Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 32 Issue 4
Aug 2021
Turn off MathJax
Article Contents
Mohammad Parandavar, Jalil Sadouni. Evaluation of Organic Matter Richness of Eocene Strata Based on Calcareous Nannofossils and Rock-Eval Analysis in North Dezful, Iran. Journal of Earth Science, 2021, 32(4): 1022-1034. doi: 10.1007/s12583-020-1091-6
Citation: Mohammad Parandavar, Jalil Sadouni. Evaluation of Organic Matter Richness of Eocene Strata Based on Calcareous Nannofossils and Rock-Eval Analysis in North Dezful, Iran. Journal of Earth Science, 2021, 32(4): 1022-1034. doi: 10.1007/s12583-020-1091-6

Evaluation of Organic Matter Richness of Eocene Strata Based on Calcareous Nannofossils and Rock-Eval Analysis in North Dezful, Iran

doi: 10.1007/s12583-020-1091-6
More Information
  • Corresponding author: Jalil Sadouni, j.sadooni@niocexp.irs
  • Received Date: 13 Dec 2019
  • Accepted Date: 05 Sep 2020
  • Publish Date: 16 Aug 2021
  • Hydrocarbon source potential of the Paleogene Pabdeh Formation was studied by means of organic geochemistry and distribution of calcareous nannofossils. Based on the results, an Eocene-aged organic matter (OM)-rich interval was identified and traced across different parts of the North Dezful zone and partly Abadan Plain. In order to characterize the OM quality and richness of the studied intervals, Rock-Eval pyrolysis and nannofossils evaluation were performed, and the geochemical data collected along selected wells were correlated to capture the variations of thickness and source potential of the OM-rich interval. Accordingly, remarkable variations were identified within the depth ranges of 2 480-2 552 m and also 2 200-2 210 m, which were attributed to the maximum increase in the rate of growth R-selected species. This increase in the productivity rate was found to be well correlated to high Rock-Eval total organic carbon (TOC) and hydrogen index (HI) values. Given that the maturity of Pabdeh Formation in the studied area was found to have reached the oil window, we expect significant hydrocarbon generation (Type Ⅱ kerogen), making the play economically highly promising.

     

  • Electronic Supplementary Materials: Supplementary materials (Table S1 and Fig. S1) are available in the online version of this article at https://doi.org/10.1007/s12583-020-1091-6.
  • loading
  • Aghanabati, A., 2004. Geology of Iran. Geological Survey of Iran, Tehran. 586
    Alizadeh, B., Sarafdokht, H., Rajabi, M., et al., 2012. Organic Geochemistry and Petrography of Kazhdumi (Albian-Cenomanian) and Pabdeh (Paleogene) Potential Source Rocks in Southern Part of the Dezful Embayment, Iran. Organic Geochemistry, 49: 36-46. https://doi.org/10.1016/j.orggeochem.2012.05.004
    Andruleit, H., 2007. Status of the Java Upwelling Area (Indian Ocean) during the Oligotrophic Northern Hemisphere Winter Monsoon Season as Revealed by Coccolithophores. Marine Micropaleontology, 64(1/2): 36-51. https://doi.org/10.1016/j.marmicro.2007.02.001
    Aubry, M. P., 1989. Handbook of Cenozoic Calcareous Nannoplankton. Book 3: Ortholithae (Pentaliths, and Others), Heliotithae (Fasciculiths, Sphenoliths and Others). Micropaleontology Press, American Museum of Natural History, New York. 279
    Behar, F., Beaumont, V., Penteado, D. B., 2001. Rock-Eval 6 Technology: Performances and Developments. Oil & Gas Science and Technology, 56(2): 111-134. https://doi.org/10.2516/ogst:2001013
    Berberian, M., King, G. C. P., 1981. Towards a Paleogeography and Tectonic Evolution of Iran. Canadian Journal of Earth Sciences, 18(2): 210-265. https://doi.org/10.1139/e81-019
