Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 32 Issue 3
Jun 2021
Turn off MathJax
Article Contents
Luca Medici, Martina Savioli, Annalisa Ferretti, Daniele Malferrari. Zooming in REE and Other Trace Elements on Conodonts: Does Taxonomy Guide Diagenesis?. Journal of Earth Science, 2021, 32(3): 501-511. doi: 10.1007/s12583-020-1094-3
Citation: Luca Medici, Martina Savioli, Annalisa Ferretti, Daniele Malferrari. Zooming in REE and Other Trace Elements on Conodonts: Does Taxonomy Guide Diagenesis?. Journal of Earth Science, 2021, 32(3): 501-511. doi: 10.1007/s12583-020-1094-3

Zooming in REE and Other Trace Elements on Conodonts: Does Taxonomy Guide Diagenesis?

doi: 10.1007/s12583-020-1094-3
More Information
  • Corresponding author: Annalisa Ferretti, annalisa.ferretti@unimore.it
  • Received Date: 01 Jul 2020
  • Accepted Date: 07 Sep 2020
  • Publish Date: 01 Jun 2021
  • Conodont elements are calcium phosphate (apatite structure) mineralized remains of the cephalic feeding apparatus of an extinct marine organism. Due to the high affinity of apatite for rare earth elements (REE) and other high field strength elements (HFSE), conodont elements were frequently assumed to be a reliable archive of sea-water composition and changes that had occurred during diagenesis. Likewise, the crystallinity index of bioapatite, i.e., the rate of crystallinity of biologically mediated apatite, should be generally linearly dependent on diagenetic alteration as the greater (and longer) the pressure and temperature to which a crystal is exposed, the greater the resulting crystallinity. In this study, we detected the uptake of HFSE in conodont elements recovered from a single stratigraphic horizon in the Upper Ordovician of Normandy (France). Assuming therefore that all the specimens have undergone an identical diagenetic history, we have assessed whether conodont taxonomy (and morphology) impacts HFSE uptake and crystallinity index. We found that all conodont elements are characterized by a clear diagenetic signature, with minor but significant differences among taxa. These distinctions are evidenced also by the crystallinity index values which show positive correlations with some elements and, accordingly, with diagenesis; however, correlations with the crystallinity index strongly depend on the method adopted for its calculation.

     

  • Electronic Supplementary Materials: Supplementary materials are available in the online version of this article at https://doi.org/10.1007/s12583-020-1094-3, (ⅰ) the LA-ICPMS and µXRD experimental conditions (ESM Ⅰ, Table S1); (ⅱ) conodont elements chemical analyses (ESM Ⅰ, Table S2); (ⅲ) cross-plots showing additional relationships between HFSE (ESM Ⅱ, Figs. S1-S8).
  • loading
  • Armstrong, H. A., Pearson, D. G., Griselin, M., 2001. Thermal Effects on Rare Earth Element and Strontium Isotope Chemistry in Single Conodont Elements. Geochimica et Cosmochimica Acta, 65(3): 435-441. https://doi.org/10.1016/s0016-7037(00)00548-2 doi: 10.1016/S0016-7037(00)00548-2
    Bergström, S. M., Ferretti, A., 2015. Conodonts in the Upper Ordovician Keisley Limestone of Northern England: Taxonomy, Biostratigraphical Significance and Biogeographical Relationships. Papers in Palaeontology, 1(1): 1-32. https://doi.org/10.1002/spp2.1003
