Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 31 Issue 5
Oct 2020
Turn off MathJax
Article Contents
M. C. Manoj, Jyoti Srivastava, Prem Raj Uddandam, Biswajeet Thakur. A 2000 Year Multi-Proxy Evidence of Natural/Anthropogenic Influence on Climate from the Southwest Coast of India. Journal of Earth Science, 2020, 31(5): 1029-1044. doi: 10.1007/s12583-020-1336-4
Citation: M. C. Manoj, Jyoti Srivastava, Prem Raj Uddandam, Biswajeet Thakur. A 2000 Year Multi-Proxy Evidence of Natural/Anthropogenic Influence on Climate from the Southwest Coast of India. Journal of Earth Science, 2020, 31(5): 1029-1044. doi: 10.1007/s12583-020-1336-4

A 2000 Year Multi-Proxy Evidence of Natural/Anthropogenic Influence on Climate from the Southwest Coast of India

doi: 10.1007/s12583-020-1336-4
More Information
  • Corresponding author: M. C. Manoj, ORCID:0000-0001-8112-6315, manoj.mcm@gmail.com
  • Received Date: 18 Dec 2019
  • Accepted Date: 08 Apr 2020
  • Publish Date: 20 Oct 2020
  • The last millennium climate reconstructions are complex and limit our understanding of the mechanisms behind environmental and climate variability. We present multi-proxy centennial-scale records from the Cherai, southwest India. The last 2000 cal yr AD record suggests a complex environmental condition that prevailed at the depositional site augmenting the role of natural as well as anthropogenic agents. Increased elemental variations and indices values indicate stronger weathering, presumably wetter conditions and intense precipitation. Provenance studies suggest diverse sources and the main composition fall close to the Charnockite and Gneissic composition. Multi-proxy data suggests that a shift towards wetter climatic conditions, which occurred from 910 to 1230 cal yr AD. The core also records a shift towards the drier conditions that started around 1230 cal yr AD with a loss in vegetation diversity. The pollution load index values suggest that the overall study area falls in moderate contamination levels, which are also substantiated with the diatom data indicating human influence in the natural habitat during the deposition time. The present study reveals that the enhanced Cd and As concentration is due to strong anthropogenic influence. We compared the multi-proxy record with other continental and marine palaeoclimatic records to explore global and/or regional trends in climate variability during the last 2000 years.

     

  • loading
  • Abubakr, M. I., 2008. Combining Multivariate Analysis and Geochemical Approaches for Assessing Heavy Metal Level in Sediments from Sudanese Harbors along the Red Sea Coast. Microchemical Journal, 90(2): 159-163. https://doi.org/10.1016/j.microc.2008.05.004
    Adebowale, K. O., Agunbiade, F. O., Olu-Owolabi, B. I., 2008. Fuzzy Comprehensive Assessment of Metal Contamination of Water and Sediments in Ondo Estuary, Nigeria. Chemistry and Ecology, 24(4): 269-283. https://doi.org/10.1080/02757540802255600
    An, Z. S., 2014. Late Cenozoic Climate Change in Asia: Loess, Monsoon and Monsoon Arid Environment Evolution. Springer, Amsterdam
    Anderson, D. M., 2002. Increase in the Asian Southwest Monsoon during the Past Four Centuries. Science, 297(5581): 596-599. https://doi.org/10.1126/science.1072881
    Balachandran, K. K., Laluraj, C. M., Martin, G. D., et al., 2006. Environmental Analysis of Heavy Metal Deposition in a Flow-Restricted Tropical Estuary and Its Adjacent Shelf. Environmental Forensics, 7(4): 345-351. https://doi.org/10.1080/15275920600996339
    Banerji, U. S., Pandey, S., Bhushan, R., et al., 2015. Mid-Holocene Climate and Landsea Interaction along the Southern Coast of Saurashtra, Western India. Journal of Asian Earth Sciences, 111: 428-439. https://doi.org/10.1016/j.jseaes.2015.06.021
    Banerji, U. S., Bhushan, R., Jull, A. J. T., 2019. Signatures of Global Climatic Events and Forcing Factors for the Last Two Millennia from the Active Mudflats of Rohisa, Southern Saurashtra, Gujarat, Western India. Quaternary International, 507: 172-187. https://doi.org/10.1016/j.quaint.2019.02.015
    Battarbee, R. W., Kneen, M. J., 1982. The Use of Electronically Counted Microspheres in Absolute Diatom Analysis. Limnology and Oceanography, 27(1): 184-188. https://doi.org/10.4319/lo.1982.27.1.0184