    Beydoun, Z. R., Sikander, A. H., 1992. The Red Sea—Gulf of Aden: Re-Assessment of Hydrocarbon Potential. Marine and Petroleum Geology, 9(5): 474-485. https://doi.org/10.1016/0264-8172(92)90060-r
    Boersma, A., Premoli Silva, I., Hallock, P., 1998. Trophic Models for the Well-Mixed and Poorly Mixed Warm Oceans across the Paleocene-Eocene Epoch Boundary. In: Aubry, M. P., Lucas, S., Berggren, W. A., eds., Late Paleocene-Early Eocene Climatic and Biotic Evolution. Columbia University Press, New York. 204-213
    Bordenave, M. L., Burwood, R., 1990. Source Rock Distribution and Maturation in the Zagros Orogenic Belt: Provenance of the Asmari and Bangestan Reservoir Oil Accumulations. Organic Geochemistry, 16(1/2/3): 369-387. https://doi.org/10.1016/0146-6380(90)90055-5
    Bordenave, M. L., Hegre, J. A., 2010. Current Distribution of Oil and Gas Fields in the Zagros Fold Belt of Iran and Contiguous Offshore as the Result of the Petroleum Systems. Geological Society, London, Special Publications, 330(1): 291-353. https://doi.org/10.1144/sp330.14
    Bordenave, M. L., Huc, A. Y., 1995. The Cretaceous Source Rocks in the Zagros Foothills of Iran. Revue De l'Institut Français Du Pétrole, 50(6): 727-752. https://doi.org/10.2516/ogst:1995044
    Bown, P. R., Young, J. R., 1998. Techniques. In: Bown, P. R., ed., Calcareous Nannofossils Biostratigraphy. Chapman and Hall, London. 16-28
    Bralower, T. J., 2002. Evidence of Surface Water Oligotrophy during the Paleocene-Eocene Thermal Maximum: Nannofossil Assemblage Data from Ocean Drilling Program Site 690, Maud Rise, Weddell Sea. Paleoceanography, 17(2): 1023. https://doi.org/10.1029/2002pa000662
    Bukry, D., 1978. Biostratigraphy of Cenozoic Marine Sediment by Calcareous Nannofossils. Micropaleontology, 24(1): 44-60. https://doi.org/10.2307/1485419
    Catuneanu, O., 2006. Principles of Sequence Stratigraphy: 1st Edition. Elsevier, Amsterdam. 375
    Elhaï, H., 1963. Lexique Stratigraphique International. Annales De Géographie, 72(394): 720. https://doi.org/10.3406/geo.1963.16517
    Erba, E., 1992. Middle Cretaceous Calcareous Nannofossils from the Western Pacific (ODP Leg 129): Evidence for Paleoequatorial Crossings. Proceedings of the Ocean Drilling Program. Scientific Results, 129: 189-201. https://doi.org/10.2973/odp.proc.sr.129.119.1992
    Erba, E., de Castradori, D., Guasti, G., et al., 1992. Calcareous Nannofossils and Milankovitch Cycles: The Example of the Albian Gault Clay Formation (Southern England). Palaeogeography, Palaeoclimatology, Palaeoecology, 93(1/2): 47-69. https://doi.org/10.1016/0031-0182(92)90183-6
    Espitalie, J., Madec, M., Tissot, B., et al., 1977. Source Rock Characterization Method for Petroleum Exploration. Offshore Technology Conference, Houston, Texas. https://doi.org/10.4043/2935-ms
    Gartner, S., 1988. Paleoceanography of the Mid-Pleistocene. Marine Micropaleontology, 13(1): 23-46. https://doi.org/10.1016/0377-8398(88)90011-4
    Giunta, S., Negri, A., Morigi, C., et al., 2003. Coccolithophorid Ecostratigraphy and Multi-Proxy Paleoceanographic Reconstruction in the Southern Adriatic Sea during the Last Deglacial Time (Core AD91-17). Palaeogeography, Palaeoclimatology, Palaeoecology, 190: 39-59. https://doi.org/10.1016/s0031-0182(02)00598-9
    Hallock, P., 2001. Coral Reefs, Carbonate Sedimentation, Nutrients, and Global Change. In: Stanley, G. D., ed., The History and Sedimentology of Ancient Reef Ecosystems. Kluwer Academic/Plenum Publishers, New York. 387-427