    Bright, C. A., Cruse, A. M., Lyons, T. W., et al., 2009. Seawater Rare-Earth Element Patterns Preserved in Apatite of Pennsylvanian Conodonts?. Geochimica et Cosmochimica Acta, 73(6): 1609-1624. https://doi.org/10.1016/j.gca.2008.12.014
    Brigatti, M. F., Malferrari, D., Medici, L., et al., 2004. Crystal Chemistry of Apatites from the Tapira Carbonatite Complex, Brazil. European Journal of Mineralogy, 16(4): 677-685. https://doi.org/10.1127/0935-1221/2004/0016-0677
    Burnett, R. D., Hall, J. C., 1992. Significance of Ultrastructural Features in Etched Conodonts. Journal of Paleontology, 66(2): 266-276. https://doi.org/10.1017/s0022336000033783 doi: 10.1017/S0022336000033783
    Chen, J. B., Algeo, T. J., Zhao, L. S., et al., 2015. Diagenetic Uptake of Rare Earth Elements by Bioapatite, with an Example from Lower Triassic Conodonts of South China. Earth-Science Reviews, 149: 181-202. https://doi.org/10.1016/j.earscirev.2015.01.013
    Collins, M. J., Nielsen-Marsh, C. M., Hiller, J., et al., 2002. The Survival of Organic Matter in Bone: A Review. Archaeometry, 44(3): 383-394. https://doi.org/10.1111/1475-4754.t01-1-00071
    Cruse, A. M., Lyons, T. W., 2000. Sedimentology and Geochemistry of the Hushpuckney and Upper Tackett Shales Cyclothem Models Revisited. In: Johnson, K. S., ed., Marine Clastics in the Southern Midcontinent, 1997 Symposium. Oklahoma Geological Survey Circular, 103: 185-194
    Del Moral, B., Sarmiento, G. N., 2008. Conodontos del Katiense (Ordovicico Superior) del Sector Meridional de la Zone Centroibérica (España). Revista de Micropaleontologia, 40: 169-245 http://dialnet.unirioja.es/servlet/articulo?codigo=2945752
    Dzik, J., 1999. Evolution of Late Ordovician High-Latitude Conodonts and Dating of Gondwana Glaciations. Bollettino della Società Paleontologica Italiana, 37(2): 237-253 http://www.researchgate.net/publication/288394439_Evolution_of_the_Late_Ordovician_high-latitude_conodonts_and_dating_of_Gondwana_glaciations
    Dzik, J., 2020. Ordovician Conodonts and the Tornquist Lineament. Palaeogeography, Palaeoclimatology, Palaeoecology, 549: 109157. https://doi.org/10.1016/j.palaeo.2019.04.013
    Ferretti, A., Bancroft, A. M., Repetski, J. E., 2020a. GECkO: Global Events Impacting Conodont Evolution. Palaeogeography, Palaeoclimatology, Palaeoecology, 549: 109677. https://doi.org/10.1016/j.palaeo.2020.109677
    Ferretti, A., Malferrari, D., Savioli, M., et al., 2020b. ʻConodont Pearlsʼ do not Belong to Conodonts. Lethaia. https://doi.org/10.1111/let.12403
    Ferretti, A., Barnes, C. R., 1997. Upper Ordovician Conodonts from the Kalkbank Limestone of Thuringia, Germany. Palaeontology, 40(1): 15-42 http://www.researchgate.net/publication/215580298_Upper_Ordovician_conodonts_from_the_Kalkbank_limestone_of_Thuringia_Germany
    Ferretti, A., Bergström, S. M., Barnes, C. R., 2014a. Katian (Upper Ordovician) Conodonts from Wales. Palaeontology, 57(4): 801-831. https://doi.org/10.1111/pala.12089
    Ferretti, A., Bergström, S. M., Sevastopulo, G. D., 2014b. Katian Conodonts from the Portrane Limestone: The First Ordovician Conodont Fauna Described from Ireland. Bollettino della Società Paleontologica Italiana, 53(2): 105-119 http://www.researchgate.net/publication/266382330_Katian_conodonts_from_the_Portrane_Limestone_the_first_Ordovician_conodont_fauna_described_from_Ireland