    Berkelhammer, M., Sinha, A., Stott, L., et al., 2012. An Abrupt Shift in the Indian Monsoon 4 000 Years Ago. Geophys. Monogr. Ser., 198: 75-87. http://www.researchgate.net/publication/258553412_An_Abrupt_Shift_in_the_Indian_Monsoon_4000_Years_Ago
    Bhattacharyya, A., Yadav, R. R., 1999. Climatic Reconstructions Using Tree-Ring Data from Tropical and Temperate Regions of India--A Review. IAWA Journal, 20(3): 311-316. https://doi.org/10.1163/22941932-90000693
    Birks, H. H., Ammann, B., 2000. Two Terrestrial Records of Rapid Climatic Change during the Glacial-Holocene Transition (14000-9000 Calendar Years B.P.) from Europe. Proceedings of the National Academy of Sciences, 97(4): 1390-1394. https://doi.org/10.1073/pnas.97.4.1390
    Birks, H. H., Birks, H. J. B., 2006. Multi-Proxy Studies in Palaeolimnology. Vegetation History and Archaeobotany, 15(4): 235-251. https://doi.org/10.1007/s00334-006-0066-6
    Braun, J. J., Descloitres, M., Riotte, J., et al., 2009. Regolith Mass Balance Inferred from Combined Mineralogical, Geochemical and Geophysical Studies: Mule Hole Gneissic Watershed, South India. Geochimica et Cosmochimica Acta, 73(4): 935-961. https://doi.org/10.1016/j.gca.2008.11.013
    Bronk Ramsey, C., 2009. Bayesian Analysis of Radiocarbon Dates. Radiocarbon, 51(1): 337-360. https://doi.org/10.1017/s0033822200033865
    Chauhan, O. S., Vogelsang, E., Basavaiah, N., et al., 2010. Reconstruction of the Variability of the Southwest Monsoon during the Past 3 ka, from the Continental Margin of the Southeastern Arabian Sea. Journal of Quaternary Science, 25(5): 798-807. https://doi.org/10.1002/jqs.1359
    Chen, J. H., Chen, F. H., Feng, S., et al., 2015. Corrigendum to "Hydroclimatic Changes in China and Surroundings during the Medieval Climate Anomaly and Little Ice Age: Spatial Patterns and Possible Mechanisms"[Quaternary Science Reviews 107 (2014) 98-111]. Quaternary Science Reviews, 119: 157-158. https://doi.org/10.1016/j.quascirev.2014.10.012
    Clift, P. D., Plumb, R. A., 2008. The Asian Monsoon: Causes, History & Effects. Cambridge University Press, Cambridge
    Cronin, T. M., Dwyer, G. S., Kamiya, T., et al., 2003. Medieval Warm Period, Little Ice Age and 20th Century Temperature Variability from Chesapeake Bay. Global and Planetary Change, 36(1/2): 17-29. https://doi.org/10.1016/s0921-8181(02)00161-3
    Dale, B., 2001. The Sedimentary Record of Dinoflagellate Cysts: Looking Back into the Future of Phytoplankton Blooms. Scientia Marina, 65(S2): 257-272. https://doi.org/10.3989/scimar.2001.65s2257
    Delgado, J., Boski, T., Nieto, J. M., et al., 2012. Sea-Level Rise and Anthropogenic Activities Recorded in the Late Pleistocene/Holocene Sedimentary Infill of the Guadiana Estuary (SW Iberia). Quaternary Science Reviews, 33: 121-141. https://doi.org/10.1016/j.quascirev.2011.12.002
    Dixit, Y., 2013. Holocene Monsoon Variability Inferred from Paleolake Sediments in Northwestern India: [Dissertation]. University of Cambridge, Cambridge
    Dixit, Y., Hodell, D. A., Petrie, C. A., 2014. Abrupt Weakening of the Summer Monsoon in Northwest India 4100 yr Ago. Geology, 42(4): 339-342. https://doi.org/10.1130/g35236.1
    Dixit, Y., Hodell, D. A., Sinha, R., et al., 2015. Oxygen Isotope Analysis of Multiple, Single Ostracod Valves as a Proxy for Combined Variability in Seasonal Temperature and Lake Water Oxygen Isotopes. Journal of Paleolimnology, 53(1): 35-45. https://doi.org/10.1007/s10933-014-9805-3
    Dixit, Y., Tandon, S. K., 2016. Hydroclimatic Variability on the Indian Subcontinent in the Past Millennium: Review and Assessment. Earth-Science Reviews, 161: 1-15. https://doi.org/10.1016/j.earscirev.2016.08.001
    Dutt, S., Gupta, A. K., Clemens, S. C., et al., 2015. Abrupt Changes in Indian Summer Monsoon Strength during 33 800 to 5 500 Years B. P.. Geophysical Research Letters, 42(13): 5526-5532. https://doi.org/10.1002/2015gl064015
    Engstrom, D. R., Rose, N. L., 2013. A Whole-Basin, Mass-Balance Approach to Paleolimnology. Journal of Paleolimnology, 49(3): 333-347. https://doi.org/10.1007/s10933-012-9675-5
