Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 31 Issue 1
Jan 2020
Turn off MathJax
Article Contents
Zixuan Liu, Detian Yan, Xing Niu. Insights into Pore Structure and Fractal Characteristics of the Lower Cambrian Niutitang Formation Shale on the Yangtze Platform, South China. Journal of Earth Science, 2020, 31(1): 169-180. doi: 10.1007/s12583-020-1259-0
Citation: Zixuan Liu, Detian Yan, Xing Niu. Insights into Pore Structure and Fractal Characteristics of the Lower Cambrian Niutitang Formation Shale on the Yangtze Platform, South China. Journal of Earth Science, 2020, 31(1): 169-180. doi: 10.1007/s12583-020-1259-0

Insights into Pore Structure and Fractal Characteristics of the Lower Cambrian Niutitang Formation Shale on the Yangtze Platform, South China

doi: 10.1007/s12583-020-1259-0
More Information
  • Corresponding author: Detian Yan
  • Received Date: 25 Feb 2019
  • Accepted Date: 06 Sep 2019
  • Publish Date: 01 Jan 2020
  • Shales from the Lower Cambrian Niutitang Formation of Yangtze Platform have been widely investigated due to its shale gas potential. To better illustrate the pore structure and fractal characteristics of shale, a series of experiments were conducted on outcrop samples from the Lower Cambrian Niutitang Formation on Yangtze Platform, including X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM) and low-temperature nitrogen adsorption. Frenkel-Halsey-Hill (FHH) model was adopted to calculate the fractal dimensions. Furthermore, the relationships between fractal dimensions and pore structure parameters and mineral composition are discussed. FE-SEM observation results show that interparticle pores are most developed in shale, followed by intraparticle pores. This study identified the fractal dimensions D1 (ranging from 2.558 0 to 2.710 2) and D2 (ranging from 2.541 5 to 2.765 2). The pore structure of the Niutitang Formation shale is primarily controlled by quartz and clay content. Fractal dimensions are able to characterize the pore structure complexity of Niutitang Formation shale because D1 and D2 correlate well with average pore diameter and quartz content.

     

  • loading
  • Bankole, S. A., Buckman, J., Stow, D., et al., 2019. Automated Image Analysis of Mud and Mudrock Microstructure and Characteristics of Hemipelagic Sediments: IODP Expedition 339. Journal of Earth Science, 30(2): 407–421. https://doi.org/10.1007/s12583-019-1210-4
    Bertier, P., Schweinar, K., Stanjek, H., et al., 2016. On the Use and Abuse of N2 Physisorption for the Characterisation of the Pore Structure of Shales. Cms Workshop Lectures, 21: 151–161. https://doi.org/10.1346/cms-wls-21.12
    Chalmers, G. R., Bustin, R. M., Power, I. M., 2012. Characterization of Gas Shale Pore Systems by Porosimetry, Pycnometry, Surface Area, and Field Emission Scanning Electron Microscopy/transmission Electron Microscopy Image Analyses: Examples from the Barnett, Woodford, Haynesville, Marcellus, and Doig Units. AAPG Bulletin, 96(6): 1099–1119. https://doi.org/10.1306/10171111052
    Chang, S., Feng, Q. L., Zhang, L., 2018. New Siliceous Microfossils from the Terreneuvian Yanjiahe Formation, South China: The Possible Earliest Radiolarian Fossil Record. Journal of Earth Science, 29(4): 912–919. https://doi.org/10.1007/s12583-017-0960-0
    Chen, L., Lu, Y. C., Jiang, S., et al., 2015. Heterogeneity of the Lower Silurian Longmaxi Marine Shale in the Southeast Sichuan Basin of China. Marine and Petroleum Geology, 65: 232–246. https://doi.org/10.1016/j.marpetgeo.2015.04.003
