Advanced Search

Indexed by SCI、CA、РЖ、PA、CSA、ZR、etc .

Volume 33 Issue 1
Feb 2022
Turn off MathJax
Article Contents
Bingkun Meng, Daofu Song, Yuan Chen, Shengbao Shi, Shixin Zhou. Origin, Distribution and Geochemical Significance of Isopropyltoluene Isomers in Crude Oil. Journal of Earth Science, 2022, 33(1): 215-228. doi: 10.1007/s12583-020-1348-0
Citation: Bingkun Meng, Daofu Song, Yuan Chen, Shengbao Shi, Shixin Zhou. Origin, Distribution and Geochemical Significance of Isopropyltoluene Isomers in Crude Oil. Journal of Earth Science, 2022, 33(1): 215-228. doi: 10.1007/s12583-020-1348-0

Origin, Distribution and Geochemical Significance of Isopropyltoluene Isomers in Crude Oil

doi: 10.1007/s12583-020-1348-0
More Information
  • Corresponding author: Daofu Song, songdaofu2008@163.com
  • Received Date: 26 Mar 2020
  • Accepted Date: 14 May 2020
  • Publish Date: 28 Feb 2022
  • With comprehensive two-dimensional gas chromatography linked to time-of-flight mass spectrometry (GC×GC-TOFMS), ten light hydrocarbon (LH) compounds were qualitatively and quantitatively studied in light hydrocarbons (LHs) components of crude oils. For significant differences in the concentrations of 3-isoproyltoluene (3-iPT), 4-isoproyltoluene (4-iPT) and 2-isoproyltoluene (2-iPT) in crude oils, and the 2-iPT probably derived mainly from similar skeleton monocyclic terpenoids via dehydrogenation and aromatization, the ratios of (3+4)-/2-iPT (iPTr), 3-/2-iPT (iPTr1) and 4-/2-iPT (iPTr2) are proposed to distinguish the organic matter origin of crude oils. Relatively higher iPTr (> 8.0), iPTr1 (> 7.0) and iPTr2 (> 4.0) values indicate that crude oils are sourced from the co-contribution of lower aquatic organisms, bacteria, algae, and terrestrial higher plants, whereas lower iPTr (< 5.0), iPTr1 (< 3.0), iPTr2 (< 2.0) values suggest that crude oils originated from terrestrial higher plants. The iPTr, iPTr1, and iPTr2 values show notable distinction which is mainly controlled by 2-iPT concentrations, while the concentrations of 3-iPT and 4-iPT have similar distribution range in all studied oils. The 2-iPT depleted in marine oils from the Tarim Basin and lacustrine oils from the Beibuwan Basin is less than 0.30 mg/g LHs, whereas 2-iPT enriched in swamp oils from the Tarim Basin is greater than 0.50 mg/g LHs. The iPTr, iPTr1, and iPTr2 ratios and 2-iPT concentrations can be used to distinguish the organic matter origin of crude oils, especially for light oils and condensates with low concentrations of biomarkers.

