Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 31 Issue 1
Jan 2020
Turn off MathJax
Article Contents
Guichun Liu, Xin Qian, Jing Li, Jian-Wei Zi, Tianyu Zhao, Qinglai Feng, Guangyan Chen, Shaobin Hu. Geochronological and Geochemical Constraints on the Petrogenesis of Early Paleoproterozoic (2.40-2.32 Ga) Nb-Enriched Mafic Rocks in Southwestern Yangtze Block and Its Tectonic Implications. Journal of Earth Science, 2020, 31(1): 35-52. doi: 10.1007/s12583-020-1260-7
Citation: Guichun Liu, Xin Qian, Jing Li, Jian-Wei Zi, Tianyu Zhao, Qinglai Feng, Guangyan Chen, Shaobin Hu. Geochronological and Geochemical Constraints on the Petrogenesis of Early Paleoproterozoic (2.40-2.32 Ga) Nb-Enriched Mafic Rocks in Southwestern Yangtze Block and Its Tectonic Implications. Journal of Earth Science, 2020, 31(1): 35-52. doi: 10.1007/s12583-020-1260-7

Geochronological and Geochemical Constraints on the Petrogenesis of Early Paleoproterozoic (2.40-2.32 Ga) Nb-Enriched Mafic Rocks in Southwestern Yangtze Block and Its Tectonic Implications

doi: 10.1007/s12583-020-1260-7
More Information
  • Corresponding author: Xin Qian
  • Received Date: 15 Sep 2019
  • Accepted Date: 03 Nov 2019
  • Publish Date: 01 Feb 2020
  • Recent geological survey has identified the Early Paleoproterozoic meta-mafic intrusions in the southwestern Yangtze Block. We present geochronological,whole-rock geochemical and Nd isotopic data for these meta-mafic rocks to better address the tectonic evolution of the Yangtze Block during the Early Paleoproterozoic Period. Geochronological data show that the meta-mafic rocks have zircon ages of 2 395-2 316 Ma. They have high TiO2 contents of 1.40 wt.%-3.66 wt.% and Nb concentrations of 13.7 ppm-45.5 ppm,thus aregrouped as Nb-enriched mafic rocks. These mafic rocks are characterized by tholeiitic compositions with enrichment of LREEs and LILEs,and can be divided into two groups. Group 1 samples display E-MORB-like geochemical characteristics. Group 2 samples have positive εNd(t) values of 4.0-5.0. Geochemical data indicate that all meta-mafic rocks were likely derived from a depleted asthenospheric mantle. REE modeling indicates lower degree of partial melting for Group 2 samples (3%-10%) relative to Group 1 samples (15%-20%). Taking into account contemporaneous post-collisional granitoids in southwestern Yangtze Block,we propose that these meta-mafic rocks were formed in a post-collisional extension setting. These meta-mafic rocks can be compared with those in Africa,South America and Europe,and might be linked with the Arrowsmith orogenic belt.

     

  • loading
  • Aldanmaz, E., Pearce, J. A., Thirlwall, M. F., et al., 2000. Petrogenetic Evolution of Late Cenozoic, Post-Collision Volcanism in Western Anatolia, Turkey. Journal of Volcanology and Geothermal Research, 102(1/2): 67-95. https://doi.org/10.1016/s0377-0273(00)00182-7
    Aldanmaz, E., Yaliniz, M. K., Güctekin, A., et al., 2008. Geochemical Characteristics of Mafic Lavas from the Neotethyan Ophiolites in Western Turkey: Implications for Heterogeneous Source Contribution during Variable Stages of Ocean Crust Generation. Geological Magazine, 145(1): 37-54 doi: 10.1017/S0016756807003986
    Andersen, T., 2002. Correction of Common Lead in U-Pb Analyses that do not Report 204Pb. Chemical Geology, 192(1/2): 59-79. https://doi.org/10.1016/s0009-2541(02)00195-x
    Berman, R. G., Pehrsson, S., Davis, W. J., et al., 2013. The Arrowsmith Orogeny: Geochronological and Thermobarometric Constraints on Its Extent and Tectonic Setting in the Rae Craton, with Implications for Pre-Nuna Supercontinent Reconstruction. Precambrian Research, 232: 44-69. https://doi.org/10.1016/j.precamres.2012.10.015
    Bodet, F., Schärer, U., 2000. Evolution of the SE-Asian Continent from U-Pb and Hf Isotopes in Single Grains of Zircon and Baddeleyite from Large Rivers. Geochimica et Cosmochimica Acta, 64(12): 2067-2091. https://doi.org/10.1016/s0016-7037(00)00352-5