    Hallock, P., Premoli Silva, I., Boersma, A., 1991. Similarities between Planktonic and Larger Foraminiferal Evolutionary Trends through Paleogene Paleoceanographic Changes. Palaeogeography, Palaeoclimatology, Palaeoecology, 83(1/2/3): 49-64. https://doi.org/10.1016/0031-0182(91)90075-3
    Hallock, P., Schlager, W., 1986. Nutrient Excess and the Demise of Coral Reefs and Carbonate Platforms. Palaios, 1(4): 389-398. https://doi.org/10.2307/3514476
    Haq, B. U., 1980. Biogeographic History of Miocene Calcareous Nannoplankton and Paleoceanography of the Atlantic Ocean. Micropaleontology, 26(4): 414. https://doi.org/10.2307/1485353
    Haq, B. U., Lohmann, G. P., 1976. Early Cenozoic Calcareous Nannoplankton Biogeography of the Atlantic Ocean. Marine Micropaleontology, 1: 119-194. https://doi.org/10.1016/0377-8398(76)90008-6
    Hardas, P., Mutterlose, J., 2007. Calcareous Nannofossil Assemblages of Oceanic Anoxic Event 2 in the Equatorial Atlantic: Evidence of a Eutrophication Event. Marine Micropaleontology, 66(1): 52-69. https://doi.org/10.1016/j.marmicro.2007.07.007
    Hunt, J., 1996. Petroleum Geochemistry and Geology: 2nd Edition. Freeman and Company, New York. 743
    Jackson, K. S., Hawkins, P. J., Bennett, A. J. R., 1980. Regional Facies and Geochemical Evaluation of the Southern Denison Trough, Queensland. The APPEA Journal, 20(1): 143. https://doi.org/10.1071/aj79013
    James, G. A., Wynd, J. G., 1965. Stratigraphic Nomenclature of Iranian Oil Consortium Agreement Area. AAPG Bulletin, 49: 2182-2245. https://doi.org/10.1306/a663388a-16c0-11d7-8645000102c1865d
    Jiang, S. J., Wise, S. W. Jr., 2009. Distinguishing the Influence of Diagenesis on the Paleoecological Reconstruction of Nannoplankton across the Paleocene/Eocene Thermal Maximum: An Example from the Kerguelen Plateau, Southern Indian Ocean. Marine Micropaleontology, 72(1/2): 49-59. https://doi.org/10.1016/j.marmicro.2009.03.003
    Kamali, M. R., Fathi Mobarakabad, A., Mohsenian, E., 2006. Petroleum Geochemistry and Thermal Modeling of Pabdeh Formation in Dezful Embayment. Journal of Science (University of Tehran), 32(2): 1-11 http://www.researchgate.net/publication/302559975_Petroleum_Geochemistry_and_Thermal_Modeling_of_Pabdeh_Formation_in_Dezful_Embayment/download
    Kennett, J. P., Stott, L. D., 1991. Abrupt Deep-Sea Warming, Palaeoceanographic Changes and Benthic Extinctions at the End of the Palaeocene. Nature, 353(6341): 225-229. https://doi.org/10.1038/353225a0
    Kessels, K., Mutterlose, J., Ruffell, A., 2003. Calcareous Nannofossils from Late Jurassic Sediments of the Volga Basin (Russian Platform): Evidence for Productivity-Controlled Black Shale Deposition. International Journal of Earth Sciences, 92(5): 743-757. https://doi.org/10.1007/s00531-003-0343-x
    Khavari Khorassani, M. P., Hadavi, F., Ghasemi-Nejad, E., et al., 2014. Biostratigraphy and Paleoecological Study of Pabdeh Formation in Interior Fars, Zagros Basin, Iran. Open Journal of Geology, 4(11): 571-581. https://doi.org/10.4236/ojg.2014.411042
    Konyuhov, A. I., Maleki, B., 2006. The Persian Gulf Basin: Geological History, Sedimentary Formations, and Petroleum Potential. Lithology and Mineral Resources, 41(4): 344-361. https://doi.org/10.1134/s0024490206040055
    Linnert, C., Mutterlose, J., 2009. Evidence of Increasing Surface Water Oligotrophy during the Campanian-Maastrichtian Boundary Interval: Calcareous Nannofossils from DSDP Hole 390A (Blake Nose). Marine Micropaleontology, 73(1/2): 26-36. https://doi.org/10.1016/j.marmicro.2009.06.006
    Liu, Y. M., Ye, J. R., Cao, Q., et al., 2020. Hydrocarbon Generation, Migration, and Accumulation in the Eocene Niubao Formation in the Lunpola Basin, Tibet, China: Insights from Basin Modeling and Fluid Inclusion Analysis. Journal of Earth Science, 31(1): 195-206. https://doi.org/10.1007/s12583-019-1211-3