     

  • loading
  • Banthorpe, D. V., Charlwood, B. V., Francis, M. J. O., 1972. Biosynthesis of Monoterpenes. Chemical Reviews, 72(2): 115-155. https://doi.org/10.1021/cr60276a002
    Buhl, D., Weyrich, P. A., Sachtler, W. M. H., et al., 1998. Support Effects in the Pd Catalyzed Dehydrogenation of Terpene Mixtures to P-Cymene. Applied Catalysis A: General, 171(1): 1-11. https://doi.org/10.1016/s0926-860x(98)00039-8
    Chang, X. C., Wang, T. G., Li, Q. M., et al., 2013. Geochemistry and Possible Origin of Petroleum in Palaeozoic Reservoirs from Halahatang Depression. Journal of Asian Earth Sciences, 74: 129-141. https://doi.org/10.1016/j.jseaes.2013.03.024
    Cheng, B., 2016. Qualitative and quantitative analyses and molecular marker exploration of C5-C13 Light hydrocarbons in crude oils and source rocks: [Dissertation]. China University of Petroleum, Beijing. 65-68 (in Chinese with English Abstract)
    Cheng, B., Wang, T. G., Chang, X. C., 2013. Geochemical Analysis of Mixed Oil in the Ordovician Reservoir of the Halahatang Depression, Tarim Basin, China. Chinese Journal of Geochemistry, 32(4): 347-356. https://doi.org/10.1007/s11631-013-0642-2
    Cheng, B., Wang, T. G., Huang, H. P., et al., 2015a. Ratios of Low Molecular Weight Alkylbenzenes (C0-C4) in Chinese Crude Oils as Indicators of Maturity and Depositional Environment. Organic Geochemistry, 88: 78-90. https://doi.org/10.1016/j.orggeochem.2015.08.008
    Cheng, B., Wang, T. G., Huang, H. P., et al., 2015b. Application of the Monoterpane Ratio (MTR) to Distinguish Marine Oils from Terrigenous Oils and Infer Depositional Environment in Northern Tarim Basin, China. Organic Geochemistry, 85: 1-10. https://doi.org/10.1016/j.orggeochem.2015.05.001
    Connan, J., 1984. Biodegradation of Crude Oils in Reservoirs. Advances in Petroleum Geochemistry, 1: 299-335. https://doi.org/10.1016/b978-0-12-032001-1.50011-0
    Didyk, B. M., Simoneit, B. R. T., Brassell, S. C., et al., 1978. Organic Geochemical Indicators of Palaeoenvironmental Conditions of Sedimentation. Nature, 272(5650): 216-222. https://doi.org/10.1038/272216a0
    Douglas, A. G., Damsté, J. S. S., Fowler, M. G., et al., 1991. Unique Distributions of Hydrocarbons and Sulphur Compounds Released by Flash Pyrolysis from the Fossilised Alga Gloeocapsomorpha Prisca, a Major Constituent in One of Four Ordovician Kerogens. Geochimica et Cosmochimica Acta, 55(1): 275-291. https://doi.org/10.1016/0016-7037(91)90417-4
    Evans, C. R., Rogers, M. A., Bailey, N. J. L., 1971. Evolution and Alteration of Petroleum in Western Canada. Chemical Geology, 8(3): 147-170. https://doi.org/10.1016/0009-2541(71)90002-7
    Fan, M., Huan, J., Chen, Z., 2009. Thermal simulating experiment of source rock and gas-source correlation in the Kuqa depression of the Tarim Basin. Petroleum Geology and Experiment, 31: 518-521 (in Chinese with English Abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-SYSD200905015.htm
    Grayson, D. H., 2000. Monoterpenoids (Mid-1997 to Mid-1999). Natural Product Reports, 17(4): 385-419. https://doi.org/10.1039/a804437f
    Hanson, A. D., Zhang, S. C., Moldowan J. M., et al., 2000. Molecular Organic Geochemistry of the Tarim Basin, Northwest China. AAPG Bulletin, 84: 1109-1128. https://doi.org/10.1306/a9673c52-1738-11d7-8645000102c1865d
