element Partitioning and Accessory Phase Saturation during H2O-Saturated Melting of Basalt with Implications for Subduction Zone Chemical Fluxes. Journal of Petrology, 49(3):523-553. https://doi.org/10.1093/petrology/egn001
    Kröner, A., Rojas-Agramonte, Y., Kehelpannala, K. V. W., et al., 2013. Age, Nd-Hf Isotopes, and Geochemistry of the Vijayan Complex of Eastern and Southern Sri Lanka:A Grenville-Age Magmatic Arc of Unknown Derivation. Precambrian Research, 234:288-321. https://doi.org/10.1016/j.precamres.2012.11.001
    Kröner, A., Windley, B., Badarch, G., et al., 2007. Accretionary Growth and Crust Formation in the Central Asian Orogenic Belt and Comparison with the Arabian-Nubian Shield. Memoirs-Geological Society of America, 200:181-209. https://doi.org/10.1130/2007.1200(11)
    Lancaster, P. J., Storey, C. D., Hawkesworth, C. J., et al., 2011. Understanding the Roles of Crustal Growth and Preservation in the Detrital Zircon Record. Earth and Planetary Science Letters, 305(3/4):405-412. https://doi.org/10.1016/j.epsl.2011.03.022
    Lee, C. T. A., Luffi, P., Höink, T., et al., 2010. Upside-Down Differentiation and Generation of a 'Primordial' Lower Mantle. Nature, 463(7283):930-933. https://doi.org/10.1038/nature08824
    Li, J. X., Qin, K. Z., Li, G. M., et al., 2011. Post-Collisional Ore-Bearing Adakitic Porphyries from Gangdese Porphyry Copper Belt, Southern Tibet:Melting of Thickened Juvenile Arc Lower Crust. Lithos, 126(3/4):265-277. https://doi.org/10.1016/j.lithos.2011.07.018
    Li, J. X., Qin, K. Z., Li, G. M., et al., 2013. Petrogenesis of Ore-Bearing Porphyries from the Duolong Porphyry Cu-Au Deposit, Central Tibet:Evidence from U-Pb Geochronology, Petrochemistry and Sr-Nd-Hf-O Isotope Characteristics. Lithos, 160/161:216-227. https://doi.org/10.1016/j.lithos.2012.12.015
    Li, X. H., Li, Z.-X., Li, W. X., et al., 2013. Revisiting the "C-Type Adakites" of the Lower Yangtze River Belt, Central Eastern China:In-situ Zircon Hf-O Isotope and Geochemical Constraints. Chemical Geology, 345:1-15. https://doi.org/10.1016/j.chemgeo.2013.02.024
    Li, X. H., Li, W. X., Li, Z.-X., et al., 2009a. Amalgamation between the Yangtze and Cathaysia Blocks in South China:Constraints from SHRIMP U-Pb Zircon Ages, Geochemistry and Nd-Hf Isotopes of the Shuangxiwu Volcanic Rocks. Precambrian Research, 174(1/2):117-128. https://doi.org/10.1016/j.precamres.2009.07.004
    Li, X. H., Li, W. X., Wang, X. C., et al., 2009b. Role of Mantle-Derived Magma in Genesis of Early Yanshanian Granites in the Nanling Range, South China:In situ Zircon Hf-O Isotopic Constraints. Science in China Series D:Earth Sciences, 52(9):1262-1278. https://doi.org/10.1007/s11430-009-0117-9
    Li, X. H., Li, W. X., Li, Q. L., et al., 2010. Petrogenesis and Tectonic Significance of the~850 Ma Gangbian Alkaline Complex in South China:Evidence from in situ Zircon U-Pb Dating, Hf-O Isotopes and Whole-Rock Geochemistry. Lithos, 114(1/2):1-15. https://doi.org/10.1016/j.lithos.2009.07.011
    Li, W. X., Li, X. H., Li, Z.-X., 2010. Ca. 850 Ma Bimodal Volcanic Rocks in Northeastern Jiangxi Province, South China:Initial Extension during the Breakup of Rodinia?. American Journal of Science, 310(9):951-980. https://doi.org/10.2475/09.2010.08
    Li, X. H., Li, Z.-X., He, B., et al., 2012. The Early Permian Active Continental Margin and Crustal Growth of the Cathaysia Block:In situ U-Pb, Lu-Hf and O Isotope Analyses of Detrital Zircons. Chemical Geology, 328:195-207. https://doi.org/10.1016/j.chemgeo.2011.10.027
    Li, Y., Peng, P., Wang, X. P., et al., 2015. Nature of 1 800-1 600 Ma Mafic Dyke Swarms in the North China Craton:Implications for the Rejuvenation of the Sub-Continental Lithospheric Mantle. Precambrian Research, 257:114-123. https://doi.org/10.1016/j.precamres.2014.12.002
    Li, Z.-X., Bogdanova, S. V., Collins, A. S., et al., 2008. Assembly, Configuration, and Break-up History of Rodinia:A Synthesis. Precambrian Research, 160(1/2):179-210. https://doi.org/10.1016/j.precamres.2007.04.021
    Li, Z.-X., Zhong, S. J., 2009. Supercontinent-Superplume Coupling, True Polar Wander and Plume Mobility:Plate Dominance in Whole-Mantle Tectonics. Physics of the Earth and Planetary Interiors, 176(3/4):143-156. https://doi.org/10.1016/j.pepi.2009.05.004
    Liu, C. Z., Wu, F. Y., Chung, S. L., et al., 2014. A 'Hidden' 18O-Enriched Reservoir in the Sub-Arc Mantle. Scientific Reports, 4(1):4232. https://doi.org/10.1038/srep04232
    Liu, D. Y., Wilde, S. A., Wan, Y. S., et al., 2009. Combined U-Pb, Hafnium and Oxygen Isotope Analysis of Zircons from Meta-Igneous Rocks in the Southern North China Craton Reveal Multiple Events in the Late Mesoarchean-Early Neoarchean. Chemical Geology, 261(1/2):140-154. https://doi.org/10.1016/j.chemgeo.2008.10.041
    Liu, X., Fan, H. R., Santosh, M., et al., 2012. Remelting of Neoproterozoic Relict Volcanic Arcs in the Middle Jurassic:Implication for the Formation of the Dexing Porphyry Copper Deposit, Southeastern China. Lithos, 150:85-100. https://doi.org/10.1016/j.lithos.2012.05.018
    Liu, Y., Gao, S., Lee, C., et al., 2005. Melt-Peridotite Interactions:Links between Garnet Pyroxenite and High-Mg# Signature of Continental Crust. Earth and Planetary Science Letters, 234(1/2):39-57. https://doi.org/10.1016/j.epsl.2005.02.034
    Lu, Y. J., Kerrich, R., Mccuaig, T. C., et al., 2013. Geochemical, Sr-Nd-Pb, and Zircon Hf-O Isotopic Compositions of Eocene-Oligocene Shoshonitic and Potassic Adakite-Like Felsic Intrusions in Western Yunnan, SW China:Petrogenesis and Tectonic Implications. Journal of Petrology, 54(7):1309-1348. https://doi.org/10.1093/petrology/egt013