    Farooqui, A., Pattan, J. N., Parthiban, G., et al., 2014. Palynological Record of Tropical Rain Forest Vegetation and Sea Level Fluctuations since 140 ka from Sediment Core, South-Eastern Arabian Sea. Palaeogeography, Palaeoclimatology, Palaeoecology, 411: 95-109. https://doi.org/10.1016/j.palaeo.2014.06.020
    Fedo, C. M., Eriksson, K. A., Krogstad, E. J., 1996. Geochemistry of Shales from the Archean (~3.0 Ga) Buhwa Greenstone Belt, Zimbabwe: Implications for Provenance and Source-Area Weathering. Geochimica et Cosmochimica Acta, 60(10): 1751-1763. https://doi.org/10.1016/0016-7037(96)00058-0
    Filippelli, G. M., 1997. Intensification of the Asian Monsoon and a Chemical Weathering Event in the Late Miocene-Early Pliocene: Implications for Late Neogene Climate Change. Geology, 25(1): 27-30. https://doi.org/10.1130/0091-7613(1997)025 < 0027:iotama > 2.3.co; 2 doi: 10.1130/0091-7613(1997)025<0027:iotama>2.3.co;2
    Fleitmann, D., Burns, S. J., Mangini, A., et al., 2007. Holocene ITCZ and Indian Monsoon Dynamics Recorded in Stalagmites from Oman and Yemen (Socotra). Quaternary Science Reviews, 26(1/2): 170-188. https://doi.org/10.1016/j.quascirev.2006.04.012
    Fleitmann, D., Burns, S. J., Neff, U., et al., 2004. Palaeoclimatic Interpretation of High-Resolution Oxygen Isotope Profiles Derived from Annually Laminated Speleothems from Southern Oman. Quaternary Science Reviews, 23(7/8): 935-945. https://doi.org/10.1016/j.quascirev.2003.06.019
    Förstner, U., Salomons, W., 1980. Trace Metal Analysis on Polluted Sediments. Environmental Technology Letters, 1(11): 494-505. https://doi.org/10.1080/09593338009384006
    Gaillardet, J., Dupré, B., Louvat, P., et al., 1999. Global Silicate Weathering and CO2 Consumption Rates Deduced from the Chemistry of Large Rivers. Chemical Geology, 159(1/2/3/4): 3-30. https://doi.org/10.1016/s0009-2541(99)00031-5
    Graham, N. E., Ammann, C. M., Fleitmann, D., et al., 2011. Support for Global Climate Reorganization during the "Medieval Climate Anomaly". Climate Dynamics, 37(5/6): 1217-1245. https://doi.org/10.1007/s00382-010-0914-z
    Grant, A., Middleton, R., 1990. An Assessment of Metal Contamination of Sediments in the Humber Estuary, U. K.. Estuarine, Coastal and Shelf Science, 31(1): 71-85. https://doi.org/10.1016/0272-7714(90)90029-q
    Gupta, A. K., Anderson, D. M., Overpeck, J. T., 2003. Abrupt Changes in the Asian Southwest Monsoon during the Holocene and Their Links to the North Atlantic Ocean. Nature, 421(6921): 354-357. https://doi.org/10.1038/nature01340
    Harnois, L., 1988. The CIW Index: A New Chemical Index of Weathering. Sedimentary Geology, 55(3/4): 319-322. https://doi.org/10.1016/0037-0738(88)90137-6
    Haug, G. H., 2001. Southward Migration of the Intertropical Convergence Zone through the Holocene. Science, 293(5533): 1304-1308. https://doi.org/10.1126/science.1059725
    Ip, C. C. M., Li, X. D., Zhang, G., et al., 2005. Heavy Metal and Pb Isotopic Compositions of Aquatic Organisms in the Pearl River Estuary, South China. Environmental Pollution, 138(3): 494-504. https://doi.org/10.1016/j.envpol.2005.04.016
    Jacobson, D. M., Anderson, D. M., 1986. Thecate Heterophic Dinoflagellates: Feeding Behavior and Mechanisms. Journal of Phycology, 22(3): 249-258. https://doi.org/10.1111/j.1529-8817.1986.tb00021.x
    Jonathan, M. P., Sarkar, S. K., Roy, P. D., et al., 2009. Acid Leachable Trace Metals in Sediment Cores from Sunderban Mangrove Wetland, India: An Approach towards Regular Monitoring. Ecotoxicology, 19(2): 405-418. https://doi.org/10.1007/s10646-009-0426-y
    Kamae, Y., Kawana, T., Oshiro, M., et al., 2017. Seasonal Modulation of the Asian Summer Monsoon between the Medieval Warm Period and Little Ice Age: A Multi Model Study. Progress in Earth and Planetary Science, 4(1): 22. https://doi.org/10.1186/s40645-017-0136-7
    Kathayat, G., Cheng, H., Sinha, A., et al., 2017. The Indian Monsoon Variability and Civilization Changes in the Indian Subcontinent. Science Advances, 3(12): e1701296. https://doi.org/10.1126/sciadv.1701296
    Keigwin, L. D., 1996. The Little Ice Age and Medieval Warm Period in the Sargasso Sea. Science, 274(5292): 1503-1508. https://doi.org/10.1126/science.274.5292.1503