    Chen, Q., Zhang, J. C., Tang, X., et al., 2016. Relationship between Pore Type and Pore Size of Marine Shale: An Example from the Sinian– Cambrian Formation, Upper Yangtze Region, South China. International Journal of Coal Geology, 158: 13–28. https://doi.org/10.1016/j.coal.2016.03.001
    Chen, Y. Y., Mastalerz, M., Schimmelmann, A., 2014. Heterogeneity of Shale Documented by Micro-FTIR and Image Analysis. Journal of Microscopy, 256(3): 177–189. https://doi.org/10.1111/jmi.12169
    Clarkson, C. R., Solano, N., Bustin, R. M., et al., 2013. Pore Structure Characterization of North American Shale Gas Reservoirs Using USANS/SANS, Gas Adsorption, and Mercury Intrusion. Fuel, 103: 606–616. https://doi.org/10.1016/j.fuel.2012.06.119
    Curtis, M. E., Cardott, B. J., Sondergeld, C. H., et al., 2012. Development of Organic Porosity in the Woodford Shale with Increasing Thermal Maturity. International Journal of Coal Geology, 103: 26–31. https://doi.org/10.1016/j.coal.2012.08.004
    Fu, H. J., Tang, D. Z., Xu, T., et al., 2017. Characteristics of Pore Structure and Fractal Dimension of Low-Rank Coal: A Case Study of Lower Jurassic Xishanyao Coal in the Southern Junggar Basin, NW China. Fuel, 193: 254–264. https://doi.org/10.1016/j.fuel.2016.11.069
    Gregg, S. J., Sing, K. S. W., 1982. Adsorption, Surface Area and Porosity: 2nd Ed.. Academic Press, London
    Guo, Q. J., Strauss, H., Zhu, M. Y., et al., 2013. High Resolution Organic Carbon Isotope Stratigraphy from a Slope to Basinal Setting on the Yangtze Platform, South China: Implications for the Ediacaran– Cambrian Transition. Precambrian Research, 225: 209–217. https://doi.org/10.1016/j.precamres.2011.10.003
    Hazra, B., Wood, D. A., Vishal, V., et al., 2018. Porosity Controls and Fractal Disposition of Organic-Rich Permian Shales Using Low-Pressure Adsorption Techniques. Fuel, 220: 837–848. https://doi.org/10.1016/j.fuel.2018.02.023
    Hu, J. G., Tang, S. H., Zhang, S. H., 2016. Investigation of Pore Structure and Fractal Characteristics of the Lower Silurian Longmaxi Shales in Western Hunan and Hubei Provinces in China. Journal of Natural Gas Science and Engineering, 28: 522–535. https://doi.org/10.1016/j.jngse.2015.12.024
    Li, A., Ding, W. L., He, J. H., et al., 2016. Investigation of Pore Structure and Fractal Characteristics of Organic-Rich Shale Reservoirs: A Case Study of Lower Cambrian Qiongzhusi Formation in Malong Block of Eastern Yunnan Province, South China. Marine and Petroleum Geology, 70: 46–57. https://doi.org/10.1016/j.marpetgeo.2015.11.004
    Li, J. Q., Zhang, P. F., Lu, S. F., et al., 2018. Scale-Dependent Nature of Porosity and Pore Size Distribution in Lacustrine Shales: An Investigation by BIB-SEM and X-Ray CT Methods. Journal of Earth Science, 30(4): 823–833. https://doi.org/10.1007/s12583-018-0835-z
    Li, Y., Wang, Z. S., Pan, Z. J., et al., 2019. Pore Structure and Its Fractal Dimensions of Transitional Shale: A Cross-Section from East Margin of the Ordos Basin, China. Fuel, 241: 417–431. https://doi.org/10.1016/j.fuel.2018.12.066
    Li, Z. Q., Shen, X., Qi, Z. Y., et al., 2018. Study on the Pore Structure and Fractal Characteristics of Marine and Continental Shale Based on Mercury Porosimetry, N2 Adsorption and NMR Methods. Journal of Natural Gas Science and Engineering, 53: 12–21. https://doi.org/10.1016/j.jngse.2018.02.027