    Castillo, P. R., 2008. Origin of the Adakite-High-Nb Basalt Association and Its Implications for Postsubduction Magmatism in Baja California, Mexico. Geological Society of America Bulletin, 120(3/4): 451-462. https://doi.org/10.1130/b26166.1
    Castillo, P. R., 2009. Origin of Nb-Enriched Basalts and Adakites in Baja California, Mexico, Revisited: Reply. Geological Society of America Bulletin, 121(9/10): 1470-1472. https://doi.org/10.1130/b30044.1
    Castillo, P. R., Rigby, S. J., Solidum, R. U., 2007. Origin of High Field Strength Element Enrichment in Volcanic Arcs: Geochemical Evidence from the Sulu Arc, Southern Philippines. Lithos, 97(3/4): 271-288. https://doi.org/10.1016/j.lithos.2006.12.012
    Castillo, P. R., Solidum, R. U., Punongbayan, R. S., 2002. Origin of High Field Strength Element Enrichment in the Sulu Arc, Southern Philippines, Revisited. Geology, 30(8): 707. https://doi.org/10.1130/0091-7613(2002)030 < 0707:oohfse > 2.0.co; 2 doi: 10.1130/0091-7613(2002)030<0707:oohfse>2.0.co;2
    Cawood, P. A., Zhao, G. C., Yao, J. L., et al., 2018. Reconstructing South China in Phanerozoic and Precambrian Supercontinents. Earth-Science Reviews, 186: 173-194. https://doi.org/10.1016/j.earscirev.2017.06.001
    Cen, Y., Peng, S. B., Kusky, T. M., et al., 2012. Granulite Facies Metamorphic Age and Tectonic Implications of BIFs from the Kongling Group in the Northern Huangling Anticline. Journal of Earth Science, 23(5): 648-658. https://doi.org/10.1007/s12583-012-0286-x
    Chen, W. T., Zhou, M. F., Zhao, X. F., 2013. Late Paleoproterozoic Sedimentary and Mafic Rocks in the Hekou Area, SW China: Implication for the Reconstruction of the Yangtze Block in Columbia. Precambrian Research, 231: 61-77. https://doi.org/10.1016/j.precamres.2013.03.011
    Condie, K. C., O'Neill, C., Aster, R. C., 2009. Evidence and Implications for a Widespread Magmatic Shutdown for 250 My on Earth. Earth and Planetary Science Letters, 282(1/2/3/4): 294-298. https://doi.org/10.1016/j.epsl.2009.03.033
    Cui, X. Z., Wang, J., Sun, Z. M., et al., 2019. Early Paleoproterozoic (ca. 2.36 Ga) Post-Collisional Granitoids in Yunnan, SW China: Implications for Linkage between Yangtze and Laurentia in the Columbia Supercontinent. Journal of Asian Earth Sciences, 169: 308-322. https://doi.org/10.1016/j.jseaes.2018.10.026
    Diwu, C. R., Sun, Y., Zhao, Y., et al., 2014. Early Paleoproterozoic (2.45-2.20 Ga) Magmatic Activity during the Period of Global Magmatic Shutdown: Implications for the Crustal Evolution of the Southern North China Craton. Precambrian Research, 255: 627-640. https://doi.org/10.1016/j.precamres.2014.08.001
    Dos Santos, T. J. S., Fetter, A. H., van Schmus, W. R., et al., 2009. Evidence for 2.35 to 2.30 Ga Juvenile Crustal Growth in the Northwest Borborema Province, NE Brazil. Geological Society, London, Special Publications, 323(1): 271-281. https://doi.org/10.1144/sp323.13
    Eriksson, P. G., Condie, K. C., 2014. Cratonic Sedimentation Regimes in the ca. 2 450-2 000 Ma Period: Relationship to a Possible Widespread Magmatic Slowdown on Earth?. Gondwana Research, 25(1): 30-47. https://doi.org/10.1016/j.gr.2012.08.005
    French, J. E., Heaman, L. M., 2010. Precise U-Pb Dating of Paleoproterozoic Mafic Dyke Swarms of the Dharwar Craton, India: Implications for the Existence of the Neoarchean Supercraton Sclavia. Precambrian Research, 183(3): 416-441. https://doi.org/10.1016/j.precamres.2010.05.003
    French, J. E., Heaman, L. M., Chacko, T., 2002. Feasibility of Chemical U-Th-Total Pb Baddeleyite Dating by Electron Microprobe. Chemical Geology, 188(1/2): 85-104. https://doi.org/10.1016/s0009-2541(02)00074-8
    Gao, S., Ling, W. L., Qiu, Y. M., et al., 1999. Contrasting Geochemical and Sm-Nd Isotopic Compositions of Archean Metasediments from the Kongling High-Grade Terrain of the Yangtze Craton: Evidence for Cratonic Evolution and Redistribution of REE during Crustal Anatexis. Geochimica et Cosmochimica Acta, 63(13/14): 2071-2088. https://doi.org/10.1016/s0016-7037(99)00153-2