    Hartgers, W. A., Sinninghe Damsté, J. S., de Leeuw, J. W., 1992. Identification of C2-C4 Alkylated Benzenes in Flash Pyrolysates of Kerogens, Coals and Asphaltenes. Journal of Chromatography A, 606(2): 211-220. https://doi.org/10.1016/0021-9673(92)87027-6
    Hartgers, W. A., Sinninghe Damsté, J. S., Requejo, A. G., et al., 1994a. Evidence for Only Minor Contributions from Bacteria to Sedimentary Organic Carbon. Nature, 369(6477): 224-227. https://doi.org/10.1038/369224a0
    Hartgers, W. A., Sinninghe Damsté, J. S., Requejo, A. G., et al., 1994b. A Molecular and Carbon Isotopic Study towards the Origin and Diagenetic Fate of Diaromatic Carotenoids. Organic Geochemistry, 22(3/4/5): 703-725. https://doi.org/10.1016/0146-6380(94)90134-1
    Hartgers, W. A., Damsté, J. S. S., de Leeuw, J. W., 1994c. Geochemical Significance of Alkylbenzene Distributions in Flash Pyrolysates of Kerogens, Coals, and Asphaltenes. Geochimica et Cosmochimica Acta, 58(7): 1759-1775. https://doi.org/10.1016/0016-7037(94)90535-5
    Hunt, J. M., Huc, A. Y., Whelan, J. K., 1980. Generation of Light Hydrocarbons in Sedimentary Rocks. Nature, 288(5792): 688-690. https://doi.org/10.1038/288688a0
    Jia, W. L., Peng, P. A., Yu, C. L., et al., 2007. Source of 1, 2, 3, 4-Tetramethylbenzene in Asphaltenes from the Tarim Basin. Journal of Asian Earth Sciences, 30(5/6): 591-598. https://doi.org/10.1016/j.jseaes.2006.09.003
    Jia, W. L., Peng, P. G., Xiao, Z. Y., et al., 2008. Carbon Isotopic Compositions of 1, 2, 3, 4-Tetramethylbenzene in Marine Oil Asphaltenes from the Tarim Basin: Evidence for the Source Formed in a Strongly Reducing Environment. Science in China Series D: Earth Sciences, 51(4): 509-514. https://doi.org/10.1007/s11430-008-0030-7
    Kang, Y. Z., Kang, Z. H., 1996. Tectonic Evolution and Oil and Gas of Tarim Basin. Journal of Southeast Asian Earth Sciences, 13(3/4/5): 317-325. https://doi.org/10.1016/0743-9547(96)00038-4
    Leythaeuser, D., Schaefer, R. G., Cornford, C., et al., 1979a. Generation and Migration of Light Hydrocarbons (C2-C7) in Sedimentary Basins. Organic Geochemistry, 1(4): 191-204. https://doi.org/10.1016/0146-6380(79)90022-6
    Leythaeuser, D., Schaefer, R. G., Weiner, B., 1979b. Generation of Low Molecular Weight Hydrocarbons from Organic Matter in Source Beds as a Function of Temperature and Facies. Chemical Geology, 25(1/2): 95-108. https://doi.org/10.1016/0009-2541(79)90086-x
    Li, M. J., Wang, T. G., Lillis, P. G., et al., 2012. The Significance of 24-Norcholestanes, Triaromatic Steroids and Dinosteroids in Oils and Cambrian-Ordovician Source Rocks from the Cratonic Region of the Tarim Basin, NW China. Applied Geochemistry, 27(8): 1643-1654. https://doi.org/10.1016/j.apgeochem.2012.03.006
    Li, M. J., Wang, T. G., Liu, J., et al., 2007. Characteristics of Oil and Gas Accumulation in Yong'an-Meitai Area of the Fushan Depression, Beibuwan Basin, South China Sea. Petroleum Science, 4(4): 23-33. https://doi.org/10.1007/bf03187452
    Li, M. J., Wang, T. G., Liu, J., et al., 2008. Total Alkyl Dibenzothiophenes Content Tracing the Filling Pathway of Condensate Reservoir in the Fushan Depression, South China Sea. Science in China Series D: Earth Sciences, 51(S2): 138-145. https://doi.org/10.1007/s11430-008-6025-6
    Li, M. J., Wang, T. G., Liu, J., et al., 2009. Biomarker 17α(H)-Diahopane: A Geochemical Tool to Study the Petroleum System of a Tertiary Lacustrine Basin, Northern South China Sea. Applied Geochemistry, 24(1): 172-183. https://doi.org/10.1016/j.apgeochem.2008.09.016