    Ferretti, A., Messori, A., Bergström, S. M., 2014c. Composition and Significance of the Katian (Upper Ordovician) Conodont Fauna of the Vaux Limestone ('Calcaire des Vaux') in Normandy, France. Estonian Journal of Earth Sciences, 63(4): 214-219. https://doi.org/10.3176/earth.2014.21
    Ferretti, A., Malferrari, D., Medici, L., et al., 2017. Diagenesis does not Invent anything New: Precise Replication of Conodont Structures by Secondary Apatite. Scientific Reports, 7(1): 1624. https://doi.org/10.1038/s41598-017-01694-4
    Ferretti, A., Schönlaub, H. P., 2001. New Conodont Faunas from the Late Ordovician of the Central Carnic Alps, Austria. Bollettino della Società Paleontologica Italiana, 40(1): 3-15 http://www.researchgate.net/publication/287005197_New_conodont_faunas_from_the_Late_Ordovician_of_the_Central_Carnic_Alps_Austria
    Ferretti, A., Serpagli, E., 1991. First Record of Ordovician Conodonts from Southwestern Sardinia. Rivista Italiana di Paleontologia e Stratigrafia, 97(1): 27-34 http://www.researchgate.net/publication/291859932_First_record_of_Ordovician_conodonts_from_Southwestern_Sardinia
    Ferretti, A., Serpagli, E., 1999. Late Ordovician Conodont Faunas from Southern Sardinia, Italy: Biostratigraphic and Paleogeographic Implications. Bollettino della Società Paleontologica Italiana, 37(2/3): 215-236 http://ci.nii.ac.jp/naid/10025919539
    Frank-Kamenetskaya, O. V., Rozhdestvenskaya, I. V., Rosseeva, E. V., et al., 2014. Refinement of Apatite Atomic Structure of Albid Tissue of Late Devon Conodont. Crystallography Reports, 59(1): 41-47. https://doi.org/10.1134/s1063774514010039 doi: 10.1134/S1063774514010039
    Girard, C., Albarède, F., 1996. Trace Elements in Conodont Phosphates from the Frasnian/Famennian Boundary. Palaeogeography, Palaeoclimatology, Palaeoecology, 126(1/2): 195-209. https://doi.org/10.1016/s0031-0182(96)00114-9 http://www.sciencedirect.com/science/article/pii/S0031018296001149
    Grandjean-Lécuyer, P., Feist, R., Albarède, F., 1993. Rare Earth Elements in Old Biogenic Apatites. Geochimica et Cosmochimica Acta, 57(11): 2507-2514. https://doi.org/10.1016/0016-7037(93)90413-q doi: 10.1016/0016-7037(93)90413-Q
    Grandjean, P., Cappetta, H., Michard, A., et al., 1987. The Assessment of REE Patterns and 143Nd/144Nd Ratios in Fish Remains. Earth and Planetary Science Letters, 84(2/3): 181-196. https://doi.org/10.1016/0012-821x(87)90084-7 http://www.sciencedirect.com/science/article/pii/0012821X87900847
    Heckel, P. H., Baesemann, J. F., 1975. Environmental Interpretation of Conodont Distribution in Upper Pennsylvanian (Missourian) Megacyclothems in Eastern Kansas. AAPG Bulletin, 59: 486-509. https://doi.org/10.1306/83d91cb8-16c7-11d7-8645000102c1865d http://www.researchgate.net/publication/279601135_Environmental_interpretation_of_conodont_distribution_in_Upper_Pennsylvanian_Missourian_megacyclothems_in_Eastern_Kansas
    Henningsmoen, G., 1948. The Tretaspis Series of the Kullatorp Core. In: Waern, B., Thorslund, P., Henningsmoen, G., eds., Deep Boring through Ordovician and Silurian Strata at Kinnekulle, Vestergötland. Bulletin of the Geological Institution of the University of Uppsala, 32: 374-432
    Herwartz, D., Tütken, T., Jochum, K. P., et al., 2013. Rare Earth Element Systematics of Fossil Bone Revealed by LA-ICPMS Analysis. Geochimica et Cosmochimica Acta, 103: 161-183. https://doi.org/10.1016/j.gca.2012.10.038