    Gao, S., Yang, J., Zhou, L., et al., 2011. Age and Growth of the Archean Kongling Terrain, South China, with Emphasis on 3.3 Ga Granitoid Gneisses. American Journal of Science, 311(2): 153-182. https://doi.org/10.2475/02.2011.03
    Gong, S. L., Chen, N. S., Geng, H. Y., et al., 2014. Zircon Hf Isotopes and Geochemistry of the Early Paleoproterozoic High-Sr Low-Y Quartz-Diorite in the Quanji Massif, NW China: Crustal Growth and Tectonic Implications. Journal of Earth Science, 25(1): 74-86. https://doi.org/10.1007/s12583-014-0401-2
    Gorton, M. P., Schandl, E. S., 2000. From Continents to Island Arcs: A Geochemical Index of Tectonic Setting for Arc-Related and within-Plate Felsic to Intermediate Volcanic Rocks. The Canadian Mineralogist, 38(5): 1065-1073. https://doi.org/10.2113/gscanmin.38.5.1065
    Greentree, M. R., Li, Z. X., 2008. The Oldest Known Rocks in South-Western China: SHRIMP U-Pb Magmatic Crystallisation Age and Detrital Provenance Analysis of the Paleoproterozoic Dahongshan Group. Journal of Asian Earth Sciences, 33(5/6): 289-302. https://doi.org/10.1016/j.jseaes.2008.01.001
    Guo, J. L., Gao, S., Wu, Y. B., et al., 2014. 3.45 Ga Granitic Gneisses from the Yangtze Craton, South China: Implications for Early Archean Crustal Growth. Precambrian Research, 242: 82-95. https://doi.org/10.1016/j.precamres.2013.12.018
    Han, Q. S., Peng, S. B., Polat, A., et al., 2018. A ca. 2.1 Ga Andean-Type Margin Built on Metasomatized Lithosphere in the Northern Yangtze Craton, China: Evidence from High-Mg Basalts and Andesites. Precambrian Research, 309: 309-324. https://doi.org/10.1016/j.precamres.2017.05.015
    Hartlaub, R. P., Heaman, L. M., Chacko, T., et al., 2007. Circa 2.3‐Ga Magmatism of the Arrowsmith Orogeny, Uranium City Region, Western Churchill Craton, Canada. The Journal of Geology, 115(2): 181-195. https://doi.org/10.1086/510641
    Hastie, A. R., Mitchell, S. F., Kerr, A. C., et al., 2011. Geochemistry of Rare High-Nb Basalt Lavas: Are they Derived from a Mantle Wedge Metasomatised by Slab Melts?. Geochimica et Cosmochimica Acta, 75(17): 5049-5072. https://doi.org/10.1016/j.gca.2011.06.018
    He, C., Gong, S. L., Wang, L., et al., 2018. Protracted Post-Collisional Magmatism during Plate Subduction Shutdown in Early Paleoproterozoic: Insights from Post-Collisional Granitoid Suite in NW China. Gondwana Research, 55: 92-111. https://doi.org/10.1016/j.gr.2017.11.009
    Heaman, L. M., Tarney, J., 1989. U-Pb Baddeleyite Ages for the Scourie Dyke Swarm, Scotland: Evidence for Two Distinct Intrusion Events. Nature, 340(6236): 705-708. https://doi.org/10.1038/340705a0
    Hölttä, P., Huhma, H., Mänttäri, I., et al., 2000. P-T-t Development of Archaean Granulites in Varpaisjärvi, Central Finland. Lithos, 50(1/2/3): 121-136. https://doi.org/10.1016/s0024-4937(99)00055-9
    Hu, J., Liu, X. C., Chen, L. Y., et al., 2013. A ~2.5 Ga Magmatic Event at the Northern Margin of the Yangtze Craton: Evidence from U-Pb Dating and Hf Isotope Analysis of Zircons from the Douling Complex in the South Qinling Orogen. Chinese Science Bulletin, 58(28/29): 3564-3579. https://doi.org/10.1007/s11434-013-5904-1
    Hu, J., Zhang, S. T., Zhang, G. Z., et al., 2018. Geochemistry and Tectonic Setting of the Eshan Granites in the Southwestern Margin of the Yangtze Plate, Yunnan. Journal of Earth Science, 29(1): 130-143. https://doi.org/10.1007/s12583-017-0747-3
    Hui, B., Dong, Y. P., Cheng, C., et al., 2017. Zircon U-Pb Chronology, Hf Isotope Analysis and Whole-Rock Geochemistry for the Neoarchean- Paleoproterozoic Yudongzi Complex, Northwestern Margin of the Yangtze Craton, China. Precambrian Research, 301: 65-85. https://doi.org/10.1016/j.precamres.2017.09.003