    Liang, C., Jiang, Z. X., Cao, Y. C., et al., 2017. Sedimentary Characteristics and Paleoenvironment of Shale in the Wufeng-Longmaxi Formation, North Guizhou Province, and Its Shale Gas Potential. Journal of Earth Science, 28(6): 1020–1031. https://doi.org/10.1007/s12583-016-0932-x
    Liang, L. X., Xiong, J., Liu, X. J., 2015. An Investigation of the Fractal Characteristics of the Upper Ordovician Wufeng Formation Shale Using Nitrogen Adsorption Analysis. Journal of Natural Gas Science and Engineering, 27: 402–409. https://doi.org/10.1016/j.jngse.2015.07.023
    Liu, X. F., Song, D. Z., He, X. Q., et al., 2019. Nanopore Structure of Deep-Burial Coals Explored by AFM. Fuel, 246: 9–17. https://doi.org/10.1016/j.fuel.2019.02.090
    Liu, X. J., Xiong, J., Liang, L. X., 2015. Investigation of Pore Structure and Fractal Characteristics of Organic-Rich Yanchang Formation Shale in Central China by Nitrogen Adsorption/Desorption Analysis. Journal of Natural Gas Science and Engineering, 22: 62–72. https://doi.org/10.1016/j.jngse.2014.11.020
    Loucks, R. G., Reed, R. M., Ruppel, S. C., et al., 2009. Morphology, Genesis, and Distribution of Nanometer-Scale Pores in Siliceous Mudstones of the Mississippian Barnett Shale. Journal of Sedimentary Research, 79(12): 848–861. https://doi.org/10.2110/jsr.2009.092
    Loucks, R. G., Reed, R. M., Ruppel, S. C., et al., 2012. Spectrum of Pore Types and Networks in Mudrocks and a Descriptive Classification for Matrix-Related Mudrock Pores. AAPG Bulletin, 96(6): 1071–1098. https://doi.org/10.1306/08171111061
    Loucks, R. G., Ruppel, S. C., 2007. Mississippian Barnett Shale: Lithofacies and Depositional Setting of a Deep-Water Shale-Gas Succession in the Fort Worth Basin, Texas. AAPG Bulletin, 91(4): 579–601. https://doi.org/10.1306/11020606059
    Lü, D. W., Wang, D. D., Li, Z. X., et al., 2017. Depositional Environment, Sequence Stratigraphy and Sedimentary Mineralization Mechanism in the Coal Bed- and Oil Shale-Bearing Succession: A Case from the Paleogene Huangxian Basin of China. Journal of Petroleum Science and Engineering, 148: 32–51. https://doi.org/10.1016/j.petrol.2016.09.028
    Mandelbrot, B. B., 1975. Les Objects Fractals: Form, Hasard et Dimension. Flammarion, Paris
    Nelson, P. H., 2009. Pore-Throat Sizes in Sandstones, Tight Sandstones, and Shales. AAPG Bulletin, 93(3): 329–340. https://doi.org/10.1306/10240808059
    Niu, X., Yan, D. T., Zhuang, X. G., et al., 2018. Origin of Quartz in the Lower Cambrian Niutitang Formation in South Hubei Province, Upper Yangtze Platform. Marine and Petroleum Geology, 96: 271–287. https://doi.org/10.1016/j.marpetgeo.2018.06.005
    Pfeifer, P., Avnir, D., 1983. Chemistry in Noninteger Dimensions between Two and Three. I. Fractal Theory of Heterogeneous Surfaces. The Journal of Chemical Physics, 79(7): 3558–3565. https://doi.org/10.1063/1.446210
    Pyun, S. I., Rhee, C. K., 2004. An Investigation of Fractal Characteristics of Mesoporous Carbon Electrodes with Various Pore Structures. Electrochimica Acta, 49(24): 4171–4180. https://doi.org/10.1016/j.electacta.2004.04.012
    Shao, X. H., Pang, X. Q., Li, Q. W., et al., 2017. Pore Structure and Fractal Characteristics of Organic-Rich Shales: A Case Study of the Lower Silurian Longmaxi Shales in the Sichuan Basin, SW China. Marine and Petroleum Geology, 80: 192–202. https://doi.org/10.1016/j.marpetgeo.2016.11.025