    Herwartz, D., Tütken, T., Münker, C., et al., 2011. Timescales and Mechanisms of REE and Hf Uptake in Fossil Bones. Geochimica et Cosmochimica Acta, 75(1): 82-105. https://doi.org/10.1016/j.gca.2010.09.036
    Holmden, C., Creaser, R. A., Muehlenbachs, K., et al., 1996. Isotopic and Elemental Systematics of Sr and Nd in 454 Ma Biogenic Apatites: Implications for Paleoseawater Studies. Earth and Planetary Science Letters, 142(3/4): 425-437. https://doi.org/10.1016/0012-821x(96)00119-7 http://www.sciencedirect.com/science/article/pii/0012821X96001197
    Holser, W. T., 1997. Evaluation of the Application of Rare-Earth Elements to Paleoceanography. Palaeogeography, Palaeoclimatology, Palaeoecology, 132(1/2/3/4): 309-323. https://doi.org/10.1016/s0031-0182(97)00069-2 http://www.sciencedirect.com/science/article/pii/S0031018297000692
    Keenan, S. W., 2016. From Bone to Fossil: A Review of the Diagenesis of Bioapatite. American Mineralogist, 101(9): 1943-1951. https://doi.org/10.2138/am-2016-5737
    Keenan, S. W., Engel, A. S., 2017. Early Diagenesis and Recrystallization of Bone. Geochimica et Cosmochimica Acta, 196: 209-223. https://doi.org/10.1016/j.gca.2016.09.033
    Kim, J. -H., Torres, M. E., Haley, B. A., et al., 2012. The Effect of Diagenesis and Fluid Migration on Rare Earth Element Distribution in Pore Fluids of the Northern Cascadia Accretionary Margin. Chemical Geology, 291: 152-165. https://doi.org/10.1016/j.chemgeo.2011.10.010
    Knüpfer, J., 1967. Zur Fauna und Biostratigraphie des Ordoviziums (Gräfenthaler Schichten) in Thüringen. Freiberger Forschungshefte, C220: 1-119
    Kocsis, L., Trueman, C. N., Palmer, M. R., 2010. Protracted Diagenetic Alteration of REE Contents in Fossil Bioapatites: Direct Evidence from Lu-Hf Isotope Systematics. Geochimica et Cosmochimica Acta, 74(21): 6077-6092. https://doi.org/10.1016/j.gca.2010.08.007
    Kohn, M. J., Moses, R. J., 2013. Trace Element Diffusivities in Bone Rule out Simple Diffusive Uptake during Fossilization but Explain in vivo Uptake and Release. Proceedings of the National Academy of Sciences, 110(2): 419-424. https://doi.org/10.1073/pnas.1209513110
    Kowal-Linka, M., Jochum, K. P., Surmik, D., 2014. LA-ICP-MS Analysis of Rare Earth Elements in Marine Reptile Bones from the Middle Triassic Bonebed (Upper Silesia, S Poland): Impact of Long-Lasting Diagenesis, and Factors Controlling the Uptake. Chemical Geology, 363: 213-228. https://doi.org/10.1016/j.chemgeo.2013.10.038
    Lécuyer, C., Reynard, B., Grandjean, P., 2004. Rare Earth Element Evolution of Phanerozoic Seawater Recorded in Biogenic Apatites. Chemical Geology, 204(1/2): 63-102. https://doi.org/10.1016/j.chemgeo.2003.11.003 http://www.sciencedirect.com/science/article/pii/S0009254103003504
    LeGeros, R. Z., 1981. Apatites in Biological Systems. Progress in Crystal Growth and Characterization 4(1/2): 1-45 http://www.sciencedirect.com/science/article/pii/0146353581900460?_fmt=full
    Li, Y., Zhao, L. S., Chen, Z. -Q., et al., 2017. Oceanic Environmental Changes on a Shallow Carbonate Platform (Yangou, Jiangxi Province, South China) during the Permian-Triassic Transition: Evidence from Rare Earth Elements in Conodont Bioapatite. Palaeogeography, Palaeoclimatology, Palaeoecology, 486: 6-16. https://doi.org/10.1016/j.palaeo.2017.02.035