    Lohmann, G. P., Carlson, J. J., 1981. Oceanographic Significance of Pacific Late Miocene Calcareous Nannoplankton. Marine Micropaleontology, 6(5/6): 553-579. https://doi.org/10.1016/0377-8398(81)90021-9
    Marino, M., Maiorano, P., Lirer, F., 2008. Changes in Calcareous Nannofossil Assemblages during the Mid-Pleistocene Revolution. Marine Micropaleontology, 69(1): 70-90. https://doi.org/10.1016/j.marmicro.2007.11.010
    Martini, E., 1971. Standard Tertiary and Quaternary Calcareous Nannoplankton Zonation. Procedings Ⅱ Planktonic Conference, Roma. 739-386 http://www.researchgate.net/publication/247637289_Standard_Tertiary_and_Quaternary_calcareous_nannoplankton_zonation
    Mutterlose, J., Bornemann, A., Herrle, J. O., 2005. Mesozoic Calcareous Nannofossils—State of the Art. Paläontologische Zeitschrift, 79(1): 113-133. https://doi.org/10.1007/bf03021757
    Mutterlose, J., Linnert, C., Norris, R., 2007. Calcareous Nannofossils from the Paleocene-Eocene Thermal Maximum of the Equatorial Atlantic (ODP Site 1260B): Evidence for Tropical Warming. Marine Micropaleontology, 65(1/2): 13-31. https://doi.org/10.1016/j.marmicro.2007.05.004
    Mutti, M., Hallock, P., 2003. Carbonate Systems along Nutrient and Temperature Gradients: Some Sedimentological and Geochemical Constraints. International Journal of Earth Sciences, 92(4): 465-475. https://doi.org/10.1007/s00531-003-0350-y
    Ovechkina, M. N., Alekseev, A. S., 2005. Quantitative Changes of Calcareous Nannoflora in the Saratov Region (Russian Platform) during the Late Maastrichtian Warming Event. Journal of Iberian Geology, 31: 149-165 http://dialnet.unirioja.es/servlet/articulo?codigo=1131000&orden=1&info=link
    Parandavar, M., Hadavi, F., 2017. Calcareous Nannofossils Biostratigraphy of the Qom Formation in Central Iran. 16th International Nannoplankton Association (INA) Conference, Athens. 79
    Parandavar, M., Hadavi, F., 2019. Identification of the Oligocene-Miocene Boundary in the Central Iran Basin (Qom Formation): Calcareous Nannofossil Evidences. Geological Quarterly, 63(2): 215-229. https://doi.org/10.7306/gq.1464
    Passey, Q. R., Creany, S., Kulla, J. B., et al., 1990. A Practical Model for Organic Richness from Porosity and Resistivity Logs. AAPG Bulletin, 74: 1777-1794. https://doi.org/10.1306/0c9b25c9-1710-11d7-8645000102c1865d
    Perch-Nielsen, K., 1985. Mesozoic and Cenozoic Calcareous Nannofossils. In: Bolli, H. M., Sunders, J. B., Perch-Nielsen, K., eds., Plankton Stratigraphy Book. Cambridge Earth Science Series, Cambridge. 329-554
    Roth, P. H., Krumbach, K. R., 1986. Middle Cretaceous Calcareous Nannofossil Biogeography and Preservation in the Atlantic and Indian Oceans: Implications for Paleoceanography. Marine Micropaleontology, 10(1/2/3): 235-266. https://doi.org/10.1016/0377-8398(86)90031-9
    Sadouni, J., Rabbani, A., 2018. Characteristics of the First Occurrence of Jurassic Petroleum in the Zagros Basin, Iran. Acta Geologica Sinica, 92(6): 2280-2296 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzxb-e201806015
    Sissingh, W., Prins, B., 1977. Biostratigraphy of Cretaceous Calcareous Nannoplankton. Geologie En Mijnbouw, 56(1): 37-65 http://www.researchgate.net/publication/27710995_Biostratigraphy_of
    Soleimani, B., Bahadori, A., Meng, F. W., 2013. Microbiostratigraphy, Microfacies and Sequence Stratigraphy of Upper Cretaceous and Paleogene Sediments, Hendijan Oilfield, Northwest of Persian Gulf, Iran. Natural Science, 5(11): 1165-1182. https://doi.org/10.4236/ns.2013.511143