    Lubnina, N. V., Slabunov, A. I., 2011. Reconstruction of the Kenorland Supercontinent in the Neoarchean Based on Paleomagnetic and Geological Data. Moscow University Geology Bulletin, 66(4):242-249. https://doi.org/10.3103/s0145875211040077
    Lyu, P. L., Li, W. X., Wang, X. C., et al., 2017. Initial Breakup of Supercontinent Rodinia as Recorded by ca 860-840 Ma Bimodal Volcanism along the Southeastern Margin of the Yangtze Block, South China. Precambrian Research, 296:148-167. https://doi.org/10.1016/j.precamres.2017.04.039
    Macpherson, C. G., Mattey, D. P., 1998. Oxygen Isotope Variations in Lau Basin Lavas. Chemical Geology, 144(3/4):177-194. https://doi.org/10.1016/s0009-2541(97)00130-7
    Mahaffy, P., Donahue, T. M., Atreya, S., et al., 1998. Galileo Probe Measurements of D/H and 3He/4He in Jupiter's Atmosphere. Space Science Reviews, 84(1/2):251-263. https://doi.org/10.1023/a:1005091806594
    Marschall, H. R., Hawkesworth, C. J., Storey, C. D., et al., 2010. The Annandagstoppane Granite, East Antarctica:Evidence for Archaean Intracrustal Recycling in the Kaapvaal-Grunehogna Craton from Zircon O and Hf Isotopes. Journal of Petrology, 51(11):2277-2301. https://doi.org/10.1093/petrology/egq057
    Martin, H., Moyen, J. F., Guitreau, M., et al., 2014. Why Archaean TTG cannot be Generated by MORB Melting in Subduction Zones. Lithos, 198/199:1-13. https://doi.org/10.1016/j.lithos.2014.02.017
    Martin, H., 1986. Effect of Steeper Archean Geothermal Gradient on Geochemistry of Subduction-Zone Magmas. Geology, 14(9):753-756. https://doi.org/10.1130/0091-7613(1986)14 < 753:eosagg > 2.0.co; 2 doi: 10.1130/0091-7613(1986)14<753:eosagg>2.0.co;2
    Martin, H., Smithies, R. H., Rapp, R., et al., 2005. An Overview of Adakite, Tonalite-Trondhjemite-Granodiorite (TTG), and Sanukitoid:Relationships and some Implications for Crustal Evolution. Lithos, 79(1/2):1-24. https://doi.org/10.1016/j.lithos.2004.04.048
    Matteini, M., Junges, S. L., Dantas, E. L., et al., 2010. In situ Zircon U-Pb and Lu-Hf Isotope Systematic on Magmatic Rocks:Insights on the Crustal Evolution of the Neoproterozoic Goiás Magmatic Arc, Brasília Belt, Central Brazil. Gondwana Research, 17(1):1-12. https://doi.org/10.1016/j.gr.2009.05.008
    Mattey, D., Lowry, D., Macpherson, C., 1994. Oxygen Isotope Composition of Mantle Peridotite. Earth and Planetary Science Letters, 128(3/4):231-241. https://doi.org/10.1016/0012-821x(94)90147-3
    McCulloch, M. T., Bennett, V. C., 1994. Progressive Growth of the Earth's Continental Crust and Depleted Mantle:Geochemical Constraints. Geochimica et Cosmochimica Acta, 58(21):4717-4738. https://doi.org/10.1016/0016-7037(94)90203-8
    Merle, R., Marzoli, A., Reisberg, L., et al., 2013. Sr, Nd, Pb and Os Isotope Systematics of CAMP Tholeiites from Eastern North America (ENA):Evidence of a Subduction-Enriched Mantle Source. Journal of Petrology, 55(1):133-180. https://doi.org/10.1093/petrology/egt063
    Meyzen, C. M., Blichert-Toft, J., Ludden, J. N., et al., 2007. Isotopic Portrayal of the Earth's Upper Mantle Flow Field. Nature, 447(7148):1069-1074. https://doi.org/10.1038/nature05920
    Miller, J. A., Cartwright, I., Buick, I. S., et al., 2001. An O-Isotope Profile through the HP-LT Corsican Ophiolite, France and Its Implications for Fluid Flow during Subduction. Chemical Geology, 178(1/2/3/4):43-69. https://doi.org/10.1016/s0009-2541(00)00428-9
    Mohan, M. R., Satyanarayanan, M., Santosh, M., et al., 2013. Neoarchean Suprasubduction Zone Arc Magmatism in Southern India:Geochemistry, Zircon U-Pb Geochronology and Hf Isotopes of the Sittampundi Anorthosite Complex. Gondwana Research, 23(2):539-557. https://doi.org/10.1016/j.gr.2012.04.004
    Moyen, J. F., Martin, H., 2012. Forty Years of TTG Research. Lithos, 148:312-336. https://doi.org/10.1016/j.lithos.2012.06.010
    Muñoz, M., Charrier, R., Fanning, C. M., et al., 2012. Zircon Trace Element and O-Hf Isotope Analyses of Mineralized Intrusions from El Teniente Ore Deposit, Chilean Andes:Constraints on the Source and Magmatic Evolution of Porphyry Cu-Mo Related Magmas. Journal of Petrology, 53(6):1091-1122. https://doi.org/10.1093/petrology/egs010
    Murphy, J. B., Nance, R. D., 2003. Do Supercontinents Introvert or Extrovert?:Sm-Nd Isotope Evidence. Geology, 31(10):873-876. https://doi.org/10.1130/g19668.1
    Nebel, O., Vroon, P. Z., van Westrenen, W., et al., 2011. The Effect of Sediment Recycling in Subduction Zones on the Hf Isotope Character of New Arc Crust, Banda Arc, Indonesia. Earth and Planetary Science Letters, 303(3/4):240-250. https://doi.org/10.1016/j.epsl.2010.12.053
    Niu, Y. L., Zhao, Z. D., Zhu, D. C., et al., 2013. Continental Collision Zones are Primary Sites for Net Continental Crust Growth-A Testable Hypothesis. Earth-Science Reviews, 127:96-110. https://doi.org/10.1016/j.earscirev.2013.09.004
    Nomura, R., Ozawa, H., Tateno, S., et al., 2011. Spin Crossover and Iron-Rich Silicate Melt in the Earth's Deep Mantle. Nature, 473(7346):199-202. https://doi.org/10.1038/nature09940
    Nutman, A. P., Friend, C. R. L., 2009. New 1:20 000 Scale Geological Maps, Synthesis and History of Investigation of the Isua Supracrustal Belt and Adjacent Orthogneisses, Southern West Greenland:A Glimpse of Eoarchaean Crust Formation and Orogeny. Precambrian Research, 172(3/4):189-211. https://doi.org/10.1016/j.precamres.2009.03.017
    O'Neil, J., Carlson, R. W., Francis, D., et al., 2008. Neodymium-142 Evidence for Hadean Mafic Crust. Science, 321(5897):1828-1831. https://doi.org/10.1126/science.1161925
    O'Neill, C., Lenardic, A., Moresi, L., et al., 2007. Episodic Precambrian Subduction. Earth and Planetary Science Letters, 262(3/4):552-562. https://doi.org/10.1016/j.epsl.2007.04.056