    Liao, J. L., Sun, X. M., Li, D. F., et al., 2019. New Insights into Nanostructure and Geochemistry of Bioapatite in REE-Rich Deep-Sea Sediments: LA-ICP-MS, TEM, and Z-Contrast Imaging Studies. Chemical Geology, 512: 58-68. https://doi.org/10.1016/j.chemgeo.2019.02.039
    Lindström, M., Pelhate, A., 1971. Présence de Conodontes dans les Calcaires de Rosan (Ordovicien moyen a Supérieur, Massif Armoricain). Colloque Ordovicien-Silurien, Brest 1971. Mémoire du Bureau de Recherches Géologiques et Minières, 73: 89-91
    Malferrari, D., Ferretti, A., Mascia, M. T., et al., 2019. How much can We Trust Major Element Quantification in Bioapatite Investigation?. ACS Omega, 4(18): 17814-17822. https://doi.org/10.1021/acsomega.9b02426
    Martin, E. E., Scher, H. D., 2004. Preservation of Seawater Sr and Nd Isotopes in Fossil Fish Teeth: Bad News and Good News. Earth and Planetary Science Letters, 220(1/2): 25-39. https://doi.org/10.1016/s0012-821x(04)00030-5 http://www.sciencedirect.com/science/article/pii/S0012821X04000305
    McArthur, J. M., Walsh, J. N., 1984. Rare-Earth Geochemistry of Phosphorites. Chemical Geology, 47(3/4): 191-220. https://doi.org/10.1016/0009-2541(84)90126-8 http://www.sciencedirect.com/science/article/pii/0009254184901268
    McLennan, S. M., 2001. Relationships between the Trace Element Composition of Sedimentary Rocks and Upper Continental Crust. Geochemistry, Geophysics, Geosystems, 2(4). https://doi.org/10.1029/2000gc000109 doi: 10.1029/2000GC000109
    Medici, L., Malferrari, D., Savioli, M., et al., 2020. Mineralogy and Crystallization Patterns in Conodont Bioapatite from First Occurrence (Cambrian) to Extinction (end-Triassic). Palaeogeography, Palaeoclimatology, Palaeoecology, 549: 109098. https://doi.org/10.1016/j.palaeo.2019.02.024
    Nardelli, M. P., Malferrari, D., Ferretti, A., et al., 2016. Zinc Incorporation in the Miliolid Foraminifer Pseudotriloculina rotunda under Laboratory Conditions. Marine Micropaleontology, 126: 42-49. https://doi.org/10.1016/j.marmicro.2016.06.001
    Nothdurft, L. D., Webb, G. E., Kamber, B. S., 2004. Rare Earth Element Geochemistry of Late Devonian Reefal Carbonates, Canning Basin, Western Australia: Confirmation of a Seawater REE Proxy in Ancient Limestones. Geochimica et Cosmochimica Acta, 68(2): 263-283. https://doi.org/10.1016/s0016-7037(03)00422-8 doi: 10.1016/S0016-7037(03)00422-8
    Nozaki, Y., Zhang, J., Amakawa, H., 1997. The Fractionation between Y and Ho in the Marine Environment. Earth and Planetary Science Letters, 148(1/2): 329-340. https://doi.org/10.1016/s0012-821x(97)00034-4 http://www.sciencedirect.com/science/article/pii/S0012821X97000344
    Paris, F., Pelhate, A., Weyant, M., 1981. Conodontes ashgilliens dans la Formation de Rosan, coupe de Lostmarc'h (Finistère, Massif Armoricain). Conséquences Paléogéographiques. Bulletin de la Société Géologique et Mineralogique de Bretagne, 13(2): 15-35 http://www.researchgate.net/publication/286706487_Conodontes_ashgilliens_dans_la_Formation_de_Rosan_coupe_de_Lostmarc'h_Finistere_Massif_armoricain_Consequences_paleogeographiques