    Kelly, M., Juggins, S., Guthrie, R., et al., 2008. Assessment of Ecological Status in U. K. Rivers Using Diatoms. Freshwater Biology, 53: 403-422 https://doi.org/10.1111/j.1365-2427.2007.01903.x
    Kennish, M. J., 2002. Environmental Threats and Environmental Future of Estuaries. Environmental Conservation, 29(1): 78-107. https://doi.org/10.1017/s0376892902000061
    Kent, D. M., 2000. Applied Wetlands Science and Technology. CRC Press, Boca Raton. 472
    Kotlia, B. S., Sanwal, J., Phartiyal, B., et al., 2010. Late Quaternary Climatic Changes in the Eastern Kumaun Himalaya, India, as Deduced from Multi-Proxy Studies. Quaternary International, 213(1/2): 44-55. https://doi.org/10.1016/j.quaint.2009.09.002
    Krishnakumar, K. N., Prasada Rao, G. S. L. H. V., Gopakumar, C. S., 2009. Rainfall Trends in Twentieth Century over Kerala, India. Atmospheric Environment, 43(11): 1940-1944. https://doi.org/10.1016/j.atmosenv.2008.12.053
    Kumar, S. P., Edward, J. K. P., 2009. Assessment of Metal Concentration in the Sediment Cores of Manakudy Estuary, South West Coast of India. Indian Journal of Marine Sciences, 38(2): 235-248. https://doi.org/10.1093/icesjms/fsp100
    Kurian, S., Agnihotri, R., Borole, D. V., et al., 2009. Possible Solar Control on Primary Production along the Indian West Coast on Decadal to Centennial Timescale. Journal of Quaternary Science, 24(2): 109-116. https://doi.org/10.1002/jqs.1193
    Lamb, H. H., 1965. The Early Medieval Warm Epoch and Its Sequel. Palaeogeography, Palaeoclimatology, Palaeoecology, 1: 13-37. https://doi.org/10.1016/0031-0182(65)90004-0
    Li, Q. S., Wu, Z. F., Chu, B., et al., 2007. Heavy Metals in Coastal Wetland Sediments of the Pearl River Estuary, China. Environmental Pollution, 149(2): 158-164. https://doi.org/10.1016/j.envpol.2007.01.006
    Liu, J., Wang, B., Wang, H. L., et al., 2011. Forced Response of the East Asian Summer Rainfall over the Past Millennium: Results from a Coupled Model Simulation. Climate Dynamics, 36(1/2): 323-336. https://doi.org/10.1007/s00382-009-0693-6
    Loska, K., Cebula, J., Pelczar, J., et al., 1997. Use of Enrichment, and Contamination Factors Together with Geoaccumulation Indexes to Evaluate the Content of Cd, Cu, and Ni in the Rybnik Water Reservoir in Poland. Water, Air, & Soil Pollution, 93(1/2/3/4): 347-365. https://doi.org/10.1007/bf02404766
    Lotter, A. F., Hofmann, W., Kamenik, C., et al., 2000. Sedimentological and Biostratigraphical Analyses of Short Sediment Cores from Hagelseewli (2 339 m a.s.l.) in the Swiss Alps. Journal of Limnology, 59(1s): 53-64. https://doi.org/10.4081/jlimnol.2000.s1.53
    Mann, M. E., Zhang, Z. H., Rutherford, S., et al., 2009. Global Signatures and Dynamical Origins of the Little Ice Age and Medieval Climate Anomaly. Science, 326(5957): 1256-1260. https://doi.org/10.1126/science.1177303
    Manoj, M. C., Thakur, B., Uddandam, P. R., et al., 2018. Assessment of Metal Contamination in the Sediments of Vembanad Wetland System, from the Urban City of Southwest India. Environmental Nanotechnology, Monitoring & Management, 10: 238-252. https://doi.org/10.1016/j.enmm.2018.07.004
    Marret, F., Zonneveld, K. A. F., 2003. Atlas of Modern Organic-Walled Dinoflagellate Cyst Distribution. Review of Palaeobotany and Palynology, 125(1/2): 1-200. https://doi.org/10.1016/s0034-6667(02)00229-4
    Martín-Puertas, C., Valero-Garcés, B. L., Brauer, A., et al., 2009. The Iberian-Roman Humid Period (2600-1600 Cal Yr BP) in the Zoñar Lake Varve Record (Andalucía, Southern Spain). Quaternary Research, 71(2): 108-120. https://doi.org/10.1016/j.yqres.2008.10.004
    Matsuoka, K., 1999. Eutrophication Process Recorded in Dinoflagellate Cyst Assemblages-A Case of Yokohama Port, Tokyo Bay, Japan. Science of the Total Environment, 231(1): 17-35. https://doi.org/10.1016/s0048-9697(99)00087-x
    McKay, N. P., Kaufman, D. S., 2014. An Extended Arctic Proxy Temperature Database for the Past 2 000 Years. Scientific Data, 1(1): 140026. https://doi.org/10.1038/sdata.2014.26
    McLennan, S. M., 2001. Relationships between the Trace Element Composition of Sedimentary Rocks and Upper Continental Crust. Geochemistry, Geophysics, Geosystems, 2(4): GC00109. https://doi.org/10.1029/2000gc000109