    Parman, S. W., Kurz, M. D., Hart, S. R., et al., 2005. Helium Solubility in Olivine and Implications for High 3He/4He in Ocean Island Basalts. Nature, 437(7062):1140-1143. https://doi.org/10.1038/nature04215
    Parman, S. W., 2007. Helium Isotopic Evidence for Episodic Mantle Melting and Crustal Growth. Nature, 446(7138):900-903. https://doi.org/10.1038/nature05691
    Pearson, D. G., Parman, S. W., Nowell, G. M., 2007. A Link between Large Mantle Melting Events and Continent Growth Seen in Osmium Isotopes. Nature, 449(7159):202-205. https://doi.org/10.1038/nature06122
    Pedersen, S. A. S., Craig, L. E., Upton, B. G. J., et al., 2002. Palaeoproterozoic (1 740 Ma) Rift-Related Volcanism in the Hekla Sund Region, Eastern North Greenland:Field Occurrence, Geochemistry and Tectonic Setting. Precambrian Research, 114(3/4):327-346. https://doi.org/10.1016/s0301-9268(01)00234-0
    Peng, P., 2015. Precambrian Mafic Dyke Swarms in the North China Craton and Their Geological Implications. Science China Earth Sciences, 58(5):649-675. https://doi.org/10.1007/s11430-014-5026-x
    Peslier, A. H., Woodland, A. B., Bell, D. R., et al., 2010. Olivine Water Contents in the Continental Lithosphere and the Longevity of Cratons. Nature, 467(7311):78-81. https://doi.org/10.1038/nature09317
    Pietranik, A. B., Hawkesworth, C. J., Storey, C. D., et al., 2008. Episodic, Mafic Crust Formation from 4.5 to 2.8 Ga:New Evidence from Detrital Zircons, Slave Craton, Canada. Geology, 36(11):875-878. https://doi.org/10.1130/g24861a.1
    Pietranik, A., Słodczyk, E., Hawkesworth, C. J., et al., 2013. Heterogeneous Zircon Cargo in Voluminous Late Paleozoic Rhyolites:Hf, O Isotope and Zr/Hf Records of Plutonic to Volcanic Magma Evolution. Journal of Petrology, 54(8):1483-1501. https://doi.org/10.1093/petrology/egt019
    Pineau, F., Semet, M. P., Grassineau, N., et al., 1999. The Genesis of the Stable Isotope (O, H) Record in Arc Magmas:The Kamtchatka's Case. Chemical Geology, 153(1/2/3/4):93-124. https://doi.org/10.1016/s0009-2541(98)00154-5
    Pisarevsky, S. A., Natapov, L. M., Donskaya, T. V., et al., 2008. Proterozoic Siberia:A Promontory of Rodinia. Precambrian Research, 160(1/2):66-76. https://doi.org/10.1016/j.precamres.2007.04.016
    Plank, T., Cooper, L. B., Manning, C. E., 2009. Emerging Geothermometers for Estimating Slab Surface Temperatures. Nature Geoscience, 2(9):611-615. https://doi.org/10.1038/ngeo614
    Polat, A., Münker, C., 2004. Hf-Nd Isotope Evidence for Contemporaneous Subduction Processes in the Source of Late Archean Arc Lavas from the Superior Province, Canada. Chemical Geology, 213(4):403-429. https://doi.org/10.1016/j.chemgeo.2004.08.016
    Polat, A., Appel, P. W. U., Fryer, B. J., 2011. An Overview of the Geochemistry of Eoarchean to Mesoarchean Ultramafic to Mafic Volcanic Rocks, SW Greenland:Implications for Mantle Depletion and Petrogenetic Processes at Subduction Zones in the Early Earth. Gondwana Research, 20(2/3):255-283. https://doi.org/10.1016/j.gr.2011.01.007
    Polat, A., Hofmann, A. W., Rosing, M. T., 2002. Boninite-Like Volcanic Rocks in the 3.7-3.8 Ga Isua Greenstone Belt, West Greenland:Geochemical Evidence for Intra-Oceanic Subduction Zone Processes in the Early Earth. Chemical Geology, 184(3/4):231-254. https://doi.org/10.1016/s0009-2541(01)00363-1
    Poli, G., Tommasini, S., Halliday, A. N., 1996. Trace Element and Isotopic Exchange during Acid-Basic Magma Interaction Processes. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 87(1/2):225-232. https://doi.org/10.1017/s0263593300006635
    Prokoph, A., Ernst, R. E., Buchan, K. L., 2004. Time-Series Analysis of Large Igneous Provinces:3 500 Ma to Present. The Journal of Geology, 112(1):1-22. https://doi.org/10.1086/379689
    Prouteau, G., Scaillet, B., Pichavant, M., et al., 2001. Evidence for Mantle Metasomatism by Hydrous Silicic Melts Derived from Subducted Oceanic Crust. Nature, 410(6825):197-200. https://doi.org/10.1038/35065583
    Puchtel, I. S., Blichert-Toft, J., Touboul, M., et al., 2013. Insights into Early Earth from Barberton Komatiites:Evidence from Lithophile Isotope and Trace Element Systematics. Geochimica et Cosmochimica Acta, 108:63-90. https://doi.org/10.1016/j.gca.2013.01.016
    Puffer, J. H., 2001. Contrasting High Field Strength Element Contents of Continental Flood Basalts from Plume versus Reactivated-Arc Sources. Geology, 29(8):675-678. https://doi.org/10.1130/0091-7613(2001)029 < 0675:chfsec > 2.0.co; 2 doi: 10.1130/0091-7613(2001)029<0675:chfsec>2.0.co;2
    Pujol, M., Marty, B., Burgess, R., et al., 2013. Argon Isotopic Composition of Archaean Atmosphere Probes Early Earth Geodynamics. Nature, 498(7452):87-90. https://doi.org/10.1038/nature12152
    Rainbird, R. H., Davis, W. J., 2007. U-Pb Detrital Zircon Geochronology and Provenance of the Late Paleoproterozoic Dubawnt Supergroup:Linking Sedimentation with Tectonic Reworking of the Western Churchill Province, Canada. Geological Society of America Bulletin, 119(3/4):314-328. https://doi.org/10.1130/b25989.1
    Rainbird, R. H., Davis, W. J., Stern, R. A., et al., 2006. Ar-Ar and U-Pb Geochronology of a Late Paleoproterozoic Rift Basin:Support for a Genetic Link with Hudsonian Orogenesis, Western Churchill Province, Nunavut, Canada. The Journal of Geology, 114(1):1-17. https://doi.org/10.1086/498097
    Rapela, C. W., Fanning, C. M., Casquet, C., et al., 2011. The Rio de la Plata Craton and the Adjoining Pan-African/Brasiliano Terranes:Their Origins and Incorporation into South-West Gondwana. Gondwana Research, 20(4):673-690. https://doi.org/10.1016/j.gr.2011.05.001