    Pattan, J. N., Pearce, N. J. G., Mislankar, P. G., 2005. Constraints in Using Cerium-Anomaly of Bulk Sediments as an Indicator of Paleo Bottom Water Redox Environment: A Case Study from the Central Indian Ocean Basin. Chemical Geology, 221(3/4): 260-278. https://doi.org/10.1016/j.chemgeo.2005.06.009 http://www.sciencedirect.com/science/article/pii/S000925410500224X
    Peppe, D. J., Reiners, P. W., 2007. Conodont (U-Th)/He Thermochronology: Initial Results, Potential, and Problems. Earth and Planetary Science Letters, 258(3/4): 569-580. https://doi.org/10.1016/j.epsl.2007.04.022 http://www.sciencedirect.com/science/article/pii/S0012821X07002373
    Person, A., Bocherens, H., Saliège, J. F., et al., 1995. Early Diagenetic Evolution of Bone Phosphate: An X-Ray Diffractometry Analysis. Journal of Archaeological Science, 22(2): 211-221. https://doi.org/10.1006/jasc.1995.0023
    Picard, S., Lécuyer, C., Barrat, J. A., et al., 2002. Rare Earth Element Contents of Jurassic Fish and Reptile Teeth and Their Potential Relation to Seawater Composition (Anglo-Paris Basin, France and England). Chemical Geology, 186(1/2): 1-16. https://doi.org/10.1016/s0009-2541(01)00424-7 http://www.sciencedirect.com/science/article/pii/S0009254101004247
    Pietsch, C., Bottjer, D. J., 2010. Comparison of Changes in Ocean Chemistry in the Early Triassic with Trends in Diversity and Ecology. Journal of Earth Science, 21(S1): 147-150. https://doi.org/10.1007/s12583-010-0195-9
    Pucéat, E., Reynard, B., Lécuyer, C., 2004. Can Crystallinity be Used to Determine the Degree of Chemical Alteration of Biogenic Apatites?. Chemical Geology, 205(1/2): 83-97. https://doi.org/10.1016/j.chemgeo.2003.12.014 http://www.sciencedirect.com/science/article/pii/S0009254103003991
    Reynard, B., Lécuyer, C., Grandjean, P., 1999. Crystal-Chemical Controls on Rare-Earth Element Concentrations in Fossil Biogenic Apatites and Implications for Paleoenvironmental Reconstructions. Chemical Geology, 155(3/4): 233-241. https://doi.org/10.1016/s0009-2541(98)00169-7 http://www.sciencedirect.com/science/article/pii/S0009254198001697
    Sanz-López, J., Blanco-Ferrera, S., 2012. Overgrowths of Large Authigenic Apatite Crystals on the Surface of Conodonts from Cantabrian Limestones (Spain). Facies, 58(4): 707-726. https://doi.org/10.1007/s10347-012-0295-3
    Shen, J., Algeo, T. J., Zhou, L., et al., 2012. Volcanic Perturbations of the Marine Environment in South China Preceding the Latest Permian Mass Extinction and Their Biotic Effects. Geobiology, 10(1): 82-103. https://doi.org/10.1111/j.1472-4669.2011.00306.x
    Shields, G., Stille, P., 2001. Diagenetic Constraints on the Use of Cerium Anomalies as Palaeoseawater Redox Proxies: An Isotopic and REE Study of Cambrian Phosphorites. Chemical Geology, 175(1/2): 29-48. https://doi.org/10.1016/s0009-2541(00)00362-4 http://www.sciencedirect.com/science/article/pii/S0009254100003624
    Shields, G., Webb, G. E., 2004. Has the REE Composition of Seawater Changed over Geological Time?. Chemical Geology, 204: 103-107. https://doi.org/10.1016/j.chemgeo.2003.09.010
    Sholkovitz, E., Shen, G. T., 1995. The Incorporation of Rare Earth Elements in Modern Coral. Geochimica et Cosmochimica Acta, 59(13): 2749-2756. https://doi.org/10.1016/0016-7037(95)00170-5
    Smith, C. I., Craig, O. E., Prigodich, R. V., et al., 2005. Diagenesis and Survival of Osteocalcin in Archaeological Bone. Journal of Archaeological Science, 32(1): 105-113. https://doi.org/10.1016/j.jas.2004.07.003