    Morelli, G., Gasparon, M., Fierro, D., et al., 2012. Historical Trends in Trace Metal and Sediment Accumulation in Intertidal Sediments of Moreton Bay, Southeast Queensland, Australia. Chemical Geology, 300-301: 152-164. https://doi.org/10.1016/j.chemgeo.2012.01.023
    Müller, G., 1969. Index of Geoaccumulation in the Sediments of the Rhine River. GeoJournal, 2: 108-118 http://ci.nii.ac.jp/naid/10030367619
    Nath, B. N., Kunzendorf, H., Pluger, W. L., 2000. Influence of Provenance, Weathering, and Sedimentary Processes on the Elemental Ratios of the Fine-Grained Fraction of the Bedload Sediments from the Vembanad Lake and the Adjoining Continental Shelf, Southwest Coast of India. Journal of Sedimentary Research, 70(5): 1081-1094. https://doi.org/10.1306/100899701081
    Neff, U., Burns, S. J., Mangini, A., et al., 2001. Strong Coherence between Solar Variability and the Monsoon in Oman between 9 and 6 kyr Ago. Nature, 411(6835): 290-293. https://doi.org/10.1038/35077048
    Nesbitt, H. W., Young, G. M., McLennan, S. M., et al., 1996. Effects of Chemical Weathering and Sorting on the Petrogenesis of Siliciclastic Sediments, with Implications for Provenance Studies. The Journal of Geology, 104(5): 525-542. https://doi.org/10.1086/629850
    Nyberg, J., Malmgren, B. A., Kuijpers, A., et al., 2002. A Centennial-Scale Variability of Tropical North Atlantic Surface Hydrography during the Late Holocene. Palaeogeography, Palaeoclimatology, Palaeoecology, 183(1/2): 25-41. https://doi.org/10.1016/s0031-0182(01)00446-1
    Oliva, M. G., Lugo, A., Alcocer, J., et al., 2008. Morphological Study of Cyclotella Choctawhatcheeana Prasad (Stephanodiscaceae) from a Saline Mexican Lake. Saline Systems, 4(1): 17. https://doi.org/10.1186/1746-1448-4-17
    Osborn, T. J., Briffa, K. R., 2006. The Spatial Extent of 20th-Century Warmth in the Context of the Past 1 200 Years. Science, 311(5762): 841-844. https://doi.org/10.1126/science.1120514
    Padmalal, D., Maya, K., Seralathan, P., 1997. Geochemistry of Cu, Co, Ni, Zn, Cd and Cr in the Surficial Sediments of a Tropical Estuary, Southwest Coast of India: A Granulometric Approach. Environmental Geology, 31(1/2): 85-93. https://doi.org/10.1007/s002540050167
    PAGES 2k Consortium, 2013. Erratum: Continental-Scale Temperature Variability during the Past Two Millennia. Nature Geoscience, 6: 339-346. https://doi.org/10.1038/ngeo1797
    Pandey, N., 2005. Societal Adaptation to Abrupt Climate Change and Monsoon Variability: Implications for Sustainable Livelihoods of Rural Communities; Report. Winrock International, New Delhi
    Paterson, D., Hanley, N., Black, K., et al., 2011. Biodiversity, Ecosystems and Coastal Zone Management: Linking Science and Policy. Marine Ecology Progress Series, 434: 201-202. https://doi.org/10.3354/meps0279
    Patnaik, R., Gupta, A. K., Naidu, P. D., et al., 2012. Indian Monsoon Variability at Different Time Scales: Marine and Terrestrial Proxy Records. Proc. Indian Nat. Sci. Acad., 78(3): 535-547 http://www.researchgate.net/publication/283868752_Indian_Monsoon_Variability_at_Different_Time_Scales_Marine_and_Terrestrial_Proxy_Records
    Patterson, W. P., Dietrich, K. A., Holmden, C., et al., 2010. Two Millennia of North Atlantic Seasonality and Implications for Norse Colonies. Proceedings of the National Academy of Sciences, 107(12): 5306-5310. https://doi.org/10.1073/pnas.0902522107
    Pędziszewska, A., Tylmann, W., Witak, M., et al., 2015. Holocene Environmental Changes Reflected by Pollen, Diatoms, and Geochemistry of Annually Laminated Sediments of Lake Suminko in the Kashubian Lake District (N Poland). Review of Palaeobotany and Palynology, 216: 55-75. https://doi.org/10.1016/j.revpalbo.2015.01.008
    Pejrup, M., 1988. The Triangular Diagram for Classification of Estuarine Sediments: A New Approach. In: de Boer, P. L., van Gelder, A., Nios, S. D., eds., Tide Influenced Sediment Environ Facies, Pergamon Press, New York. 289-300
    Perlmutter, N. M., Lieber, M., 1970. Dispersal of Plating Wastes and Sewage Contaminants in Ground Water and Surface Water. Geological Survey Water Supply Paper 1879-G, US Government Printing Office, Washington D.C.