    Jiao, W. F., Wu, Y. B., Yang, S. H., et al., 2009. The Oldest Basement Rock in the Yangtze Craton Revealed by Zircon U-Pb Age and Hf Isotope Composition. Science in China Series D: Earth Sciences, 52(9): 1393-1399. https://doi.org/10.1007/s11430-009-0135-7
    Kepezhinskas, P., Defant, M. J., Drummond, M. S., 1996. Progressive Enrichment of Island Arc Mantle by Melt-Peridotite Interaction Inferred from Kamchatka Xenoliths. Geochimica et Cosmochimica Acta, 60(7): 1217-1229. https://doi.org/10.1016/0016-7037(96)00001-4
    Kou, C. H., Zhang, Z. C., Santosh, M., et al., 2017. Oldest Volcanic-Hosted Submarine Iron Ores in South China: Evidence from Zircon U-Pb Geochronology and Geochemistry of the Paleoproterozoic Dahongshan Iron Deposit. Gondwana Research, 49: 182-204. https://doi.org/10.1016/j.gr.2017.05.016
    Kröner, A., Wilde, S. A., Li, J. H., et al., 2005. Age and Evolution of a Late Archean to Paleoproterozoic Upper to Lower Crustal Section in the Wutaishan/Hengshan/Fuping Terrain of Northern China. Journal of Asian Earth Sciences, 24: 577-595 doi: 10.1016/j.jseaes.2004.01.001
    Kullerud, K., Skjerlie, K. P., Corfu, F., et al., 2006. The 2.40 Ga Ringvassøy Mafic Dykes, West Troms Basement Complex, Norway: The Concluding Act of Early Palaeoproterozoic Continental Breakup. Precambrian Research, 150(3/4): 183-200. https://doi.org/10.1016/j.precamres.2006.08.003
    Kumar, A., Hamilton, M. A., Halls, H. C., 2012. A Paleoproterozoic Giant Radiating Dyke Swarm in the Dharwar Craton, Southern India. Geochemistry, Geophysics, Geosystems, 13(2): Q02011. https://doi.org/10.1029/2011gc003926
    Lan, C. Y., Chung, S. L., Lo, C. H., et al., 2001. First Evidence for Archean Continental Crust in Northern Vietnam and Its Implications for Crustal and Tectonic Evolution in Southeast Asia. Geology, 29(3): 219. https://doi.org/10.1130/0091-7613(2001)029 < 0219:fefacc > 2.0.co; 2 doi: 10.1130/0091-7613(2001)029<0219:fefacc>2.0.co;2
    Li, L. M., Lin, S. F., Davis, D. W., et al., 2014. Geochronology and Geochemistry of Igneous Rocks from the Kongling Terrane: Implications for Mesoarchean to Paleoproterozoic Crustal Evolution of the Yangtze Block. Precambrian Research, 255: 30-47. https://doi.org/10.1016/j.precamres.2014.09.009
    Li, Y. H., Zheng, J. P., Xiong, Q., et al., 2016. Petrogenesis and Tectonic Implications of Paleoproterozoic Metapelitic Rocks in the Archean Kongling Complex from the Northern Yangtze Craton, South China. Precambrian Research, 276: 158-177. https://doi.org/10.1016/j.precamres.2016.01.028
    Liu, H. C., Wang, Y. J., Cawood, P. A., et al., 2017. Episodic Slab Rollback and Back-Arc Extension in the Yunnan-Burma Region: Insights from Cretaceous Nb-Enriched and Oceanic-Island Basalt-Like Mafic Rocks. Geological Society of America Bulletin, 129(5/6): 698-714. https://doi.org/10.1130/b31604.1
    Liu, S. W., Pan, Y. M., Li, J. H., et al., 2002. Geological and Isotopic Geochemical Constraints on the Evolution of the Fuping Complex, North China Craton. Precambrian Research, 117(1/2): 41-56. https://doi.org/10.1016/s0301-9268(02)00063-3
    Liu, Y. S., Gao, S., Hu, Z. C., et al., 2010a. Continental and Oceanic Crust Recycling-Induced Melt-Peridotite Interactions in the Trans-North China Orogen: U-Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths. Journal of Petrology, 51(1/2): 537-571. https://doi.org/10.1093/petrology/egp082
    Liu, Y. S., Hu, Z. C., Zong, K. Q., et al., 2010b. Reappraisement and Refinement of Zircon U-Pb Isotope and Trace Element Analyses by LA-ICP-MS. Chinese Science Bulletin, 55(15): 1535-1546. https://doi.org/10.1007/s11434-010-3052-4
    Lu, G. M., Wang, W., Ernst, R. E., et al., 2019. Petrogenesis of Paleo- Mesoproterozoic Mafic Rocks in the Southwestern Yangtze Block of South China: Implications for Tectonic Evolution and Paleogeographic Reconstruction. Precambrian Research, 322: 66-84. https://doi.org/10.1016/j.precamres.2018.12.019
    Ludwig, K. R., 2003. ISOPLOT 3.00: A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center, California, Berkeley