    Song, H. J., Wignall, P. B., Song, H. Y., et al., 2019. Seawater Temperature and Dissolved Oxygen over the Past 500 Million Years. Journal of Earth Science, 30(2): 236-243. https://doi.org/10.1007/s12583-018-1002-2
    Sweet, W. C., Bergström, S. M., 1984. Conodont Provinces and Biofacies of the Late Ordovician. In: Clark, D. L., ed., Conodont Biofacies and Provincialism. Geological Society of America Special Paper, 196: 69-87
    Sweet, W. C., Donoghue, P. C. J., 2001. Conodonts: Past, Present, Future. Journal of Paleontology, 75(6): 1174-1184. https://doi.org/10.1017/s0022336000017224 doi: 10.1017/S0022336000017224
    Toyoda, K., Tokonami, M., 1990. Diffusion of Rare-Earth Elements in Fish Teeth from Deep-Sea Sediments. Nature, 345: 607-609. https://doi.org/10.1038/345607a0
    Trotter, J. A., Barnes, C. R., McCracken, A. D., 2016. Rare Earth Elements in Conodont Apatite: Seawater or Pore-Water Signatures?. Palaeogeography, Palaeoclimatology, Palaeoecology, 462: 92-100. https://doi.org/10.1016/j.palaeo.2016.09.007
    Trotter, J. A., Eggins, S. M., 2006. Chemical Systematics of Conodont Apatite Determined by Laser Ablation ICPMS. Chemical Geology, 233(3/4): 196-216. https://doi.org/10.1016/j.chemgeo.2006.03.004 http://www.sciencedirect.com/science/article/pii/S0009254106001501
    Trotter, J. A., Gerald, J. D. F., Kokkonen, H., et al., 2007. New Insights into the Ultrastructure, Permeability, and Integrity of Conodont Apatite Determined by Transmission Electron Microscopy. Lethaia, 40(2): 97-110. https://doi.org/10.1111/j.1502-3931.2007.00024.x
    Trueman, C. N., Privat, K., Field, J., 2008. Why do Crystallinity Values Fail to Predict the Extent of Diagenetic Alteration of Bone Mineral? Palaeogeography, Palaeoclimatology, Palaeoecology, 266(3/4): 160-167. https://doi.org/10.1016/j.palaeo.2008.03.038 http://new.med.wanfangdata.com.cn/Paper/Detail?id=PeriodicalPaper_JJ025615518
    Trueman, C. N., Tuross, N., 2002. Trace Elements in Recent and Fossil Bone. In: Kohn, M. J., Rakovan, J., Hughes, J. M., eds., Phosphates: Geochemical, Geobiological and Materials Importance. Review in Mineralogy and Geochemistry, 48: 489-521
    Vidal, M., Dabard, M. -P., Gourvennec, R., et al., 2011. Le de la Presqu'Ȋle de Crozon, Massif Armoricain (France). GȔologie de la France, 1: 3-45
    Webb, G. E., Kamber, B. S., 2000. Rare Earth Elements in Holocene Reefal Microbialites: A New Shallow Seawater Proxy. Geochimica et Cosmochimica Acta, 64(9): 1557-1565. https://doi.org/10.1016/s0016-7037(99)00400-7 doi: 10.1016/S0016-7037(99)00400-7
    Webb, G. E., Nothdurft, L. D., Kamber, B. S., et al., 2009. Rare Earth Element Geochemistry of Scleractinian Coral Skeleton during Meteoric Diagenesis: A Sequence through Neomorphism of Aragonite to Calcite. Sedimentology, 56(5): 1433-1463. https://doi.org/10.1111/j.1365-3091.2008.01041.x
    Wenzel, B., Lécuyer, C., Joachimski, M. M., 2000. Comparing Oxygen Isotope Records of Silurian Calcite and Phosphate—δ18O Compositions of Brachiopods and Conodonts. Geochimica et Cosmochimica Acta, 64(11): 1859-1872. https://doi.org/10.1016/s0016-7037(00)00337-9 doi: 10.1016/S0016-7037(00)00337-9