    Rapp, R. P., Shimizu, N., Norman, M. D., 2003. Growth of Early Continental Crust by Partial Melting of Eclogite. Nature, 425(6958):605-609. https://doi.org/10.1038/nature02031
    Rapp, R. P., Watson, E. B., 1995. Dehydration Melting of Metabasalt at 8-32 kbar:Implications for Continental Growth and Crust-Mantle Recycling. Journal of Petrology, 36(4):891-931. https://doi.org/10.1093/petrology/36.4.891
    Rapp, R. P., Watson, E. B., Miller, C. F., 1991. Partial Melting of Amphibolite/Eclogite and the Origin of Archean Trondhjemites and Tonalites. Precambrian Research, 51(1/2/3/4):1-25. https://doi.org/10.1016/0301-9268(91)90092-o
    Reymer, A., Schubert, G., 1984. Phanerozoic Addition Rates to the Continental Crust and Crustal Growth. Tectonics, 3(1):63-77. https://doi.org/10.1029/tc003i001p00063
    Reymer, A., Schubert, G., 1986. Rapid Growth of some Major Segments of Continental Crust. Geology, 14(4):299-302. https://doi.org/10.1130/0091-7613(1986)14 < 299:rgosms > 2.0.co; 2 doi: 10.1130/0091-7613(1986)14<299:rgosms>2.0.co;2
    Richards, M. A., Duncan, R. A., Courtillot, V. E., 1989. Flood Basalts and Hot-Spot Tracks:Plume Heads and Tails. Science, 246(4926):103-107. https://doi.org/10.1126/science.246.4926.103
    Rizo, H., Boyet, M., Blichert-Toft, J., et al., 2011. Combined Nd and Hf Isotope Evidence for Deep-Seated Source of Isua Lavas. Earth and Planetary Science Letters, 312(3/4):267-279. https://doi.org/10.1016/j.epsl.2011.10.014
    Rizo, H., Boyet, M., Blichert-Toft, J., et al., 2012. The Elusive Hadean Enriched Reservoir Revealed by 142Nd Deficits in Isua Archaean Rocks. Nature, 491(7422):96-100. https://doi.org/10.1038/nature11565
    Rizo, H., Boyet, M., Blichert-Toft, J., et al., 2013. Early Mantle Dynamics Inferred from 142Nd Variations in Archean Rocks from Southwest Greenland. Earth and Planetary Science Letters, 377/378:324-335. https://doi.org/10.1016/j.epsl.2013.07.012
    Roberts, N. M. W., 2012. Increased Loss of Continental Crust during Supercontinent Amalgamation. Gondwana Research, 21(4):994-1000. https://doi.org/10.1016/j.gr.2011.08.001
    Rolf, T., Coltice, N., Tackley, P. J., 2012. Linking Continental Drift, Plate Tectonics and the Thermal State of the Earth's Mantle. Earth and Planetary Science Letters, 351/352:134-146. https://doi.org/10.1016/j.epsl.2012.07.011
    Rooney, T. O., Herzberg, C., Bastow, I. D., 2012. Elevated Mantle Temperature beneath East Africa. Geology, 40(1):27-30. https://doi.org/10.1130/g32382.1
    Rudge, J. F., 2008. Finding Peaks in Geochemical Distributions:A Re-Examination of the Helium-Continental Crust Correlation. Earth and Planetary Science Letters, 274(1/2):179-188. https://doi.org/10.1016/j.epsl.2008.07.021
    Rudnick, R. L., 1995. Making Continental Crust. Nature, 378(6557):571-578. https://doi.org/10.1038/378571a0
    Rudnick, R. L., Fountain, D. M., 1995. Nature and Composition of the Continental Crust:A Lower Crustal Perspective. Reviews of Geophysics, 33(3):267-309. https://doi.org/10.1029/95rg01302
    Rudnick, R. L., Gao, S., 2003. Composition of the Continental Crust. In: Rudnick, R. L., ed., The Crust. Elsevier-Pergamon, Oxford. 1-64. https://doi.org/10.1016/b0-08-043751-6/03016-4
    Sakamaki, T., Suzuki, A., Ohtani, E., et al., 2013. Ponded Melt at the Boundary between the Lithosphere and Asthenosphere. Nature Geoscience, 6(12):1041-1044. https://doi.org/10.1038/ngeo1982
    Samson, S. D., D'Lemos, R. S., Blichert-Toft, J., et al., 2003. U-Pb Geochronology and Hf-Nd Isotope Compositions of the Oldest Neoproterozoic Crust within the Cadomian Orogen:New Evidence for a Unique Juvenile Terrane. Earth and Planetary Science Letters, 208(3/4):165-180. https://doi.org/10.1016/s0012-821x(03)00045-1
    Santosh, M., 2010. A Synopsis of Recent Conceptual Models on Supercontinent Tectonics in Relation to Mantle Dynamics, Life Evolution and Surface Environment. Journal of Geodynamics, 50(3/4):116-133. https://doi.org/10.1016/j.jog.2010.04.002
    Saunders, A. D., 2005. Large Igneous Provinces:Origin and Environmental Consequences. Elements, 1(5):259-263. https://doi.org/10.2113/gselements.1.5.259
    Schilling, M. E., Carlson, R. W., Conceição, R. V., et al., 2008. Re-Os Isotope Constraints on Subcontinental Lithospheric Mantle Evolution of Southern South America. Earth and Planetary Science Letters, 268(1/2):89-101. https://doi.org/10.1016/j.epsl.2008.01.005
    Schubert, G., Sandwell, D., 1989. Crustal Volumes of the Continents and of Oceanic and Continental Submarine Plateaus. Earth and Planetary Science Letters, 92(2):234-246. https://doi.org/10.1016/0012-821x(89)90049-6
    Sen, G., Bizimis, M., Das, R., et al., 2009. Deccan Plume, Lithosphere Rifting, and Volcanism in Kutch, India. Earth and Planetary Science Letters, 277(1/2):101-111. https://doi.org/10.1016/j.epsl.2008.10.002
    Shi, R. D., Alard, O., Zhi, X. C., et al., 2007. Multiple Events in the Neo-Tethyan Oceanic Upper Mantle:Evidence from Ru-Os-Ir Alloys in the Luobusa and Dongqiao Ophiolitic Podiform Chromitites, Tibet. Earth and Planetary Science Letters, 261(1/2):33-48. https://doi.org/10.1016/j.epsl.2007.05.044
    Shi, R. D., Griffin, W. L., O'Reilly, S. Y., et al., 2012. Melt/mantle Mixing Produces Podiform Chromite Deposits in Ophiolites:Implications of Re-Os Systematics in the Dongqiao Neo-Tethyan Ophiolite, Northern Tibet. Gondwana Research, 21(1):194-206. https://doi.org/10.1016/j.gr.2011.05.011
    Shirey, S. B., Walker, R. J., 1998. The Re-Os Isotope System in Cosmochemistry and High-Temperature Geochemistry. Annual Review of Earth and Planetary Sciences, 26(1):423-500. https://doi.org/10.1146/annurev.earth.26.1.423