    Liang, D. G., Zhang, S. C., Chen, J. P., et al., 2003. Organic Geochemistry of Oil and Gas in the Kuqa Depression, Tarim Basin, NW China. Organic Geochemistry, 34(7): 873-888. https://doi.org/10.1016/s0146-6380(03)00029-9
    Lis, G. P., Mastalerz, M., Schimmelmann, A., 2008. Increasing Maturity of Kerogen Type Ⅱ Reflected by Alkylbenzene Distribution from Pyrolysis-Gas Chromatography-Mass Spectrometry. Organic Geochemistry, 39(4): 440-449. https://doi.org/10.1016/j.orggeochem.2008.01.007
    Mair, B. J., 1964. Terpenoids, Fatty Acids and Alcohols as Source Materials for Petroleum Hydrocarbons. Geochimica et Cosmochimica Acta, 28(8): 1303-1321. https://doi.org/10.1016/0016-7037(64)90131-0
    Ngia, N. R., Hu, M. Y., Gao, D., et al., 2019. Application of Stable Strontium Isotope Geochemistry and Fluid Inclusion Microthermometry to Studies of Dolomitization of the Deeply Buried Cambrian Carbonate Successions in West-Central Tarim Basin, NW China. Journal of Earth Science, 30(1): 176-193. https://doi.org/10.1007/s12583-017-0954-y
    Pedentchouk, N., Freeman, K. H., Harris, N. B., et al., 2004. Sources of Alkylbenzenes in Lower Cretaceous Lacustrine Source Rocks, West African Rift Basins. Organic Geochemistry, 35(1): 33-45. https://doi.org/10.1016/j.orggeochem.2003.04.001
    Peters, K. E., Fowler, M. G., 2002. Applications of Petroleum Geochemistry to Exploration and Reservoir Management. Organic Geochemistry, 33(1): 5-36. https://doi.org/10.1016/s0146-6380(01)00125-5
    Radke, M., Willsch, H., 1994. Extractable Alkyldibenzothiophenes in Posidonia Shale (Toarcian) Source Rocks: Relationship of Yields to Petroleum Formation and Expulsion. Geochimica et Cosmochimica Acta, 58(23): 5223-5244. https://doi.org/10.1016/0016-7037(94)90307-7
    Sinninghe Damsté, J. S., Keely, B. J., Betts, S. E., et al., 1993. Variations in Abundances and Distributions of Isoprenoid Chromans and Long-Chain Alkylbenzenes in Sediments of the Mulhouse Basin: A Molecular Sedimentary Record of Palaeosalinity. Organic Geochemistry, 20(8): 1201-1215. https://doi.org/10.1016/0146-6380(93)90009-z
    Sinninghe Damsté, J. S., Kock-van Dalen, A. C., Albrecht, P. A., et al., 1991. Identification of Long-Chain 1, 2-Di-N-Alkylbenzenes in Amposta Crude Oil from the Tarragona Basin, Spanish Mediterranean: Implications for the Origin and Fate of Alkylbenzenes. Geochimica et Cosmochimica Acta, 55(12): 3677-3683. https://doi.org/10.1016/0016-7037(91)90066-e
    Song, D. F., Wang, T. G., Li, H. B., 2015. Geochemical Characteristics and Origin of the Crude Oils and Condensates from Yakela Faulted-Uplift, Tarim Basin. Journal of Petroleum Science and Engineering, 133: 602-611. https://doi.org/10.1016/j.petrol.2015.07.007
    Sun, Y. G., Xu, S. P., Lu, H., et al., 2003. Source Facies of the Paleozoic Petroleum Systems in the Tabei Uplift, Tarim Basin, NW China: Implications from Aryl Isoprenoids in Crude Oils. Organic Geochemistry, 34(4): 629-634. https://doi.org/10.1016/s0146-6380(03)00063-9
    Thompson, K. F. M., 1987. Fractionated Aromatic Petroleums and the Generation of Gas-Condensates. Organic Geochemistry, 11(6): 573-590. https://doi.org/10.1016/0146-6380(87)90011-8