    Stocklin, J., 1974. Possible Ancient Continental Margins in Iran. In: Burk, C. A., Drake, C. L., eds., The Geology of Continental Margins. Springer, New York. 873-887
    Stocklin, J., 1981. Structural History and Tectonics of Iran: A Review. AAPG Bulletin, 52(7): 1229-1258. https://doi.org/10.1306/5d25c4a5-16c1-11d7-8645000102c1865d
    Takin, M., 1972. Iranian Geology and Continental Drift in the Middle East. Nature, 235(5334): 147-150. https://doi.org/10.1038/235147a0
    Thibault, N., Gardin, S., 2006. Maastrichtian Calcareous Nannofossil Biostratigraphy and Paleoecology in the Equatorial Atlantic (Demerara Rise, ODP Leg 207 Hole 1258A). Revue de Micropaléontologie, 49(4): 199-214. https://doi.org/10.1016/j.revmic.2006.08.002
    Tremolada, F., Bralower, T. J., 2004. Nannofossil Assemblage Fluctuations during the Paleocene-Eocene Thermal Maximum at Sites 213 (Indian Ocean) and 401 (North Atlantic Ocean): Palaeoceanographic Implications. Marine Micropaleontology, 52(1/2/3/4): 107-116. https://doi.org/10.1016/j.marmicro.2004.04.002
    Varol, O., 1989. Calcareous Nannofossils Study of the Central and Western Solomon Islands. Geology and Offshore Resources of Pacific Island Arcs, 12(1): 239-268 http://www.researchgate.net/publication/288006909_Calcareous_nannofossil_study_of_the_central_and_western_Solomon_Islands
    Wade, B. S., Bown, P. R., 2006. Calcareous Nannofossils in Extreme Environments: The Messinian Salinity Crisis, Polemi Basin, Cyprus. Palaeogeography, Palaeoclimatology, Palaeoecology, 233(3/4): 271-286. https://doi.org/10.1016/j.palaeo.2005.10.007
    Watkins, D. K., 1989. Nannoplankton Productivity Fluctuations and Rhythmically-Bedded Pelagic Carbonates of the Greenhorn Limestone (Upper Cretaceous). Palaeogeography, Palaeoclimatology, Palaeoecology, 74(1/2): 75-86. https://doi.org/10.1016/0031-0182(89)90020-5
    Wei, W. C., Wise, S. W. Jr., 1990. Biogeographic Gradients of Middle Eocene-Oligocene Calcareous Nannoplankton in the South Atlantic Ocean. Palaeogeography, Palaeoclimatology, Palaeoecology, 79(1/2): 29-61. https://doi.org/10.1016/0031-0182(90)90104-f
    Williams, J. R., Bralower, T. J., 1995. Nannofossil Assemblages, Fine Fraction Stable Isotopes, and the Paleoceanography of the Valanginian-Barremian (Early Cretaceous) North Sea Basin. Paleoceanography, 10(4): 815-839. https://doi.org/10.1029/95pa00977
    Wu, Z. R., He, S., Han, Y. J., et al., 2020. Effect of Organic Matter Type and Maturity on Organic Matter Pore Formation of Transitional Facies Shales: A Case Study on Upper Permian Longtan and Dalong Shales in Middle Yangtze Region, China. Journal of Earth Science, 31(2): 368-384. https://doi.org/10.1007/s12583-019-1237-6
    Young, J. R., 1994. Functions of Coccoliths. In: Winter, A., Siesser, W. G., eds., Coccolithophores. Cambridge University Press, Cambridge. 63-82
    Young, J. R., 1998. Neogene Calcareous Nannofossils Biostratigraphy. In: Bown, P. R., ed., Calcareous Nannofossils Biostratigraphy. Kluwer Academic Publishers, Kluwer. 225-265
    Young, J. R., Bown, P. R., Lees, J. A., 2019. Authoritative Guide to the Biodiversity of Coccolithophores. http://www.mikrotax.org
    Young, J. R., Henriksen, K., Probert, I., 2004. Structure and Morphogenesis of the Coccoliths of the CODENET Species. In: Thierstein, H. R., Young, J. R., eds., Coccolithophores—From Molecular Processes to Global Impact. Springer-Verlag, Berlin. 191-216. https://doi.org/10.1007/978-3-662-06278-4_8
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(3)

    Article Metrics

    Article views(305) PDF downloads(20) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return