    Macambira, M. J. B., Vasquez, M. L., da Silva, D. C. C., et al., 2009. Crustal Growth of the Central-Eastern Paleoproterozoic Domain, SW Amazonian Craton: Juvenile Accretion vs. Reworking. Journal of South American Earth Sciences, 27(4): 235-246. https://doi.org/10.1016/j.jsames.2009.06.006
    Manyeruke, T. D., Blenkinsop, T. G., Buchholz, P., et al., 2004. The Age and Petrology of the Chimbadzi Hill Intrusion, NW Zimbabwe: First Evidence for Early Paleoproterozoic Magmatism in Zimbabwe. Journal of African Earth Sciences, 40(5): 281-292. https://doi.org/10.1016/j.jafrearsci.2004.12.003
    Martin, H., Smithies, R. H., Rapp, R., et al., 2005. An Overview of Adakite, Tonalite-Trondhjemite-Granodiorite (TTG), and Sanukitoid: Relationships and Some Implications for Crustal Evolution. Lithos, 79(1/2): 1-24. https://doi.org/10.1016/j.lithos.2004.04.048
    Mazhari, S. A., 2016. Petrogenesis of Adakite and High-Nb Basalt Association in the SW of Sabzevar Zone, NE of Iran: Evidence for Slab Melt-Mantle Interaction. Journal of African Earth Sciences, 116: 170-181. https://doi.org/10.1016/j.jafrearsci.2015.12.026
    McKenzie, D., O'Nions, R. K., 1991. Partial Melt Distributions from Inversion of Rare Earth Element Concentrations. Journal of Petrology, 32(5): 1021-1091. https://doi.org/10.1093/petrology/32.5.1021
    Miyashiro, A., 1974. Volcanic Rock Series in Island Arcs and Active Continental Margins. American Journal of Science, 274(4): 321-355. https://doi.org/10.2475/ajs.274.4.321
    Nam, T. N., Toriumi, M., Sano, Y., et al., 2003. 2.9, 2.36, and 1.96 Ga Zircons in Orthogneiss South of the Red River Shear Zone in Viet Nam: Evidence from SHRIMP U-Pb Dating and Tectonothermal Implications. Journal of Asian Earth Sciences, 21(7): 743-753. https://doi.org/10.1016/s1367-9120(02)00089-5
    Nemchin, A. A., Pidgeon, R. T., 1998. Precise Conventional and SHRIMP Baddeleyite U-Pb Age for the Binneringie Dyke, near Narrogin, Western Australia. Australian Journal of Earth Sciences, 45(5): 673-675. https://doi.org/10.1080/08120099808728424
    Nie, H., Yao, J., Wan, X., et al., 2016. Precambrian Tectonothermal Evolution of South Qinling and Its Affinity to the Yangtze Block: Evidence from Zircon Ages and Hf-Nd Isotopic Compositions of Basement Rocks. Precambrian Research, 286: 167-179. https://doi.org/10.1016/j.precamres.2016.10.005
    Nilsson, M. K. M., Klausen, M. B., Söderlund, U., et al., 2013. Precise U-Pb Ages and Geochemistry of Palaeoproterozoic Mafic Dykes from Southern West Greenland: Linking the North Atlantic and the Dharwar Cratons. Lithos, 174: 255-270. https://doi.org/10.1016/j.lithos.2012.07.021
    Partin, C. A., Bekker, A., Sylvester, P. J., et al., 2014. Filling in the Juvenile Magmatic Gap: Evidence for Uninterrupted Paleoproterozoic Plate Tectonics. Earth and Planetary Science Letters, 388: 123-133. https://doi.org/10.1016/j.epsl.2013.11.041
    Pearce, J. A., Norry, M. J., 1979. Petrogenetic Implications of Ti, Zr, Y, and Nb Variations in Volcanic Rocks. Contributions to Mineralogy and Petrology, 69(1): 33-47. https://doi.org/10.1007/bf00375192
    Pehrsson, S. J., Berman, R. G., Eglington, B., et al., 2013. Two Neoarchean Supercontinents Revisited: The Case for a Rae Family of Cratons. Precambrian Research, 232: 27-43. https://doi.org/10.1016/j.precamres.2013.02.005
    Pehrsson, S. J., Eglington, B. M., Evans, D. A. D., et al., 2015. Metallogeny and Its Link to Orogenic Style during the Nuna Supercontinent Cycle. Geological Society, London, Special Publications, 424(1): 83-94. https://doi.org/10.1144/sp424.5
    Pisarevsky, S. A., Elming, S. Å., Pesonen, L. J., et al., 2014. Mesoproterozoic Paleogeography: Supercontinent and beyond. Precambrian Research, 244: 207-225. https://doi.org/10.1016/j.precamres.2013.05.014
    Plank, T., 2005. Constraints from Thorium/Lanthanum on Sediment Recycling at Subduction Zones and the Evolution of the Continents. Journal of Petrology, 46(5): 921-944. https://doi.org/10.1093/petrology/egi005