    Silver, P. G., Behn, M., Kelley, K., et al., 2006. Understanding Cratonic Flood Basalts. Earth and Planetary Science Letters, 245(1/2):190-201. https://doi.org/10.1016/j.epsl.2006.01.050
    Simon, L., Lécuyer, C., 2005. Continental Recycling:The Oxygen Isotope Point of View. Geochemistry, Geophysics, Geosystems, 6(8):1-10. https://doi.org/10.1029/2005gc000958
    Smith, A. D., 1992. Back-Arc Convection Model for Columbia River Basalt Genesis. Tectonophysics, 207(3/4):269-285. https://doi.org/10.1016/0040-1951(92)90390-r
    Smithies, R. H., 2000. The Archaean Tonalite-Trondhjemite-Granodiorite (TTG) Series is not an Analogue of Cenozoic Adakite. Earth and Planetary Science Letters, 182(1):115-125. https://doi.org/10.1016/s0012-821x(00)00236-3
    Smithies, R. H., Champion, D. C., Cassidy, K. F., 2003. Formation of Earth's Early Archaean Continental Crust. Precambrian Research, 127(1/2/3):89-101. https://doi.org/10.1016/s0301-9268(03)00182-7
    Smithies, R. H., Champion, D. C., Van Kranendonk, M. J., 2009. Formation of Paleoarchean Continental Crust through Infracrustal Melting of Enriched Basalt. Earth and Planetary Science Letters, 281(3/4):298-306. https://doi.org/10.1016/j.epsl.2009.03.003
    Søager, N., Holm, P. M., 2011. Changing Compositions in the Iceland Plume; Isotopic and Elemental Constraints from the Paleogene Faroe Flood Basalts. Chemical Geology, 280(3/4):297-313. https://doi.org/10.1016/j.chemgeo.2010.11.017
    Sobolev, S. V., Sobolev, A. V., Kuzmin, D. V., et al., 2011. Linking Mantle Plumes, Large Igneous Provinces and Environmental Catastrophes. Nature, 477(7364):312-316. https://doi.org/10.1038/nature10385
    Spandler, C., Pirard, C., 2013. Element Recycling from Subducting Slabs to Arc Crust:A Review. Lithos, 170/171:208-223. https://doi.org/10.1016/j.lithos.2013.02.016
    Stampfli, G. M., Hochard, C., Vérard, C., et al., 2013. The Formation of Pangea. Tectonophysics, 593:1-19. https://doi.org/10.1016/j.tecto.2013.02.037
    Stein, M., Ben-Avraham, Z., 2007.9.07-Mechanisms of Continental Crust Growth. In: Gerald, S., ed., Treatise on Geophysics. Elsevier, Amsterdam. 171-195
    Stein, M., Goldstein, S. L., 1996. From Plume Head to Continental Lithosphere in the Arabian-Nubian Shield. Nature, 382(6594):773-778. https://doi.org/10.1038/382773a0
    Stein, M., Hofmann, A. W., 1994. Mantle Plumes and Episodic Crustal Growth. Nature, 372(6501):63-68. https://doi.org/10.1038/372063a0
    Steinberger, B., Torsvik, T. H., 2012. A Geodynamic Model of Plumes from the Margins of Large Low Shear Velocity Provinces. Geochemistry, Geophysics, Geosystems, 13(1):1-17. https://doi.org/10.1029/2011gc003808
    Stern, C. R., 2011. Subduction Erosion:Rates, Mechanisms, and Its Role in Arc Magmatism and the Evolution of the Continental Crust and Mantle. Gondwana Research, 20(2/3):284-308. https://doi.org/10.1016/j.gr.2011.03.006
    Stracke, A., Salters, V. J. M., Sims, K. W., 2000. Assessing the Presence of Garnet-Pyroxenite in the Mantle Sources of Basalts through Combined Hafnium-Neodymium-Thorium Isotope Systematics. Geochemistry, Geophysics, Geosystems, 1(12):1-13. https://doi.org/10.1029/1999gc000013
    Strand, K., KöykkĠ, J., 2012. Early Paleoproterozoic Rift Volcanism in the Eastern Fennoscandian Shield Related to the Breakup of the Kenorland Supercontinent. Precambrian Research, 214/215:95-105. https://doi.org/10.1016/j.precamres.2012.02.011
    Straub, S. M., Gómez-Tuena, A., Zellmer, G. F., et al., 2013. The Processes of Melt Differentiation in Arc Volcanic Rock:Insights from OIB-Type Arc Magmas in the Central Mexican Volcanic Belt. Journal of Petrology, 54(4):665-701. https://doi.org/10.1093/petrology/egs081
    Su, B. X., Qin, K. Z., Sakyi, P. A., et al., 2011. U-Pb Ages and Hf-O Isotopes of Zircons from Late Paleozoic Mafic-Ultramafic Units in the Southern Central Asian Orogenic Belt:Tectonic Implications and Evidence for an Early-Permian Mantle Plume. Gondwana Research, 20(2/3):516-531. https://doi.org/10.1016/j.gr.2010.11.015
    Sun, J. F., Yang, J. H., Wu, F. Y., et al., 2010. Magma Mixing Controlling the Origin of the Early Cretaceous Fangshan Granitic Pluton, North China Craton:In situ U-Pb Age and Sr-, Nd-, Hf-and O-Isotope Evidence. Lithos, 120(3/4):421-438. https://doi.org/10.1016/j.lithos.2010.09.002
    Szilas, K., Næraa, T., Scherstén, A., et al., 2012. Origin of Mesoarchaean Arc-Related Rocks with Boninite/Komatiite Affinities from Southern West Greenland. Lithos, 144/145:24-39. https://doi.org/10.1016/j.lithos.2012.03.023
    Tamura, Y., Gill, J. B., Tollstrup, D., et al., 2009. Silicic Magmas in the Izu-Bonin Oceanic Arc and Implications for Crustal Evolution. Journal of Petrology, 50(4):685-723. https://doi.org/10.1093/petrology/egp017
    Tang, G. J., Wang, Q., Wyman, D. A., et al., 2012. Recycling Oceanic Crust for Continental Crustal Growth:Sr-Nd-Hf Isotope Evidence from Granitoids in the Western Junggar Region, NW China. Lithos, 128:73-83. https://doi.org/10.1016/j.lithos.2011.11.003
    Tanton, L. T. E., Hager, B. H., 2000. Melt Intrusion as a Trigger for Lithospheric Foundering and the Eruption of the Siberian Flood Basalts. Geophysical Research Letters, 27(23):3937-3940. https://doi.org/10.1029/2000gl011751
    Tatsumi, Y., 2008. Making Continental Crust:The Sanukitoid Connection. Chinese Science Bulletin, 53(11):1620-1633. https://doi.org/10.1007/s11434-008-0185-9
    Taylor, S. R., 1967. The Origin and Growth of Continents. Tectonophysics, 4(1):17-34. https://doi.org/10.1016/0040-1951(67)90056-x
    Taylor, S. R., McLennan, S. M., 1995. The Geochemical Evolution of the Continental Crust. Reviews of Geophysics, 33(2):241-265. https://doi.org/10.1029/95rg00262