    Sing, K. S. W., Everett, D. H., Haul, R. A. W., et al., 1985. Reporting Physisorption Data for Gas/Solid Systems with Special Reference to the Determination of Surface Area and Porosity. Pure and Applied Chemistry, 57(4): 603–619. https://doi.org/10.1351/pac198557040603
    Steele, W. A., 1983. Adsorption Surface Area and Porosity. Journal of Colloid and Interface Science, 94(2): 597–598. https://doi.org/10.1016/0021-9797(83)90305-3
    Steiner, M., Li, G. X., Qian, Y., et al., 2007. Neoproterozoic to Early Cambrian Small Shelly Fossil Assemblages and a Revised Biostratigraphic Correlation of the Yangtze Platform (China). Palaeogeography, Palaeoclimatology, Palaeoecology, 254(1/2): 67–99. https://doi.org/10.1016/j.palaeo.2007.03.046
    Sun, M. D., Yu, B. S., Hu, Q. H., et al., 2017. Pore Characteristics of Longmaxi Shale Gas Reservoir in the Northwest of Guizhou, China: Investigations Using Small-Angle Neutron Scattering (SANS), Helium Pycnometry, and Gas Sorption Isotherm. International Journal of Coal Geology, 171: 61–68. https://doi.org/10.1016/j.coal.2016.12.004
    Sun, W., Zuo, Y. J., Wu, Z. H., et al., 2019. Fractal Analysis of Pores and the Pore Structure of the Lower Cambrian Niutitang Shale in Northern Guizhou Province: Investigations Using NMR, SEM and Image Analyses. Marine and Petroleum Geology, 99: 416–428. https://doi.org/10.1016/j.marpetgeo.2018.10.042
    Sun, Y. F., Zhao, Y. X., Yuan, L., 2018. Quantifying Nano-Pore Heterogeneity and Anisotropy in Gas Shale by Synchrotron Radiation Nano-CT. Microporous and Mesoporous Materials, 258: 8–16. https://doi.org/10.1016/j.micromeso.2017.08.049
    Tang, X. L., Jiang, Z. X., Huang, H. X., et al., 2016. Lithofacies Characteristics and Its Effect on Gas Storage of the Silurian Longmaxi Marine Shale in the Southeast Sichuan Basin, China. Journal of Natural Gas Science and Engineering, 28: 338–346. https://doi.org/10.1016/j.jngse.2015.12.026
    Tang, X. L., Jiang, Z. X., Li, Z., et al., 2015. The Effect of the Variation in Material Composition on the Heterogeneous Pore Structure of High-Maturity Shale of the Silurian Longmaxi Formation in the Southeastern Sichuan Basin, China. Journal of Natural Gas Science and Engineering, 23: 464–473. https://doi.org/10.1016/j.jngse.2015.02.031
    Wang, H. J., Wu, W., Chen, T., et al., 2019. Pore Structure and Fractal Analysis of Shale Oil Reservoirs: A Case Study of the Paleogene Shahejie Formation in the Dongying Depression, Bohai Bay, China. Journal of Petroleum Science and Engineering, 177: 711–723. https://doi.org/10.1016/j.petrol.2019.02.081
    Wang, H. Z., Mo, X. X., 1995. An Outline of the Tectonic Evolution of China. Episodes, 18(1/2): 6–16. https://doi.org/10.18814/epiiugs/1995/v18i1.2/003
    Wang, J. B., Bao, H. Y., Lu, Y. Q., et al., 2019. Quantitative Characterization and Main Controlling Factors of Shale Gas Occurrence in Jiaoshiba Area, Fuling. Earth Science, 44(3): 1001–1011. https://doi.org/10.3799/dqkx.2018.388 (in Chinese with English Abstract)
    Wang, J., Li, Z., 2003. History of Neoproterozoic Rift Basins in South China: Implications for Rodinia Break-Up. Precambrian Research, 122(1/2/3/4): 141–158. https://doi.org/10.1016/s0301-9268(02)00209-7
    Wang, P. F., Jiang, Z. X., Yin, L. S., et al., 2017. Lithofacies Classification and Its Effect on Pore Structure of the Cambrian Marine Shale in the Upper Yangtze Platform, South China: Evidence from FE-SEM and Gas Adsorption Analysis. Journal of Petroleum Science and Engineering, 156: 307–321. https://doi.org/10.1016/j.petrol.2017.06.011