    Prouteau, G., Maury, R. C., Sajona, F. G., et al., 2000. Behavior of Niobium, Tantalum and other High Field Strength Elements in Adakites and Related Lavas from the Philippines. The Island Arc, 9(4): 487-498. https://doi.org/10.1046/j.1440-1738.2000.00296.x
    Qian, J. H., Shen, Y. R., 1990. The Dahongshan Volcanogenic Fe-Cu Deposit in Yunnan Province. Series of Geological Memoirs of People's Republic of China. Geological Publishing House, Beijing. 236 (in Chinese with English Abstract)
    Rogers, J. J. W., Santosh, M., 2002. Configuration of Columbia, a Mesoproterozoic Supercontinent. Gondwana Research, 5(1): 5-22. https://doi.org/10.1016/s1342-937x(05)70883-2
    Rolland, Y., Galoyan, G., Bosch, D., et al., 2009. Jurassic Back-Arc and Cretaceous Hot-Spot Series in the Armenian Ophiolites—Implications for the Obduction Process. Lithos, 112(3/4): 163-187. https://doi.org/10.1016/j.lithos.2009.02.006
    Rosen, O. M., 2002. Siberian Craton--A Fragment of a Paleoproterozoic Supercontinent. Russian Journal of Earth Sciences, 4(2): 103-119. https://doi.org/10.2205/2002es000090
    Saccani, E., Azimzadeh, Z., Dilek, Y., et al., 2013. Geochronology and Petrology of the Early Carboniferous Misho Mafic Complex (NW Iran), and Implications for the Melt Evolution of Paleo-Tethyan Rifting in Western Cimmeria. Lithos, 162/163: 264-278. https://doi.org/10.1016/j.lithos.2013.01.008
    Sajona, F. G., Bellon, H., Maury, R., et al., 1994. Magmatic Response to Abrupt Changes in Geodynamic Settings: Pliocene—Quaternary Calc-Alkaline and Nb-Enriched Lavas from Mindanao (Philippines). Tectonophysics, 237(1/2): 47-72. https://doi.org/10.1016/0040-1951(94)90158-9
    Sajona, F. G., Maury, R. C., Bellon, H., et al., 1996. High Field Strength Element Enrichment of Pliocene—Pleistocene Island Arc Basalts, Zamboanga Peninsula, Western Mindanao (Philippines). Journal of Petrology, 37(3): 693-726. https://doi.org/10.1093/petrology/37.3.693
    Santosh, M., Yang, Q. Y., Teng, X. M., et al., 2015. Paleoproterozoic Crustal Growth in the North China Craton: Evidence from the Lüliang Complex. Precambrian Research, 263: 197-231. https://doi.org/10.1016/j.precamres.2015.03.015
    Seixas, L. A. R., David, J., Stevenson, R., 2012. Geochemistry, Nd Isotopes and U-Pb Geochronology of a 2 350 Ma TTG Suite, Minas Gerais, Brazil: Implications for the Crustal Evolution of the Southern São Francisco Craton. Precambrian Research, 196-197: 61-80. https://doi.org/10.1016/j.precamres.2011.11.002
    Spencer, C. J., Murphy, J. B., Kirkland, C. L., et al., 2018. A Palaeoproterozoic Tectono-Magmatic Lull as a Potential Trigger for the Supercontinent Cycle. Nature Geoscience, 11(2): 97-101. https://doi.org/10.1038/s41561-017-0051-y
    Stepanova, A. V., Salnikova, E. B., Samsonov, A. V., et al., 2015. The 2.31 Ga Mafic Dykes in the Karelian Craton, Eastern Fennoscandian Shield: U-Pb Age, Source Characteristics and Implications for Continental Break-Up Processes. Precambrian Research, 259: 43-57. https://doi.org/10.1016/j.precamres.2014.10.002
    Straub, S. M., Gómez-Tuena, A., Zellmer, G. F., et al., 2013. The Processes of Melt Differentiation in Arc Volcanic Rocks: Insights from OIB-Type Arc Magmas in the Central Mexican Volcanic Belt. Journal of Petrology, 54(4): 665-701. https://doi.org/10.1093/petrology/egs081
    Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19
    Taylor, S. R., McLennan, S. M., 1995. The Geochemical Evolution of the Continental Crust. Reviews of Geophysics, 33(2): 241. https://doi.org/10.1029/95rg00262
    Tchameni, R., Mezger, K., Nsifa, N. E., et al., 2001. Crustal Origin of Early Proterozoic Syenites in the Congo Craton (Ntem Complex), South Cameroon. Lithos, 57(1): 23-42. https://doi.org/10.1016/s0024-4937(00)00072-4