    Weyant, M., Dorè, F., Le Gall, J., et al., 1977. Un épisode Calcaire ashgillien dans l'est du Massif Armoricain: Incidence Sur l'ậge des Dépôts Glacio-Marins fini-Ordoviciens. Comptes Rendus de l'Académie des Sciences, 284(D): 1147-1149 http://www.researchgate.net/publication/284504245_Un_episode_calcaire_ashgillien_dans_l'est_du_Massif_armoricain_incidence_sur_l'age_des_depots_glacio-marins_fini-ordoviciens
    Wheeley, J. R., Smith, M. P., Boomer, I., 2012. Oxygen Isotope Variability in Conodonts: Implications for Reconstructing Palaeozoic Palaeoclimates and Palaeoceanography. Journal of the Geological Society, 169(3): 239-250. https://doi.org/10.1144/0016-76492011-048
    Wright, J., Schrader, H., Holser, W. T., 1987. Paleoredox Variations in Ancient Oceans Recorded by Rare Earth Elements in Fossil Apatite. Geochimica et Cosmochimica Acta, 51(3): 631-644. https://doi.org/10.1016/0016-7037(87)90075-5
    Wright, J., Colling, A., 1995. Seawater: Its Composition, Properties and Behavior. Second ed. Pergamon, Oxford. 168
    Wright, J., Seymour, R. S., Shaw, H. F., 1984. REE and Nd Isotopes in Conodont Apatite: Variations with Geological Age and Depositional Environment. In: Clark, D. L., ed., Conodont Biofacies and Provincialism. Geological Society of America Special Paper, 196: 325-340
    Xin, H., Jiang, S. Y., Yang, J. H., et al., 2016. Rare Earth Element Geochemistry of Phosphatic Rocks in Neoproterozoic Ediacaran Doushantuo Formation in Hushan Section from the Yangtze Gorges Area, South China. Journal of Earth Science, 27(2): 204-210. https://doi.org/10.1007/s12583-015-0653-5
    Zhang, L., Algeo, T. J., Cao, L., et al., 2016. Diagenetic Uptake of Rare Earth Elements by Conodont Apatite. Palaeogeography, Palaeoclimatology, Palaeoecology, 458:176-197. https://doi.org/10.1016/j.palaeo.2015.10.049
    Zhang, L., Cao, L., Zhao, L. S., et al., 2017. Raman Spectral, Elemental, Crystallinity, and Oxygen-Isotope Variations in Conodont Apatite during Diagenesis. Geochimica et Cosmochimica Acta, 210:184-207. https://doi.org/10.1016/j.gca.2017.04.036
    Zhang, J., Nozaki, Y., 1996. Rare Earth Elements and Yttrium in Seawater: ICP-MS Determinations in the East Caroline, Coral Sea, and South Fiji Basins of the Western South Pacific Ocean. Geochimica et Cosmochimica Acta, 60(23): 4631-4644. https://doi.org/10.1016/s0016-7037(96)00276-1 doi: 10.1016/S0016-7037(96)00276-1
    Zhang, J., Amakawa, H., Nozaki, Y., 1994. The Comparative Behaviors of Yttrium and Lanthanides in the Seawater of the North Pacific. Geophysical Research Letters, 21(24): 2677-2680. https://doi.org/10.1029/94gl02404 doi: 10.1029/94GL02404
    Zhao, L. S., Chen, Z.-Q., Algeo, T. J., et al., 2013. Rare-Earth Element Patterns in Conodont Albid Crowns: Evidence for Massive Inputs of Volcanic Ash during the Latest Permian Biocrisis?. Global and Planetary Change, 105:135-151. https://doi.org/10.1016/j.gloplacha.2012.09.001
    Žigaitė, Ž., Qvarnström, M., Bancroft, A., et al., 2020. Trace and Rare Earth Element Compositions of Silurian Conodonts from the Vesiku Bone Bed: Histological and Palaeoenvironmental Implications. Palaeogeography, Palaeoclimatology, Palaeoecology, 549:109449. https://doi.org/10.1016/j.palaeo.2019.109449
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(1)

    Article Metrics

    Article views(344) PDF downloads(46) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return