    Thorkelson, D. J., Mortensen, J. K., Creaser, R. A., et al., 2001. Early Proterozoic Magmatism in Yukon, Canada:Constraints on the Evolution of Northwestern Laurentia. Canadian Journal of Earth Sciences, 38(10):1479-1494. https://doi.org/10.1139/cjes-38-10-1479
    Thompson, P. M. E., Kempton, P. D., White, R. V., et al., 2004. Hf-Nd Isotope Constraints on the Origin of the Cretaceous Caribbean Plateau and Its Relationship to the Galápagos Plume. Earth and Planetary Science Letters, 217(1/2):59-75. https://doi.org/10.1016/s0012-821x(03)00542-9
    Timm, C., Hoernle, K., Werner, R., et al., 2011. Age and Geochemistry of the Oceanic Manihiki Plateau, SW Pacific:New Evidence for a Plume Origin. Earth and Planetary Science Letters, 304(1/2):135-146. https://doi.org/10.1016/j.epsl.2011.01.025
    Torrence, C., Compo, G. P., 1998. A Practical Guide to Wavelet Analysis. Bulletin of the American Meteorological Society, 79(1):61-78. https://doi.org/10.1175/1520-0477(1998)079 < 0061:apgtwa > 2.0.co; 2 doi: 10.1175/1520-0477(1998)079<0061:apgtwa>2.0.co;2
    Tsuchiya, N., Suzuki, S., Kimura, J. I., et al., 2005. Evidence for Slab Melt/Mantle Reaction:Petrogenesis of Early Cretaceous and Eocene High-Mg Andesites from the Kitakami Mountains, Japan. Lithos, 79(1/2):179-206. https://doi.org/10.1016/j.lithos.2004.04.053
    Turner, S., Hawkesworth, C., 1995. The Nature of the Sub-Continental Mantle:Constraints from the Major-Element Composition of Continental Flood Basalts. Chemical Geology, 120(3/4):295-314. https://doi.org/10.1016/0009-2541(94)00143-v
    Turner, S., Wilde, S., Wörner, G., et al., 2020. An Andesitic Source for Jack Hills Zircon Supports Onset of Plate Tectonics in the Hadean. Nature Communications, 11(1):1241. https://doi.org/10.1038/s41467-020-14857-1
    Valley, J. W., Bindeman, I. N., Peck, W. H., 2003. Empirical Calibration of Oxygen Isotope Fractionation in Zircon. Geochimica et Cosmochimica Acta, 67(17):3257-3266. https://doi.org/10.1016/s0016-7037(03)00090-5
    Valley, J. W., Kinny, P. D., Schulze, D. J., et al., 1998. Zircon Megacrysts from Kimberlite:Oxygen Isotope Variability among Mantle Melts. Contributions to Mineralogy and Petrology, 133(1/2):1-11. https://doi.org/10.1007/s004100050432
    Valley, J. W., Lackey, J. S., Cavosie, A. J., et al., 2005.4.4 Billion Years of Crustal Maturation:Oxygen Isotope Ratios of Magmatic Zircon. Contributions to Mineralogy and Petrology, 150(6):561-580. https://doi.org/10.1007/s00410-005-0025-8
    Van Dongen, M., Weinberg, R. F., Tomkins, A. G., et al., 2010. Recycling of Proterozoic Crust in Pleistocene Juvenile Magma and Rapid Formation of the Ok Tedi Porphyry Cu-Au Deposit, Papua New Guinea. Lithos, 114(3/4):282-292. https://doi.org/10.1016/j.lithos.2009.09.003
    Van Soest, M. C., Hilton, D. R., Macpherson, C. G., et al., 2002. Resolving Sediment Subduction and Crustal Contamination in the Lesser Antilles Island Arc:A Combined He-O-Sr Isotope Approach. Journal of Petrology, 43(1):143-170. https://doi.org/10.1093/petrology/43.1.143
    Vervoort, J. D., Blichert-Toft, J., 1999. Evolution of the Depleted Mantle:Hf Isotope Evidence from Juvenile Rocks through Time. Geochimica et Cosmochimica Acta, 63(3/4):533-556. https://doi.org/10.1016/s0016-7037(98)00274-9
    Vogt, K., Gerya, T. V., Castro, A., 2012. Crustal Growth at Active Continental Margins:Numerical Modeling. Physics of the Earth and Planetary Interiors, 192/193:1-20. https://doi.org/10.1016/j.pepi.2011.12.003
    Voice, P. J., Kowalewski, M., Eriksson, K. A., 2011. Quantifying the Timing and Rate of Crustal Evolution:Global Compilation of Radiometrically Dated Detrital Zircon Grains. The Journal of Geology, 119(2):109-126. https://doi.org/10.1086/658295
    Walker, R. J., Carlson, R. W., Shirey, S. B., et al., 1989. Os, Sr, Nd, and Pb Isotope Systematics of Southern African Peridotite Xenoliths:Implications for the Chemical Evolution of Subcontinental Mantle. Geochimica et Cosmochimica Acta, 53(7):1583-1595. https://doi.org/10.1016/0016-7037(89)90240-8
    Walker, R., Horan, M., Morgan, J., et al., 2002. Comparative 187Re-187Os Systematics of Chondrites:Implications Regarding Early Solar System Processes. Geochimica et Cosmochimica Acta, 66(23):4187-4201. https://doi.org/10.1016/s0016-7037(02)01003-7
    Wang, C. Y., Campbell, I. H., Allen, C. M., et al., 2009. Rate of Growth of the Preserved North American Continental Crust:Evidence from Hf and O Isotopes in Mississippi Detrital Zircons. Geochimica et Cosmochimica Acta, 73(3):712-728. https://doi.org/10.1016/j.gca.2008.10.037
    Wang, C. Y., Campbell, I. H., Stepanov, A. S., et al., 2011. Growth Rate of the Preserved Continental Crust:Ⅱ. Constraints from Hf and O Isotopes in Detrital Zircons from Greater Russian Rivers. Geochimica et Cosmochimica Acta, 75(5):1308-1345. https://doi.org/10.1016/j.gca.2010.12.010
    Wang, K.-L., O'Reilly, S. Y., Honda, M., et al., 2010. Co-Rich Sulfides in Mantle Peridotites from Penghu Islands, Taiwan:Footprints of Proterozoic Mantle Plumes under the Cathaysia Block. Journal of Asian Earth Sciences, 37(3):229-245. https://doi.org/10.1016/j.jseaes.2009.08.008
    Wang, X.-C., Li, X. H., Li, W. X., et al., 2007. Ca. 825 Ma Komatiitic Basalts in South China:First Evidence for > 1 500℃ Mantle Melts by a Rodinian Mantle Plume. Geology, 35(12):1103-1106. https://doi.org/10.1130/g23878a.1
    Wang, X.-C., Li, X. H., Li, W. X., et al., 2008. The Bikou Basalts in the Northwestern Yangtze Block, South China:Remnants of 820-810 Ma Continental Flood Basalts?. Geological Society of America Bulletin, 120(11/12):1478-1492. https://doi.org/10.1130/b26310.1