    Teixeira, W., Ávila, C. A., Dussin, I. A., et al., 2015. A Juvenile Accretion Episode (2.35-2.32 Ga) in the Mineiro Belt and Its Role to the Minas Accretionary Orogeny: Zircon U-Pb-Hf and Geochemical Evidences. Precambrian Research, 256: 148-169. https://doi.org/10.1016/j.precamres. 2014.11.009 doi: 10.1016/j.precamres.2014.11.009
    Wang, K., Dong, S. W., Li, Z. X., et al., 2018a. Age and Chemical Composition of Archean Metapelites in the Zhongxiang Complex and Implications for Early Crustal Evolution of the Yangtze Craton. Lithos, 320-321: 280-301. https://doi.org/10.1016/j.lithos.2018.09.027
    Wang, K., Li, Z. X., Dong, S. W., et al., 2018b. Early Crustal Evolution of the Yangtze Craton, South China: New Constraints from Zircon U-Pb-Hf Isotopes and Geochemistry of ca. 2.9-2.6 Ga Granitic Rocks in the Zhongxiang Complex. Precambrian Research, 314: 325-352. https://doi.org/10.1016/j.precamres.2018.05.016
    Wang, Q., Wyman, D. A., Xu, J. F., et al., 2008. Triassic Nb-Enriched Basalts, Magnesian Andesites, and Adakites of the Qiangtang Terrane (Central Tibet): Evidence for Metasomatism by Slab-Derived Melts in the Mantle Wedge. Contributions to Mineralogy and Petrology, 155(4): 473-490. https://doi.org/10.1007/s00410-007-0253-1
    Wang, Q., Wyman, D. A., Zhao, Z. H., et al., 2007. Petrogenesis of Carboniferous Adakites and Nb-Enriched Arc Basalts in the Alataw Area, Northern Tianshan Range (western China): Implications for Phanerozoic Crustal Growth in the Central Asia Orogenic Belt. Chemical Geology, 236(1/2): 42-64. https://doi.org/10.1016/j.chemgeo.2006.08.013
    Wang, W., Cawood, P. A., Pandit, M. K., et al., 2017. Zircon U-Pb Age and Hf Isotope Evidence for an Eoarchaean Crustal Remnant and Episodic Crustal Reworking in Response to Supercontinent Cycles in NW India. Journal of the Geological Society, 174(4): 759-772. https://doi.org/10.1144/jgs2016-080
    Wang, W., Cawood, P. A., Zhou, M. F., et al., 2016. Paleoproterozoic Magmatic and Metamorphic Events Link Yangtze to Northwest Laurentia in the Nuna Supercontinent. Earth and Planetary Science Letters, 433: 269-279. https://doi.org/10.1016/j.epsl.2015.11.005
    Wang, W., Zhou, M. F., 2014. Provenance and Tectonic Setting of the Paleo- to Mesoproterozoic Dongchuan Group in the Southwestern Yangtze Block, South China: Implication for the Breakup of the Supercontinent Columbia. Tectonophysics, 610: 110-127. https://doi.org/10.1016/j.tecto.2013.11.009
    Wang, W., Zhou, M. F., Zhao, X. F., et al., 2014. Late Paleoproterozoic to Mesoproterozoic Rift Successions in SW China: Implication for the Yangtze Block-North Australia-Northwest Laurentia Connection in the Columbia Supercontinent. Sedimentary Geology, 309: 33-47. https://doi.org/10.1016/j.sedgeo.2014.05.004
    Wang, Y. J., Zhang, A. M., Cawood, P. A., et al., 2013. Geochronological, Geochemical and Nd-Hf-Os Isotopic Fingerprinting of an Early Neoproterozoic Arc-Back-Arc System in South China and Its Accretionary Assembly along the Margin of Rodinia. Precambrian Research, 231: 343-371. https://doi.org/10.1016/j.precamres.2013.03.020
    Wang, Z. J., Wang, J., Du, Q. D., et al., 2013. Mature Archean Continental Crust in the Yangtze Craton: Evidence from Petrology, Geochronology and Geochemistry. Chinese Science Bulletin, 58(19): 2360-2369. https://doi.org/10.1007/s11434-013-5668-7
    Winchester, J. A., Floyd, P. A., 1977. Geochemical Discrimination of Different Magma Series and Their Differentiation Products Using Immobile Elements. Chemical Geology, 20: 325-343. https://doi.org/10.1016/0009-2541(77)90057-2
    Workman, R. K., Hart, S. R., 2005. Major and Trace Element Composition of the Depleted MORB Mantle (DMM). Earth and Planetary Science Letters, 231(1/2): 53-72. https://doi.org/10.1016/j.epsl.2004.12.005
    Wu, Y. B., Gao, S., Zhang, H. F., et al., 2012. Geochemistry and Zircon U-Pb Geochronology of Paleoproterozoic Arc Related Granitoid in the Northwestern Yangtze Block and Its Geological Implications. Precambrian Research, 200/203: 26-37. https://doi.org/10.1016/j.precamres.2011.12.015