    Quamar, M. F., Chauhan, M. S., 2014. Signals of Medieval Warm Period and Little Ice Age from Southwestern Madhya Pradesh (India): A Pollen-Inferred Late-Holocene Vegetation and Climate Change. Quaternary International, 325: 74-82. https://doi.org/10.1016/j.quaint.2013.07.011
    Rajamani, V., Tripathi, J. K., Malviya, V. P., 2009. Weathering of Lower Crustal Rocks in the Kaveri River Catchment, Southern India: Implications to Sediment Geochemistry. Chemical Geology, 265(3/4): 410-419. https://doi.org/10.1016/j.chemgeo.2009.05.007
    Rao, G. M., 1999. Variations of the SO Relationship with Summer and Winter Monsoon Rainfall over India: 1872-1993. Journal of Climate, 12(12): 3486-3495 doi: 10.1175/1520-0442(1999)012<3486:VOTSRW>2.0.CO;2
    Rimet, F., Bouchez, A., Montuelle, B., 2015. Benthic Diatoms and Phytoplankton to Assess Nutrients in a Large Lake: Complementarity of Their Use in Lake Geneva (France-Switzerland). Ecological Indicators, 53: 231-239. https://doi.org/10.1016/j.ecolind.2015.02.008
    Salas, P. M., Sujatha, C. H., Ratheesh Kumar, C. S., et al., 2017. Heavy Metal Distribution and Contamination Status in the Sedimentary Environment of Cochin Estuary. Marine Pollut. Bull., 119(2): 191-203. https://doi.org/10.1016/j.marpolbul.2017.04.018
    Sandeep, K., Shankar, R., Warrier, A. K., et al., 2015. The Environmental Magnetic Record of Palaeoenvironmental Variations during the Past 3100 Years: A Possible Solar Influence?. Journal of Applied Geophysics, 118: 24-36. https://doi.org/10.1016/j.jappgeo.2015.03.023
    Santhanam, H., Farooqui, A., Karthikeyan, A., 2018. Bloom of the Diatom, Biddulphia Sp. and Ecology of Pulicat Lagoon, Southeast India in the Aftermath of the 2015 North East Monsoonal Rainfall. Environmental Monitoring and Assessment, 190(11): 636. https://doi.org/10.1007/s10661-018-7020-9
    Selvaraj, K., Ram Mohan, V., Szefer, P., 2004. Evaluation of Metal Contamination in Coastal Sediments of the Bay of Bengal, India: Geochemical and Statistical Approaches. Marine Pollution Bulletin, 49(3): 174-185. https://doi.org/10.1016/j.marpolbul.2004.02.006
    Shankar, R., Prabhu, C. N., Warrier, A. K., et al., 2006. A Multi Decadal Rock Magnetic Record of Monsoonal Variations during the Past 3 700 Years from a Tropical Indian Tank. J. Geol. Soc. India, 68 (3): 447-459 https://www.academia.edu/25008102/A_Multi-decadal_Rock_Magnetic_Record_of_Monsoonal_Variations_During_the_Past_3_700_Years_from_a_Tropical_Indian_Tank
    Sharma, A., Rajamani, V., 2000. Weathering of Gneissic Rocks in the Upper Reaches of Cauvery River, South India: Implications to Neotectonics of the Region. Chemical Geology, 166(3/4): 203-223. https://doi.org/10.1016/s0009-2541(99)00222-3
    Shi, Z. G., Xu, T. T., Wang, H. L., 2016. Sensitivity of Asian Climate Change to Radiative Forcing during the Last Millennium in a Multi-Model Analysis. Global and Planetary Change, 139: 195-210. https://doi.org/10.1016/j.gloplacha.2016.02.007
    Sinha, A., Cannariato, K. G., Stott, L. D., et al., 2007. A 900-Year (600 to 1500 A. D.) Record of the Indian Summer Monsoon Precipitation from the Core Monsoon Zone of India. Geophysical Research Letters, 34(16): L16707. https://doi.org/10.1029/2007gl030431
    Smol, J. P., 2002. Pollution of Lakes and Rivers. A Paleoenvironmental Perspective. Arnold, London & Oxford University Press Inc., New York. 401
    Smol, J. P., 2008. Pollution of Lakes and Rivers: A Paleoenvironmental Perspective. Blackwell Publishing, Oxford. 383
    Smol, J. P., Stoermer, E. F., 2010. The Diatoms: Applications for the Environmental and Earth Sciences. Cambridge University Press, Cambridge
    Soman, K., 2002. Geology of Kerala. Geological Society of India, Calcutta
    Sosa-Nájera, M. S., 2013. El Holoceno Tardío en el Occidente de México: el Registro Palinológico y Geoquímico del Lago Crater de Santa María del oro, Nayarit: [Dissertation]. Universidad Nacional Autónoma de México, Ciudad de México (in Spanish)