    Wang, X.-C., Li, X. H., Li, W. X., et al., 2009. Variable Involvements of Mantle Plumes in the Genesis of Mid-Neoproterozoic Basaltic Rocks in South China:A Review. Gondwana Research, 15(3/4):381-395. https://doi.org/10.1016/j.gr.2008.08.003
    Wang, X.-C., Li, X. H., Li, Z.-X., et al., 2012. Episodic Precambrian Crust Growth:Evidence from U-Pb Ages and Hf-O Isotopes of Zircon in the Nanhua Basin, Central South China. Precambrian Research, 222/223:386-403. https://doi.org/10.1016/j.precamres.2011.06.001
    Wang, X.-C., Li, Z.-X., Li, X. H., et al., 2011. Nonglacial Origin for Low-δ18O Neoproterozoic Magmas in the South China Block:Evidence from New in-situ Oxygen Isotope Analyses Using SIMS. Geology, 39(8):735-738. https://doi.org/10.1130/g31991.1
    Wang, F. Y., Liu, S. A., Li, S. G., et al., 2013. Contrasting Zircon Hf-O Isotopes and Trace Elements between Ore-Bearing and Ore-Barren Adakitic Rocks in Central-Eastern China:Implications for Genetic Relation to Cu-Au Mineralization. Lithos, 156:97-111. https://doi.org/10.1016/j.lithos.2012.10.017
    Wang, M. X., Wang, C., Zhao, J. H., 2013. Zircon U/Pb Dating and Hf-O Isotopes of the Zhouan Ultramafic Intrusion in the Northern Margin of the Yangtze Block, SW China:Constraints on the Nature of Mantle Source and Timing of the Supercontinent Rodinia Breakup. Chinese Science Bulletin, 58(7):777-787. https://doi.org/10.1007/s11434-012-5435-1
    Wang, X.-C., Li, Z.-X., Li, X. H., et al., 2013a. Identification of an Ancient Mantle Reservoir and Young Recycled Materials in the Source Region of a Young Mantle Plume:Implications for Potential Linkages between Plume and Plate Tectonics. Earth and Planetary Science Letters, 377/378:248-259. https://doi.org/10.1016/j.epsl.2013.07.003
    Wang, X.-C., Li, Z.-X., Li, X. H., 2013b. Early Differentiation of the Bulk Silicate Earth as Recorded by the Oldest Mantle Reservoir. Precambrian Research, 238:52-60. https://doi.org/10.1016/j.precamres.2013.09.010
    Wang, X.-C., Wilde, S. A., Li, Q. L., et al., 2015. Continental Flood Basalts Derived from the Hydrous Mantle Transition Zone. Nature Communications, 6(1):7700. https://doi.org/10.1038/ncomms8700
    Wang, X-C., Wilde, S. A., Xu, B., et al., 2016. Origin of Arc-Like Continental Basalts:Implications for Deep-Earth Fluid Cycling and Tectonic Discrimination. Lithos, 261:5-45. https://doi.org/10.1016/j.lithos.2015.12.014
    Watson, E. B., 1979. Zircon Saturation in Felsic Liquids:Experimental Results and Applications to Trace Element Geochemistry. Contributions to Mineralogy and Petrology, 70(4):407-419. https://doi.org/10.1007/bf00371047
    Watson, E. B., Harrison, T. M., 1983. Zircon Saturation Revisited:Temperature and Composition Effects in a Variety of Crustal Magma Types. Earth and Planetary Science Letters, 64(2):295-304. https://doi.org/10.1016/0012-821x(83)90211-x
    Wei, C. S., Zheng, Y. F., Zhao, Z. F., et al., 2002. Oxygen and Neodymium Isotope Evidence for Recycling of Juvenile Crust in Northeast China. Geology, 30(4):375-378. https://doi.org/10.1130/0091-7613(2002)030 < 0375:oanief > 2.0.co; 2 doi: 10.1130/0091-7613(2002)030<0375:oanief>2.0.co;2
    White, R., McKenzie, D., 1989. Magmatism at Rift Zones:The Generation of Volcanic Continental Margins and Flood Basalts. Journal of Geophysical Research, 94(B6):7685-7729. https://doi.org/10.1029/jb094ib06p07685
    Williams, H., Hoffman, P. F., Lewry, J. F., et al., 1991. Anatomy of North America:Thematic Geologic Portrayals of the Continent. Tectonophysics, 187(1/2/3):117-134. https://doi.org/10.1016/0040-1951(91)90416-p
    Windley, B. F., Maruyama, S., Xiao, W. J., 2010. Delamination/Thinning of Sub-Continental Lithospheric Mantle under Eastern China:The Role of Water and Multiple Subduction. American Journal of Science, 310(10):1250-1293. https://doi.org/10.2475/10.2010.03
    Wittig, N., Webb, M., Pearson, D. G., et al., 2010. Formation of the North Atlantic Craton:Timing and Mechanisms Constrained from Re-Os Isotope and PGE Data of Peridotite Xenoliths from S.W. Greenland. Chemical Geology, 276(3/4):166-187. https://doi.org/10.1016/j.chemgeo.2010.06.002
    Wood, B. J., Turner, S. P., 2009. Origin of Primitive High-Mg Andesite:Constraints from Natural Examples and Experiments. Earth and Planetary Science Letters, 283(1/2/3/4):59-66. https://doi.org/10.1016/j.epsl.2009.03.032
    Wu, F. Y., Jahn, B. M., Wilde, S., et al., 2000. Phanerozoic Crustal Growth:U-Pb and Sr-Nd Isotopic Evidence from the Granites in Northeastern China. Tectonophysics, 328(1/2):89-113. https://doi.org/10.1016/s0040-1951(00)00179-7
    Xu, G. P., Frey, F. A., Weis, D., et al., 2007. Flood Basalts from Mt. Capitole in the Central Kerguelen Archipelago:Insights into the Growth of the Archipelago and Source Components Contributing to Plume-Related Volcanism. Geochemistry, Geophysics, Geosystems, 8(6):1-34. https://doi.org/10.1029/2007gc001608
    Xu, Q. Q., Ji, J. Q., Zhao, L., et al., 2013. Tectonic Evolution and Continental Crust Growth of Northern Xinjiang in Northwestern China:Remnant Ocean Model. Earth-Science Reviews, 126:178-205. https://doi.org/10.1016/j.earscirev.2013.08.005
    Xu, X. S., Griffin, W. L., O'Reilly, S. Y., et al., 2008. Re-Os Isotopes of Sulfides in Mantle Xenoliths from Eastern China:Progressive Modification of Lithospheric Mantle. Lithos, 102(1/2):43-64. https://doi.org/10.1016/j.lithos.2007.06.010
    Xu, Y. G., 2002. Evidence for Crustal Components in the Mantle and Constraints on Crustal Recycling Mechanisms:Pyroxenite Xenoliths from Hannuoba, North China. Chemical Geology, 182(2/3/4):301-322. https://doi.org/10.1016/s0009-2541(01)00300-x
    Yamaoka, K., Ishikawa, T., Matsubaya, O., et al., 2012. Boron and Oxygen Isotope Systematics for a Complete Section of Oceanic Crustal Rocks in the Oman Ophiolite. Geochimica et Cosmochimica Acta, 84:543-559. https://doi.org/10.1016/j.gca.2012.01.043