    Thompson, K. F. M., 1988. Gas-Condensate Migration and Oil Fractionation in Deltaic Systems. Marine and Petroleum Geology, 5(3): 237-246. https://doi.org/10.1016/0264-8172(88)90004-9
    Tissot, B. P., Welte, D. H., 1984. Petroleum Formation and Occurrence. Springer, Amsterdam. https://doi.org/10.1007/978-3-642-87813-8
    Volkman, J. K., Alexander, R., Kagi, R. I., et al., 1984. Biodegradation of Aromatic Hydrocarbons in Crude Oils from the Barrow Sub-Basin of Western Australia. Organic Geochemistry, 6: 619-632. https://doi.org/10.1016/0146-6380(84)90084-6
    Wang, G. L., Cheng, B., Wang, T. G., et al., 2014. Monoterpanes as Molecular Indicators to Diagnose Depositional Environments for Source Rocks of Crude Oils and Condensates. Organic Geochemistry, 72: 59-68. https://doi.org/10.1016/j.orggeochem.2014.05.004
    Wang, T. G., He, F. Q., Wang, C. J., et al., 2008. Oil Filling History of the Ordovician Oil Reservoir in the Major Part of the Tahe Oilfield, Tarim Basin, NW China. Organic Geochemistry, 39(11): 1637-1646. https://doi.org/10.1016/j.orggeochem.2008.05.006
    Xiao, Z., Huang, G., Lu, Y., et al., 2004. Rearranged hopanes in oils from the Quele 1 Well, Tarim Basin, and the significance for oil correlation. Petroleum Exploration and Development, 31: 35-37 (in Chinese with English Abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-SKYK200402008.htm
    Yassaa, N., Peeken, I., Zöllner, E., et al., 2008. Evidence for Marine Production of Monoterpenes. Environmental Chemistry, 5(6): 391. https://doi.org/10.1071/en08047
    Zhang, S. C., Hanson, A. D., Moldowan, J. M., et al., 2000. Paleozoic Oil-Source Rock Correlations in the Tarim Basin, NW China. Organic Geochemistry, 31(4): 273-286. https://doi.org/10.1016/s0146-6380(00)00003-6
    Zhang, S. C., Huang, H. P., 2005. Geochemistry of Palaeozoic Marine Petroleum from the Tarim Basin, NW China: Part 1. Oil Family Classification. Organic Geochemistry, 36(8): 1204-1214. https://doi.org/10.1016/j.orggeochem.2005.01.013
    Zhang, S. C., Huang, H. P., Su, J., et al., 2014a. Geochemistry of Alkylbenzenes in the Paleozoic Oils from the Tarim Basin, NW China. Organic Geochemistry, 77: 126-139. https://doi.org/10.1016/j.orggeochem.2014.10.003
    Zhang, S. C., Huang, H. P., Su, J., et al., 2014b. Geochemistry of Paleozoic Marine Oils from the Tarim Basin, NW China. Part 4: Paleobiodegradation and Oil Charge Mixing. Organic Geochemistry, 67: 41-57. https://doi.org/10.1016/j.orggeochem.2013.12.008
    Zhang, S. C., Liang, D. G., Li, M. W., et al., 2002. Molecular Fossils and Oil-Source Rock Correlations in Tarim Basin, NW China. Chinese Science Bulletin, 47(S1): 20-27. https://doi.org/10.1007/bf02902814
    Zhang, S. C., Zhang, B., Zhu, G. Y., et al., 2011. Geochemical Evidence for Coal-Derived Hydrocarbons and Their Charge History in the Dabei Gas Field, Kuqa Thrust Belt, Tarim Basin, NW China. Marine and Petroleum Geology, 28(7): 1364-1375. https://doi.org/10.1016/j.marpetgeo.2011.02.006
    Zhu, G., Yang, H., Zhang, B., et al., 2012. The geological feature and origin of Dina 2 large gas field in Kuqa Depression, Tarim Basin. Acta Petrologica Sinica, 28: 2479-2492 (in Chinese with English Abstract) http://d.wanfangdata.com.cn/periodical/ysxb98201208015
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(4)

    Article Metrics

    Article views(195) PDF downloads(45) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return