    Wang, Y., Zhu, Y. M., Liu, S. M., et al., 2016. Pore Characterization and Its Impact on Methane Adsorption Capacity for Organic-Rich Marine Shales. Fuel, 181: 227–237. https://doi.org/10.1016/j.fuel.2016.04.082
    Wei, X. F., Liu, R. B., Zhang, T. S., et al., 2013. Micro-Pores Structure Characteristics and Development Control Factors of Shale Gas Reservoir: A Case of Longmaxi Formation in XX Area of Southern Sichan and Northern Guizhou. Natural Gas Geoscience, 4(5): 1048–1059 (in Chinese with English Abstract)
    Wu, C. J., Tuo, J. C., Zhang, L. F., et al., 2017. Pore Characteristics Differences between Clay-Rich and Clay-Poor Shales of the Lower Cambrian Niutitang Formation in the Northern Guizhou Area, and Insights into Shale Gas Storage Mechanisms. International Journal of Coal Geology, 178: 13–25. https://doi.org/10.1016/j.coal.2017.04.009
    Xu, H., Zhou, W., Zhang, R., et al., 2019. Characterizations of Pore, Mineral and Petrographic Properties of Marine Shale Using Multiple Techniques and Their Implications on Gas Storage Capability for Sichuan Longmaxi Gas Shale Field in China. Fuel, 241: 360–371. https://doi.org/10.1016/j.fuel.2018.12.035
    Yang, F., Ning, Z. F., Wang, Q., et al., 2016. Pore Structure of Cambrian Shales from the Sichuan Basin in China and Implications to Gas Storage. Marine and Petroleum Geology, 70: 14–26. https://doi.org/10.1016/j.marpetgeo.2015.11.001
    Yang, X. Q., Fan, T. L., Wu, Y., 2016. Lithofacies and Cyclicity of the Lower Cambrian Niutitang Shale in the Mayang Basin of Western Hunan, South China. Journal of Natural Gas Science and Engineering, 28: 74–86. https://doi.org/10.1016/j.jngse.2015.11.007
    Yao, Y. B., Liu, D. M., Tang, D. Z., et al., 2008. Fractal Characterization of Adsorption-Pores of Coals from North China: An Investigation on CH4 Adsorption Capacity of Coals. International Journal of Coal Geology, 73(1): 27–42. https://doi.org/10.1016/j.coal.2007.07.003
    Zeng, W. T., Zhang, J. C., Ding, W. L., et al., 2014. The Gas Content of Continental Yanchang Shale and It Main Controlling Factors: A Case Study of Liuping-171 Well in Ordos Basin. Natural Gas Geoscience, 25(2): 291–301. https://doi.org/10.11764/j.issn.1672-1926.2014.02.0291 (in Chinese with English Abstract)
    Zhang, S. L., Yan, J. P., Hu, Q. H., et al., 2019. Integrated NMR and FE-SEM Methods for Pore Structure Characterization of Shahejie Shale from the Dongying Depression, Bohai Bay Basin. Marine and Petroleum Geology, 100: 85–94. https://doi.org/10.1016/j.marpetgeo.2018.11.003
    Zhou, L., Kang, Z. H., 2016. Fractal Characterization of Pores in Shales Using NMR: A Case Study from the Lower Cambrian Niutitang Formation in the Middle Yangtze Platform, Southwest China. Journal of Natural Gas Science and Engineering, 35: 860–872. https://doi.org/10.1016/j.jngse.2016.09.030
    Zhu, R. K., Jin, X., Wang, X. Q., et al., 2018. Multi-Scale Digital Rock Evaluation on Complex Reservoir. Earth Science, 43(5): 1773–1782. https://doi.org/10.3799/dqkx.2018.429 (in Chinese with English Abstract)
    Zou, C. N., Zhu, R. K., Bai, B, et al., 2011. First Discovery of Nano-Pore Throat in Oil and Gas Reservoir in China and Its Scientific Value. Acta Petrologica Sinica, 27(6): 1857–1864. https://doi.org/10.1007/s12250-011-3157-6 (in Chinese with English Abstract)
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(3)

    Article Metrics

    Article views(481) PDF downloads(31) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return