    Wu, Y. B., Zhou, G. Y., Gao, S., et al., 2014. Petrogenesis of Neoarchean TTG Rocks in the Yangtze Craton and Its Implication for the Formation of Archean TTGs. Precambrian Research, 254: 73-86. https://doi.org/10.1016/j.precamres.2014.08.004
    Yuan, H. L., Gao, S., Liu, X. M., et al., 2004. Accurate U-Pb Age and Trace Element Determinations of Zircon by Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry. Geostandards and Geoanalytical Research, 28(3): 353-370. https://doi.org/10.1111/j.1751-908x.2004.tb00755.x
    Yuan, L. L., Zhang, X. H., Yang, Z. L., et al., 2017. Paleoproterozoic Alaskan-Type Ultramafic-Mafic Intrusions in the Zhongtiao Mountain Region, North China Craton: Petrogenesis and Tectonic Implications. Precambrian Research, 296: 39-61. https://doi.org/10.1016/j.precamres.2017.04.037
    Zhang, C. L., Li, Z. X., Li, X. H., et al., 2007. An Early Paleoproterozoic High-K Intrusive Complex in Southwestern Tarim Block, NW China: Age, Geochemistry, and Tectonic Implications. Gondwana Research, 12(1/2): 101-112. https://doi.org/10.1016/j.gr.2006.10.006
    Zhang, L. M., Wang, Y. J., Qian, X., et al., 2018. Petrogenesis of Mesoproterozoic Mafic Rocks in Hainan (South China) and Its Implication on the Southwest Hainan-Laurentia-Australia Connection. Precambrian Research, 313: 119-133. https://doi.org/10.1016/j.precamres.2018.05.002
    Zhang, Z. Q., Zhang, G. W., Tang, S. H., et al., 2001. On the Age of Metamorphic Rocks of the Yudongzi Group and the Archean Crystalline Basement of the Qinling Orogen. Acta Geologic Sinica, 75: 198-204 (in Chinese with English Abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb200102008
    Zhao, G. C., 2015. Jiangnan Orogen in South China: Developing from Divergent Double Subduction. Gondwana Research, 27(3): 1173-1180. https://doi.org/10.1016/j.gr.2014.09.004
    Zhao, G. C., Cawood, P. A., Wilde, S. A., et al., 2002. Review of Global 2.1-1.8 Ga Orogens: Implications for a Pre-Rodinia Supercontinent. Earth-Science Reviews, 59(1/2/3/4): 125-162. https://doi.org/10.1016/ s0012- 8252(02)00073-9 doi: 10.1016/s0012-8252(02)00073-9
    Zhao, G. C., Sun, M., Wilde, S. A., et al., 2004. A Paleo-Mesoproterozoic Supercontinent: Assembly, Growth and Breakup. Earth-Science Reviews, 67(1/2): 91-123. https://doi.org/10.1016/j.earscirev.2004.02.003
    Zhao, G. C., Wilde, S. A., Sun, M., et al., 2008. SHRIMP U-Pb Zircon Ages of Granitoid Rocks in the Lüliang Complex: Implications for the Accretion and Evolution of the Trans-North China Orogen. Precambrian Research, 160(3/4): 213-226. https://doi.org/10.1016/j.precamres.2007.07.004
    Zhao, T. Y., Cawood, P. A., Zi, J. W., et al., 2019. Early Paleoproterozoic Magmatism in the Yangtze Block: Evidence from Zircon U-Pb Ages, Sr-Nd-Hf Isotopes and Geochemistry of ca. 2.3 Ga and 2.1 Ga Granitic Rocks in the Phan Si Pan Complex, North Vietnam. Precambrian Research, 324: 253-268. https://doi.org/10.1016/j.precamres.2019.01.012
    Zhao, X. F., Zhou, M. F., Li, J. W., et al., 2010. Late Paleoproterozoic to Early Mesoproterozoic Dongchuan Group in Yunnan, SW China: Implications for Tectonic Evolution of the Yangtze Block. Precambrian Research, 182(1/2): 57-69. https://doi.org/10.1016/j.precamres.2010.06.021
    Zhou, G. Y., Wu, Y. B., Gao, S., et al., 2015. The 2.65 Ga A-Type Granite in the Northeastern Yangtze Craton: Petrogenesis and Geological Implications. Precambrian Research, 258: 247-259. https://doi.org/10.1016/j.precamres.2015.01.003
    Zhu, H. P., Fan, W. Y., Zhou, B. G., et al., 2011. Assessing Precambrian Stratigraphic Sequence of Dongchuan Area: Evidence from Zircon SHRIMP and LA-ICP-MS Dating. Geological Journal of China Universities, 17(3): 452-461 (in Chinese with English Abstract)
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(2)

    Article Metrics

    Article views(425) PDF downloads(55) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return