    Srivastava, J., Farooqui, A., 2017. Holocene Climate and Relative Sea Level Changes in Cauvery River Delta, India Based on Pollen and Sedimentary Records. Journal of Paleontological Society of India, 62(2): 193-204 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=5463d30446cb2401585df66d9b89e2ec
    Srivastava, J., Farooqui, A., 2013. Late Holocene Mangrove Dynamics and Coastal Environmental Changes in the Northeastern Cauvery River Delta, India. Quaternary International, 298: 45-56. https://doi.org/10.1016/j.quaint.2012.12.022
    Srivastava, J., Farooqui, A., Hussain, S. M., 2012. Vegetation History and Salinity Gradient during the Last 3 700 Years in Pichavaram Estuary, India. Journal of Earth System Science, 121(5): 1229-1237. https://doi.org/10.1007/s12040-012-0215-5
    Staubwasser, M., Sirocko, F., Grootes, P. M., et al., 2003. Climate Change at the 4.2 Ka BP Termination of the Indus Valley Civilization and Holocene South Asian Monsoon Variability. Geophysical Research Letters, 30(8): 1425. https://doi.org/10.1029/2002gl016822
    Steinhilber, F., Abreu, J. A., Beer, J., et al., 2012. 9 400 Years of Cosmic Radiation and Solar Activity from Ice Cores and Tree Rings. Proceedings of the National Academy of Sciences, 109(16): 5967-5971. https://doi.org/10.1073/pnas.1118965109
    Stoermer, E. F., Smol, J. F., 1999. The Diatoms. Applications for the Environmental and Earth Sciences, Königstein, Koeltz Scientific Books, Koeltz
    Sukumar, R., 2000. Climate and Ecosystem Change: What Does It Mean for Biodiversity Conservation in India? J. Indian Inst. Sci., 80(6): 609-618 http://www.cabdirect.org/abstracts/20023188249.html
    Sun, Y., Ding, Y. H., Dai, A. G., 2010. Changing Links between South Asian Summer Monsoon Circulation and Tropospheric Land-Sea Thermal Contrasts under a Warming Scenario. Geophysical Research Letters, 37(2): L02704. https://doi.org/10.1029/2009gl041662
    Suokhrie, T., Saalim, S. M., Saraswat, R., et al., 2018. Indian Monsoon Variability in the Last 2 000 Years as Inferred from Benthic Foraminifera. Quaternary International, 479: 128-140. https://doi.org/10.1016/j.quaint.2017.05.037
    Taylor, S. R., McLennan, S. M., 1985. The Continental Crust: Its Composition and Evolution, Blackwell, Malden
    Thakur, B., Srivastava, J., Uddandam, P., et al., 2015. Role of Sedimentary Processes and Environmental Factors in Determining the Distribution Pattern of Diatoms and Marine/Terrestrial Palynomorphs in a Tropical Coastal Wetland. J. Palaeontol Soc. India, 60(2): 71-84 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=35a480617b71d85ad47c609dc4880e53
    Thomson, K. T., 2002. Economic and Social Issues of Biodiversity Loss in Cochin Backwaters, Technical Report, Cochin University of Science and Technology, Kochi. 51-82
    Thorsen, T. A., Dale, B., 1997. Dinoflagellate Cysts as Indicators of Pollution and Past Climate in a Norwegian Fjord. The Holocene, 7(4): 433-446. https://doi.org/10.1177/095968369700700406
    Tiwari, M., Ramesh, R., 2007. Solar Variability in the Past and Paleoclimate Data Pertaining to the Southwest Monsoon. Curr. Sci., 93: 477-487 http://www.researchgate.net/publication/261637681_Solar_Variability_in_the_Past_and_Paleoclimate_Data_Pertaining_to_the_Southwest_Monsoon
    Tiwari, M., Ramesh, R., Somayajulu, B. L. K., et al., 2005. Solar Control of Southwest Monsoon on Centennial Timescales. Curr. Sci., 89(9): 1583 http://www.researchgate.net/publication/255612898_Solar_control_of_southwest_monsoon_on_centennial_timescales
    Tomlinson, D. L., Wilson, J. G., Harris, C. R., et al., 1980. Problems in the Assessment of Heavy-Metal Levels in Estuaries and the Formation of a Pollution Index. Helgoländer Meeresuntersuchungen, 33(1/2/3/4): 566-575. https://doi.org/10.1007/bf02414780
    Turekian, K. K., Wedepohl, K. H., 1961. Distribution of the Elements in some Major Units of the Earth's Crust. Geological Society of America Bulletin, 72(2): 175. https://doi.org/10.1130/0016-7606(1961)72[175:doteis]2.0.co; 2 doi: 10.1130/0016-7606(1961)72[175:doteis]2.0.co;2