    Yang, J. H., Wu, F. Y., Chung, S. L., et al., 2004. Multiple Sources for the Origin of Granites:Geochemical and Nd/Sr Isotopic Evidence from the Gudaoling Granite and Its Mafic Enclaves, Northeast China. Geochimica et Cosmochimica Acta, 68(21):4469-4483. https://doi.org/10.1016/j.gca.2004.04.015
    Yang, J. H., Wu, F. Y., Wilde, S. A., et al., 2007a. Tracing Magma Mixing in Granite Genesis:In Situ U-Pb Dating and Hf-Isotope Analysis of Zircons. Contributions to Mineralogy and Petrology, 153(2):177-190. https://doi.org/10.1007/s00410-006-0139-7
    Yang, J. H., Wu, F. Y., Wilde, S. A., et al., 2007b. Petrogenesis of Late Triassic Granitoids and Their Enclaves with Implications for Post-Collisional Lithospheric Thinning of the Liaodong Peninsula, North China Craton. Chemical Geology, 242(1/2):155-175. https://doi.org/10.1016/j.chemgeo.2007.03.007
    Yang, T. N., Zhang, H. R., Liu, Y. X., et al., 2011. Permo-Triassic Arc Magmatism in Central Tibet:Evidence from Zircon U-Pb Geochronology, Hf Isotopes, Rare Earth Elements, and Bulk Geochemistry. Chemical Geology, 284(3/4):270-282. https://doi.org/10.1016/j.chemgeo.2011.03.006
    Yang, Q. D., Wang, T., Guo, L., et al., 2017. Nd Isotopic Variation of Paleozoic-Mesozoic Granitoids from the Da Hinggan Mountains and Adjacent Areas, NE Asia:Implications for the Architecture and Growth of Continental Crust. Lithos, 272/273:164-184. https://doi.org/10.1016/j.lithos.2016.11.015
    Yang, Y. N., Wang, X.-C., Li, Q. L., et al., 2016. Integrated in situ U-Pb Age and Hf-O Analyses of Zircon from Suixian Group in Northern Yangtze:New Insights into the Neoproterozoic Low-δ18O Magmas in the South China Block. Precambrian Research, 273:151-164. https://doi.org/10.1016/j.precamres.2015.12.008
    Yakubchuk, A. S., 2019. From Kenorland to Modern Continents:Tectonics and Metallogeny. Geotectonics, 53(2):169-192. https://doi.org/10.1134/s0016852119020109
    Yin, Q. Z., Wimpenny, J., Tollstrup, D. L., et al., 2012. Crustal Evolution of the South Mayo Trough, Western Ireland, Based on U-Pb Ages and Hf-O Isotopes in Detrital Zircons. Journal of the Geological Society, 169(6):681-689. https://doi.org/10.1144/jgs2011-164
    Yoshida, M., Santosh, M., 2011. Supercontinents, Mantle Dynamics and Plate Tectonics:A Perspective Based on Conceptual vs. Numerical Models. Earth-Science Reviews, 105(1/2):1-24. https://doi.org/10.1016/j.earscirev.2010.12.002
    Zeh, A., Jaguin, J., Poujol, M., et al., 2013. Juvenile Crust Formation in the Northeastern Kaapvaal Craton at 2.97 Ga-Implications for Archean Terrane Accretion, and the Source of the Pietersburg Gold. Precambrian Research, 233:20-43. https://doi.org/10.1016/j.precamres.2013.04.013
    Zhai, M. G., Hu, B., Zhao, T. P., et al., 2015. Late Paleoproterozoic-Neoproterozoic Multi-Rifting Events in the North China Craton and Their Geological Significance:A Study Advance and Review. Tectonophysics, 662:153-166. https://doi.org/10.1016/j.tecto.2015.01.019
    Zhang, S. H., Li, Z.-X., Evans, D. A. D., et al., 2012. Pre-Rodinia Supercontinent Nuna Shaping up:A Global Synthesis with New Paleomagnetic Results from North China. Earth and Planetary Science Letters, 353/354:145-155. https://doi.org/10.1016/j.epsl.2012.07.034
    Zhang, X., Xu, W., Sun, C., et al., 2018. Crustal Accretion and Reworking within the Khanka Massif:Evidence from Hf Isotopes of Zircons in Phanerozoic Granitoids. Journal of Earth Science, 29(2):255-264. https://doi.org/10.1007/s12583-017-0950-2
    Zhao, J. H., Asimow, P. D., 2018. Formation and Evolution of a Magmatic System in a Rifting Continental Margin:Neoproterozoic Arc-and MORB-Like Dike Swarms in South China. Journal of Petrology, 59(9):1811-1844. https://doi.org/10.1093/petrology/egy080
    Zheng, Y. C., Hou, Z. Q., Li, Q. Y., et al., 2012. Origin of Late Oligocene Adakitic Intrusives in the Southeastern Lhasa Terrane:Evidence from in situ Zircon U-Pb Dating, Hf-O Isotopes, and Whole-Rock Geochemistry. Lithos, 148:296-311. https://doi.org/10.1016/j.lithos.2012.05.026
    Zheng, Y. F., Zhang, S. B., Zhao, Z. F., et al., 2007. Contrasting Zircon Hf and O Isotopes in the Two Episodes of Neoproterozoic Granitoids in South China:Implications for Growth and Reworking of Continental Crust. Lithos, 96(1/2):127-150. https://doi.org/10.1016/j.lithos.2006.10.003
    Zhong, H., Zhu, W. G., Hu, R. Z., et al., 2009. Zircon U-Pb Age and Sr-Nd-Hf Isotope Geochemistry of the Panzhihua A-Type Syenitic Intrusion in the Emeishan Large Igneous Province, Southwest China and Implications for Growth of Juvenile Crust. Lithos, 110(1/2/3/4):109-128. https://doi.org/10.1016/j.lithos.2008.12.006
    Zhu, G. Z., Gerya, T. V., Tackley, P. J., et al., 2013. Four-Dimensional Numerical Modeling of Crustal Growth at Active Continental Margins. Journal of Geophysical Research:Solid Earth, 118(9):4682-4698. https://doi.org/10.1002/jgrb.50357
    Zhu, J. J., Hu, R. Z., Bi, X. W., et al., 2011. Zircon U-Pb Ages, Hf-O Isotopes and Whole-Rock Sr-Nd-Pb Isotopic Geochemistry of Granitoids in the Jinshajiang Suture Zone, SW China:Constraints on Petrogenesis and Tectonic Evolution of the Paleo-Tethys Ocean. Lithos, 126(3/4):248-264. https://doi.org/10.1016/j.lithos.2011.07.003
    Zindler, A., Hart, S., 1986. Chemical Geodynamics. Annual Review of Earth and Planetary Sciences, 14(1):493-571. https://doi.org/10.1146/annurev.ea.14.050186.002425
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)

    Article Metrics

    Article views(481) PDF downloads(58) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return