    Uddandam, P. R., Prasad, V., Rai, J., 2017. Dinoflagellate Cyst Distribution in Sediments of Western Bay of Bengal: Role of Sea Surface Conditions. Palaeogeography, Palaeoclimatology, Palaeoecology, 483: 31-48. https://doi.org/10.1016/j.palaeo.2017.01.013
    US NAS, 1974. Geochemistry and the Environment, Ⅰ. The Relation of Selected Trace Elements to Health and Disease, US National Academy of Sciences, Washington D.C., USA
    van der Meer, M. T. J., Sangiorgi, F., Baas, M., et al., 2008. Molecular Isotopic and Dinoflagellate Evidence for Late Holocene Freshening of the Black Sea. Earth and Planetary Science Letters, 267(3/4): 426-434. https://doi.org/10.1016/j.epsl.2007.12.001
    van Soelen, E. E., Lammertsma, E. I., Cremer, H., et al., 2010. Late Holocene Sea-Level Rise in Tampa Bay: Integrated Reconstruction Using Biomarkers, Pollen, Organic-Walled Dinoflagellate Cysts, and Diatoms. Estuarine, Coastal and Shelf Science, 86(2): 216-224. https://doi.org/10.1016/j.ecss.2009.11.010
    Wang, S. M., 1992. Lake Records of the Holocene Climatic Changes in China. In: Shi, Y. F., ed., The Holocene Climatic Optimum and Associated Environment in China. Science Press, Beijing. 146-152 (in Chinese)
    Warrier, A. K., Sandeep, K., Shankar, R., 2017. Climatic Periodicities Recorded in Lake Sediment Magnetic Susceptibility Data: Further Evidence for Solar Forcing on Indian Summer Monsoon. Geoscience Frontiers, 8(6): 1349-1355. https://doi.org/10.1016/j.gsf.2017.01.004
    WHO, 1988. Chromium, Environmental Health Criteria 61, World Health Organization, Geneva
    Wu, J. L., Shi, X. Y., Li, K. Q., et al., 2012. Distribution of particulate Organic Carbon in the Yellow Sea and East China Sea in Summer. Periodical Ocean Uni China, 42: 150-156 (in Chinese with English Abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-QDHY2012S1023.htm
    Yadava, M. G., Ramesh, R., Pant, G. B., 2004. Past Monsoon Rainfall Variations in Peninsular India Recorded in a 331-Year-Old Speleothem. The Holocene, 14(4): 517-524. https://doi.org/10.1191/0959683604hl728rp
    Yan, H., Wei, W., Soon, W., et al., 2015. Dynamics of the Intertropical Convergence Zone over the Western Pacific during the Little Ice Age. Nature Geoscience, 8(4): 315-320. https://doi.org/10.1038/ngeo2375
    Yao, Q., Liu, K. B., 2017. Dynamics of Marsh-Mangrove Ecotone since the Mid-Holocene: A Palynological Study of Mangrove Encroachment and Sea Level Rise in the Shark River Estuary, Florida. PLoS One, 12(3): e0173670. https://doi.org/10.1371/journal.pone.0173670
    Ying, C., Paytan, A., Zanna, C. S., et al., 2008. Sources and Fluxes of Atmospheric Trace Elements to the Gulf of Aqaba, Red Sea. Journal of Geophysical Research: Atmospheres, 113: D05306. https://doi.org/10.1029/2007jd009110
    Zhang, Y., Kong, Z. C., Ni, J., et al., 2008. Pollen Record and Environmental Evolution of Caotanhu Wetland in Xinjiang since 4550 Cal. a BP. Science Bulletin, 53(7): 1049-1061. https://doi.org/10.1007/s11434-008-0067-1
    Zhao, M. Y., Zheng, Y. F., 2014. Marine Carbonate Records of Terrigenous Input into Paleotethyan Seawater: Geochemical Constraints from Carboniferous Limestones. Geochimica et Cosmochimica Acta, 141: 508-531. https://doi.org/10.1016/j.gca.2014.07.001
    Zonneveld, K. A. F., Ganssen, G., Troelstra, S., et al., 1997. Mechanisms Forcing Abrupt Fluctuations of the Indian Ocean Summer Monsoon during the last Deglaciation. Quaternary Science Reviews, 16(2): 187-201. https://doi.org/10.1016/s0277-3791(96)00049-2
    Zonneveld, K. A. F., Marret, F., Versteegh, G. J. M., et al., 2013 Atlas of Modern Dinoflagellate Cyst Distribution Based on 2 405 Datapoints. Rev Palaeobot Palynol, 191: 1-198. https://doi.org/10.1016/j.revpalbo.2012.08.003
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)

    Article Metrics

    Article views(303) PDF downloads(18) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return